TY - CONF A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Residual stresses in near-component specimens of a high and a medium entropy alloy due to tig and friction stir welding N2 - The new alloying concept of multi-element systems with defined entropy (HEA - High Entropy Alloy or MEA - Medium Entropy Alloy) is gaining increasing importance in materials research. Significantly improved properties or combinations of properties are shown by some HEA/MEA-systems, which have the potential to substitute conventional alloys such steels and are therefore promising for a wide range of applications, e.g., overcome of the trade-off between high strength and ductility. Thus, primarily the production and resulting microstructures of HEA as well as properties have been investigated so far. Furthermore, processing is a main issue to transfer HEA systems from the laboratory to real components, e.g., for highly stressed components. Since welding is the most important joining process for metals, it is crucial to investigate the influence of welding processing on these material properties to guarantee component integrity. Welding leads to residual stresses, which significantly affect the component integrity. Only a very few studies on the effect of welding on residual stresses in HEA and MEA weld joints are available so far. Hence, the focus of this study is the residual stress formation and distribution in a CoCrFeMnNi HEA and ternary CoCrNi MEA using two different welding processes: Tungsten Inert Gas (TIG) welding and soldi-state Friction Stir Welding (FSW). As a pathway for application of HEA in this investigation for the first time residual stress analyses in realistic near-component specimens were performed. The residual stresses were determined by X-ray diffraction (XRD) on the surfaces of top and root weld side. The results were correlated with the local welding microstructures. The results show that both FSW and TIG generate significant tensile residual stresses on the weld surfaces in and transverse to the welding direction. In the case of FSW of the CoCrFeMnNi HEA, the longitudinal residual stresses are in the range of the yield strength of approx. 300 MPa in the weld zone. T2 - OVGU-Kolloquium (BMDK des IWF) CY - Online meeting DA - 19.05.2022 KW - High Entropy Alloy KW - Welding KW - Residual stresses KW - Microstructure PY - 2022 AN - OPUS4-56671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Influence of the WAAM process on residual stresses in high-strength steels (IIW-Doc. II-A-408-2022) N2 - High-strength fine-grain structeural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation. T2 - Intermediate Meeting of IIW Comissions II and IX CY - Online meeting DA - 17.03.2022 KW - MAG-Welding KW - Additive Manufacturing KW - Residual stresses KW - high-strength steel KW - cold cracking safety PY - 2022 AN - OPUS4-56712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Consideration of design influences to provide adequate repair concepts for high-strength steel weld joints in offshore support structures N2 - The sustainable and resource-efficient production of offshore wind turbines requires the use of modern high-strength fine-grained structural steels (Martin and Schroeter, 2005). This applies to wind turbines in terms of increasing turbine sizes as well as to maintenance and installation vessels and equipment (Ummenhofer et al., 2013). Without the demanded high load-bearing capacities and boom lengths, the economic realization of these goals would be inconceivable. During the assembly of high-strength steel structures, unacceptable defects can occasionally be found in the weld area, although the welding process was executed in accordance with the specifications. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Corresponding standards hardly provide any information on adequate repair concepts, and there is no uniform scientific data on which to base such concepts. This applies particularly to the consideration and optimization of welding-induced stresses due to the high shrinkage hindrance of the gouging grooves and degradation of the adjacent microstructures by gouging and re-welding. The result, especially in the case of high-strength steel grades, are frequently recurring imperfections as well as a missing consideration of the additionally induced welding stresses in the design of the structure. In this context, at BAM component-relevant investigations focused on welding residual stress evolution and microstructural degradation during repair of weld joints due to local thermal gouging and re-welding are carried out within the scope of a FOSTA project (P1311, IGF 20162N). In this study, several relevant findings are discussed based on examples of structural engineering focusing on mechanical-technological properties and residual stresses, for instance found by (Schasse, 2017). Also experimental and numerical work as conducted by (Wongpanya, 2008) and weld tests under defined shrinkage restraint in special weld test-setups for research projects, e. g. FOSTA-P922 (Kannengiesser and Schroepfer, 2015) and P1011 (Kannengiesser and Schroepfer, 2017) have shown that an optimization of the welding-induced stresses of high-strength structural steels is specifically achievable by means of adapted heat control concepts (Schroepfer, 2017). The present research involves systematic investigations of influences of shrinkage restraint, the number of repair cycles and heat control during repair welding of the relatively new developed offshore-relevant high-strength steel S500MLO (EN 10225-1). For the quantification of the shrinkage restraint of weld joints, the concept of restraint intensity established by (Satho et al., 1973) was applied analogous to recent research, e. g. (Schwenk et al., 2008). By means of structural mechanics calculations, geometries of self-strained specimens were identified, that represent different defined rigidity conditions of repair welds of real components, cf. Fig. 1. It could be shown that with increasing weld joint restraint intensity significantly higher residual stresses in the weld metal and heat affected zone up to 80 % of the nominal yield strength occur, cf. Fig. 2. In relation to existing results, it has been shown that a safe repair of such welds can only be achieved by means of appropriate repair concepts and heat control taking the high welding stresses and special microstructures of high-strength steels into account. Finally, the aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines, especially for SMEs, in order to avoid damage and, in most cases, expensive reworking and to improve the full utilization of the potential of high-strength steels. T2 - Wind Energy Science Conference 2021 CY - Online meeting DA - 25.05.2021 KW - High-strength structural steels KW - Welding KW - Repair KW - Residual stresses KW - Restraint PY - 2021 AN - OPUS4-53319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Adequate repair concepts for high-strength steel weld joints for offshore support structures considering design influences N2 - The sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process [1]. Corresponding standards hardly provide any information on adequate repair concepts, and there is no uniform scientific data on which to base such concepts. In this study, several relevant findings are discussed based on examples of structural engineering focusing on mechanical-technological properties and residual stresses, e.g. [1]. Further experimental and numerical work as conducted by [2] and weld tests under defined restraint conditions in special weld test-setups [3] show that an optimization of the welding-induced stresses of high-strength structural steels is achievable by means of an adapted heat control. The present research involves systematic investigations of influences of shrinkage restraint, the number of repair cycles and heat control during repair welding of a recently available high-strength offshore steel S500MLO (EN 10225-1). A quantification of the shrinkage restraint of repair weld joints is achievable by means of restraint intensity concept [4], analogous to previous studies [5]. Using structural mechanics calculations, geometries of self-restrained specimens are identified representing different defined rigidity conditions of repair welds considering actual high-strength steel components. Welding experiments with DIC analyses (digital image correlation) of the occurring strains during welding and XRD analyses (X-ray diffraction) of the resulting residual stresses after welding and cooling show increasing transient loads and significantly elevated residual stress profiles in the weld area with increasing restraint intensity. Especially in the heat affected zone, tensile residual stresses of up to 80 % of the nominal yield strength occur when welding under increased restraint conditions. In relation to the presented existing results, this indicates that a safe repair welding is primarily achievable by means of appropriate repair concepts and heat control taking into account the high welding stresses and special microstructures of high-strength steels. Finally, the aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines, especially for SMEs, in order to avoid damage and, in most cases, expensive reworking and to improve the full utilization of the potential of high-strength steels. T2 - 74th IIW Annual Assembly and International Conference, C II-A CY - Online meeting DA - 07.07.2021 KW - High-strength structural steels KW - Welding KW - Repair KW - Residual stresses KW - Restraint PY - 2021 AN - OPUS4-53320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Residual stresses in near-component specimens of a high and a medium entropy alloy due to tig and friction stir welding N2 - The new alloying concept of multi-element systems with defined entropy (HEA - High Entropy Alloy or MEA - Medium Entropy Alloy) is gaining increasing importance in materials research. Significantly improved properties or combinations of properties are shown by some HEA/MEA-systems. Thus, primarily the production and resulting microstructures of HEA as well as properties have been investigated so far. Furthermore, processing is a main issue to transfer HEA systems from the laboratory to real components. Since welding is the most important joining process for metals, it is crucial to investigate the influence of welding to guarantee component integrity. Welding leads to residual stresses, which significantly affect the component integrity. Hence, the focus of this study is the residual stress formation and distribution in a CoCrFeMnNi HEA and ternary CoCrNi MEA using two different welding processes: Tungsten Inert Gas (TIG) welding and soldi-state Friction Stir Welding (FSW). As a pathway for application of HEA in this investigation for the first-time residual stress analyses in realistic near-component specimens were performed. The residual stresses were determined by X-ray diffraction (XRD) on the surfaces of top and root weld side. The results were correlated with the local welding microstructures. The results show that both FSW and TIG generate significant tensile residual stresses on the weld surfaces in and transverse to the welding direction. In the case of FSW of the CoCrFeMnNi HEA, the longitudinal residual stresses are in the range of the yield strength of approx. 300 MPa in the weld zone. T2 - ICRS11 – 11th International Conference on Residual Stresses CY - Nancy, France DA - 27.03.2022 KW - High Entropy Alloy KW - Medium Entropy Alloys KW - Welding microstructure KW - Residual stresses PY - 2022 AN - OPUS4-55444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 SP - 1 EP - 7 PB - European society for composite materials AN - OPUS4-45338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kraus, David A1 - Trappe, Volker T1 - Cyclic fatigue behavior of glass fiber reinforced epoxy resin at ambient and elevated temperatures N2 - The fatigue behavior of ±45° glass fiber reinforced epoxy resin under cyclic mechanical and constant thermal loading is investigated in this study. Tests at three different temperature levels in the range 296 K to 343 K have been performed in order to create S-N curves for each temperature level. The specimen damage is measured in-situ using optical grayscale analysis. The characteristic damage state (CDS) is evaluated for each specimen. It is shown that the point of CDS is suitable as a failure criterion to compare the resulting S-N curves. With micromechanical formulations, the temperature-dependent matrix effort is calculated for each stress-temperature level. In terms of matrix effort, the longest fatigue life is reached at high temperatures, while, in terms of stress, the lowest fatigue life is reached at the highest temperatures. T2 - ECCM18 - 18th European conference on composite materials CY - Athens, Greece DA - 24.06.2018 KW - Composite KW - Fatigue KW - Thermomechanics KW - Residual stresses KW - Temperature PY - 2018 AN - OPUS4-45346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Welding stress control in high-strength steel components using adapted heat control concepts N2 - High-strength steels are increasingly applied in modern steel constructions to meet today’s lightweight requirements. Welding of these steels demands a profound knowledge of the interactions between the welding process, cooling conditions, heat input and the resulting metallurgical occurrences in the weld and its vicinity. Additionally, welding stresses may be detrimental for the safety and performance of high-strength steel component welds during fabrication and service, especially due to the high yield ratio. For a development of strategies to adjust welding heat control, all these effects should be considered, to reach a complete exploitation of the high-strength steel potential. In recent researches at BAM, multilayer GMAW experiments were performed with high-strength steels, in which cooling conditions and resulting microstructure were analysed for varied heat control parameters. The application of a unique 3d-operating testing facility and X-ray diffraction measurements allowed the analysis of local stresses in the weld while welding and cooling under component relevant shrinkage restraints. As a result, correlations between material behaviour, welding and cooling condition and the arising multi-axial stresses and forces were found. Based on this study, statements for the development of adapted heat control concepts were derived, which are presented by means of specific analysis examples. T2 - IIW Intermediate Meeting C-II/CIX CY - Genua, Italy DA - 05.03.2018 KW - Process parameters KW - Residual stresses KW - GMA Welding KW - Restraint KW - High-strength steels PY - 2018 AN - OPUS4-45500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schroepfer, Dirk A1 - Kromm, Arne A1 - Schaupp, Thomas A1 - Kannengießer, Thomas T1 - Welding Stress Control in High-strength Steel Components Using Adapted Heat Control Concepts N2 - High-strength steels are increasingly applied in modern steel constructions to meet today’s lightweight requirements. Welding of these steels demands a profound knowledge of the interactions between the welding process, cooling conditions, heat input and the resulting metallurgical occurrences in the weld and its vicinity. Additionally, welding stresses may be detrimental for the safety and performance of high-strength steel component welds during fabrication and service, especially due to the high yield ratio. For a development of strategies to adjust welding heat control, all these effects should be considered, to reach a complete exploitation of the high-strength steel potential. In recent researches at BAM, multilayer GMAW experiments were performed with high-strength steels, in which cooling conditions and resulting microstructure were analysed for varied heat control parameters. The application of a unique 3d-operating testing facility and X-ray diffraction measurements allowed the analysis of local stresses in the weld while welding and cooling under component relevant shrinkage restraints. As a result, correlations between material behaviour, welding and cooling condition and the arising multi-axial stresses and forces were found. Based on this study, statements for the development of adapted heat control concepts were derived, which are presented by means of specific analysis examples. T2 - 71st IIW Annual Assembly and International Conference: Commission II-A CY - Nusa Dua, Bali, Indonesia DA - 15.07.2018 KW - Residual stresses KW - GMA Welding KW - Restraint KW - High-strength steels KW - Process parameters PY - 2018 AN - OPUS4-45623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas A1 - Schroepfer, Dirk A1 - Schroeder, Nina A1 - Kannengießer, Thomas T1 - Modified TEKKEN test for studying hydrogen-assisted cracking in high-strength structural steels N2 - In the present work, the complex interactions of the influences of material, welding process and seam configuration and the restraint of shrinkage on the residual stresses and the influence of diffusible hydrogen on hydrogen-assisted cracking (HAC) in the high-strength steel S960QL were investigated. For this purpose, self-restraint specimens were selected using the TEKKEN test with correspondingly adapted seam opening angles and a restraint intensity of approx. RFy = 17 kN/(mm·mm). The variation of the seam opening angle of the test seams was between 30° and 60°. Due to the comparatively high restraint of shrinkage in the transverse direction of the weld, high tensile residual stresses in the weld metal were expected for both weld seam configurations. In addition, a dehydrogenation heat treatment (DHT) for HAC prevention under restraint of shrinkage was verified. In order to keep distortion and heat input as low as possible, the seam geometries were manufactured from the solid material by means of electric discharge machining (EDM). Both, solid wire and metal cored wire were used. In addition, hydrogen was added to the shielding gas in solid wire welding to increase diffusible hydrogen concentration. Moreover, welding residual stresses at the weld seam surface, which were measured by using mobile X-ray diffraction, were taken into account to evaluate the HAC behavior. DHT was carried out at 250 °C for 4 h in an external furnace. T2 - 73rd IIW Annual Assembly: Commission II-A CY - Online meeting DA - 15.07.2020 KW - High-strength steel KW - Gas metal arc welding KW - Hydrogen-assisted cracking KW - TEKKEN test KW - Residual stresses KW - Dehydrogenation heat treatment PY - 2020 AN - OPUS4-51035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -