TY - CONF A1 - Schaupp, Thomas A1 - Schroepfer, Dirk A1 - Schroeder, Nina A1 - Kannengießer, Thomas T1 - Modified TEKKEN test for studying hydrogen-assisted cracking in high-strength structural steels N2 - In the present work, the complex interactions of the influences of material, welding process and seam configuration and the restraint of shrinkage on the residual stresses and the influence of diffusible hydrogen on hydrogen-assisted cracking (HAC) in the high-strength steel S960QL were investigated. For this purpose, self-restraint specimens were selected using the TEKKEN test with correspondingly adapted seam opening angles and a restraint intensity of approx. RFy = 17 kN/(mm·mm). The variation of the seam opening angle of the test seams was between 30° and 60°. Due to the comparatively high restraint of shrinkage in the transverse direction of the weld, high tensile residual stresses in the weld metal were expected for both weld seam configurations. In addition, a dehydrogenation heat treatment (DHT) for HAC prevention under restraint of shrinkage was verified. In order to keep distortion and heat input as low as possible, the seam geometries were manufactured from the solid material by means of electric discharge machining (EDM). Both, solid wire and metal cored wire were used. In addition, hydrogen was added to the shielding gas in solid wire welding to increase diffusible hydrogen concentration. Moreover, welding residual stresses at the weld seam surface, which were measured by using mobile X-ray diffraction, were taken into account to evaluate the HAC behavior. DHT was carried out at 250 °C for 4 h in an external furnace. T2 - 73rd IIW Annual Assembly: Commission II-A CY - Online meeting DA - 15.07.2020 KW - High-strength steel KW - Gas metal arc welding KW - Hydrogen-assisted cracking KW - TEKKEN test KW - Residual stresses KW - Dehydrogenation heat treatment PY - 2020 AN - OPUS4-51035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel, Part III N2 - Efficiency and flexibility are currently a major concern in the design of modern power plants and chemical processing facilities. The high requirements for economic profitability and in particular climate change neutrality are driving this development. Consequently, plant equipment and chemical reactor components are designed for higher operating pressure and temperature. Creep-resistant CrMo steels had been used as constructional materials for decades but came to operational limitations, for example the resistance against so-called high-temperature hydrogen attack in petrochemical reactors. For that purpose, 20 years ago V-modified CrMo steels had been developed for use in the petrochemical industry due to their very good creep-strength and hydrogen pressure resistance at elevated temperatures enabling long service life of the respective components. For example, the 13CrMoV9-10 steel is applicable for process temperatures of up to 482 °C and hydrogen pressures of up to 34.5 MPa. Due to the large dimensions and wall thickness of the reactors (wall thickness up to 475 mm) and the special alloy concept, reliable weld manufacturing of the components is extremely challenging. First, low toughness and high strength of the weld joint in the as-welded condition are critical regarding weld cracking. High welding residual stresses are the result of the highly restrained shrinkage of the component welds. For this purpose, the entire component must be subjected to Post-Weld Heat Treatment (PWHT) after completion of the welding operation. The aim is to increase the toughness of the weld joints as well as to reduce the welding induced residual stresses. Before and during PWHT, extreme caution is required to prevent cracking. Unfortunately, V-modified CrMo steels possess an increased susceptibility to cracking during stress relaxation the so-called stress relief cracking (SRC). Available literature studies have largely focused on thermal and metallurgical factors. However, little attention has been paid on the influence of the welding procedure on crack formation during PWHT considering actual manufacturing conditions. For that reason, we investigated in our previous studies (part I and II), the influence of heat control on the mechanical properties by simulating actual manufacturing conditions prevailing during the construction of petrochemical reactors using a special 3D- acting testing facility. The focus of part I was put on the influence of the welding heat control on mechanical stresses and the effect on cracking during PWHT. Part II was mainly dedicated to the metallurgical causes of SRC during PWHT and the interaction with the occurring mechanical stresses. It could be shown that not only high welding-induced stresses due to increased weld heat input cause higher susceptibility for SRC formation. It was further intensified by an altered precipitation behaviour in presence of mechanical stresses that are caused by the component related restraint. The present part III shows how residual stresses, which are present in such welded components and significantly influence the crack formation, can be transferred to the laboratory scale. As a result, the effect on the residual stresses on the SRC behaviour can be evaluated on simplified small-scale specimens instead of expensive mock-ups. For this purpose, experiments with test set-ups at different scales and under different rigidity conditions were designed and carried out. T2 - IIW Annual Assembly, Meeting of Commission II-A CY - Online meeting DA - 20.07.2020 KW - Welding KW - Creep-resistant steel KW - Residual stresses KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 AN - OPUS4-51587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -