TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas ED - Lippold, J. ED - Boellinghaus, Thomas ED - Richardson, I. T1 - Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process N2 - In order to satisfy the growing requirements towards lightweight design and resource efficiency in modern steel constructions, e.g., mobile cranes and bridges, high-strength steels with typical yield strength ≥ 690 MPa are coming into use to an increasing extent. However, these steels require special treatment in welding. The susceptibility for degradation of the mechanical properties in the presence of hydrogen increases significantly with increasing yield strength. In case of missing knowledge about how and the amount of hydrogen that is uptaken during welding, hydrogen-assisted cracking (HAC) can be a negative consequence. Moreover, modern weld technology like the modified spray arc process enables welding of narrower weld seams. In this context, a reduced number of weld beads, volume, and total heat input are technical and economical benefits. This work presents the influence of welding parameters on the diffusible hydrogen content in both (1) single-pass and (2) multi-layer welds. Different hydrogen concentrations were detected by varied contact tube distance, wire feed speed, arc length, and varied arc type (transitional arc and modified spray arc). The results show that all welding parameters have significant influence on the diffusible hydrogen concentration in the single-pass welds. By increasing the number of weld beads in case of multi-layer welding, the hydrogen concentration has been reduced. Whereby, differences in hydrogen concentrations between both arc types are present. KW - Hydrogen KW - MAG welding KW - High-strength steels KW - Process parameters PY - 2018 U6 - https://doi.org/10.1007/s40194-017-0535-9 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 1 SP - 9 EP - 18 PB - Springer CY - Berlin Heidelberg AN - OPUS4-43864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Sebastian A1 - Selleng, C. A1 - Meng, Birgit T1 - Prompt phase analyses of ultrahigh-performance concrete N2 - Powder X-ray diffraction is a time-consuming and challenging task, especially for preparation of sensitive phases like ettringite and calcium-silicate-hydrate (C-S-H) phases. Fine-grained ultrahigh-performance concrete (UHPC) with an average grain size <100 μm could be investigated directly without time-consuming milling. As a proof of concept, small UHPC cylinders with plain surfaces were investigated with a newly designed sample holder. The comparison with conventionally prepared powder shows the feasibility of fast qualitative phase analysis using this approach. As a great benefit, a depth-dependent analysis, as well as a comparison of surface layers and core material, was carried out. KW - Ultrahigh-performance concrete (UHPC) KW - X-ray diffraction (XRD) KW - Sample holder KW - Fast measurement KW - Spatial analyses PY - 2018 U6 - https://doi.org/10.1061/(ASCE)MT.1943-5533.0002163 SN - 1943-5533 SN - 0899-1561 VL - 30 IS - 3 SP - 06018001, 1 EP - 06018001, 5 PB - American Society of Civil Engineers CY - Reston, VA, USA AN - OPUS4-43879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Sebastian A1 - Gluth, Gregor A1 - Peys, A. A1 - Onisei, S. A1 - Banerjee, D. A1 - Pontikes, Y. T1 - The fate of iron during the alkali-activation of synthetic (CaO-)FeOx-SiO2 slags: An Fe K-edge XANES study N2 - Slags from the nonferrous metals industry have great potential to be used as feedstocks for the production of alkali-activated materials. Until now, however, only very limited information has been available about the structural characteristics of these materials. In the work presented herein, synthetic slags in the CaO–FeOx–SiO2 system, representing typical compositions of Fe-rich slags, and inorganic polymers (IPs) produced from the synthetic slags by activation with alkali Silicate solutions have been studied by means of X-ray absorption near-edge structure (XANES) spectroscopy at the Fe K-edge. The iron in the slags was largely Fe2+, with an average coordination number of approximately 5 for the iron in the amorphous fraction. The increase in average oxidation number after alkali-activation was conceptualized as the consequence of slag dissolution and IP precipitation, and employed to calculate the degrees of reaction of the slags. The degree of reaction of the slags increased with increasing amorphous fraction. The iron in the IPs had an average coordination number of approximately 5; thus, IPs produced from the Fe-rich slags studied here are not Fe-analogs of aluminosilicate geopolymers, but differ significantly in terms of structure from the latter. KW - Alkali-activated slag KW - Inorganic polymers KW - Iron speciation KW - Nonferrous slag KW - X-ray absorption near-edge structure KW - X-ray absorption spectroscopy PY - 2018 U6 - https://doi.org/10.1111/jace.15354 SN - 1551-2916 SN - 0002-7820 VL - 101 IS - 5 SP - 2107 EP - 2118 PB - John Wiley & Sons, Inc. AN - OPUS4-43880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Seuthe, T. A1 - Grehn, M. A1 - Eberstein, M. A1 - Rosenfeld, A. A1 - Mermillod-Blondin, A. T1 - Time-resolved microscopy of fs-laser-induced heat flows in glasses N2 - Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient dn/dT. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser–matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials. KW - Femtosecond laser KW - Phase-contrast microscopy KW - Heat diffusion KW - Glasses PY - 2018 U6 - https://doi.org/10.1007/s00339-017-1465-5 SN - 0947-8396 SN - 1432-0630 VL - 124 IS - 1 SP - 60, 1 EP - 6 PB - Springer-Verlag AN - OPUS4-43739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Ring-expansion polymerization of meso-lactide catalyzed by dibutyltin derivatives N2 - Meso-Lactide was polymerized in bulk at 60, 80, and 100 °C by means of three different types of catalysts: dibutyltinsulfides (2,2-dibutyl-2-stanna-1,3-dithiolane and 2,20-dibutyl-2-stanna-1,3-dithiane), dibutyltin derivatives of substituted cate-chols (BuCa, CyCa, and BzCa), and dibutyltin derivatives of2,2 dihydroxybiphenyl (SnBi) and 2,2-dihydroxy-1,10-binaphthyl(SnNa. Only the latter two catalysts were active at 60 °C. The architecture of the resulting polylactides depends very much on the structure of the catalyst and on the temperature. At the lowest temperature (60 °C), SnBi and SnNa mainly yielded even-numbered linear chains, but SnNa also yielded even-numbered cycles at 100 °C and short reaction times. In contrast,BuCa, CyCa, and BzCa mainly yielded odd-numbered cycles, although the same catalysts yielded even-numbered linear chains when benzylalcohol was added. KW - MALDI-TOF MS KW - Cyclisation KW - Catalysts KW - Polyester KW - Polymerization PY - 2018 U6 - https://doi.org/10.1002/pola.28948 SN - 1099-0518 SN - 0022-3832 VL - 56 IS - 7 SP - 749 EP - 759 PB - Wiley Periodicals Inc. AN - OPUS4-44278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Bulling, Jannis A1 - Prager, Jens T1 - Efficient Modelling of Guided Ultrasonic Waves using the Scaled Boundary Finite Element Method with Application to Composite Pressure Vessels N2 - The Scaled Boundary Finite Element Method (SBFEM) is a semi-analytical method that showed promising results in modelling of guided ultrasonic waves. Efficiency and a low computational cost of the method are achieved by the discretisation of the boundary of a computational domain only, whereas for the domain itself the analytical solution is used. By means of the SBFEM different types of defects, e.g. fatigue cracks, pores, delamination, corrosion, integrated into a structure consisting of anisotropic and isotropic materials can be modelled. In this contribution, the SBFEM is used to analyse the propagation of guided waves in a structure consisting of an isotropic metal bonded to anisotropic carbon fibre reinforced material. The method allowed to identify appropriate wave types (modes) and to analyse their interaction with different defects. Obtained results will be used to develop a structural health monitoring system for composite pressure vessels used in automotive industry. T2 - InnoTesting 2018 CY - Wildau, Germany DA - 22.02.2018 KW - Structural Health Monitoring KW - Defect-mode Interaction KW - Hydrogen storage KW - Natural gas PY - 2018 AN - OPUS4-44289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Selleng, Christian A1 - Stöcker, T. A1 - Moos, R. A1 - Rabe, Torsten T1 - Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca3Co4O9 N2 - Calcium cobaltite is one of the most promising oxide p-type thermoelectric materials. The solid-state reaction (or calcination, respectively), which is well known for large-scale powder synthesis of functional materials, can also be used for the synthesis of thermoelectric oxides. There are various calcination routines in literature for Ca3Co4O9 powder synthesis, but no systematic study has been done on the influence of calcination procedure on thermoelectric properties. Therefore, the influence of calcination conditions on the Seebeck coefficient and the electrical conductivity was studied by modifying calcination temperature, dwell time, particle size of raw materials and number of calcination cycles. This study shows that elevated temperatures, longer dwell times, or repeated calcinations during powder synthesis do not improve but deteriorate the thermoelectric properties of calcium cobaltite. Diffusion during calcination leads to idiomorphic grain growth, which lowers the driving force for sintering of the calcined powder. A lower driving force for sintering reduces the densification. The electrical conductivity increases linearly with densification. The calcination procedure barely influences the Seebeck coefficient. The calcination procedure has no influence on the phase formation of the sintered specimens. KW - Thermoelectrics KW - Calcination KW - Calcium Cobaltite KW - Solid-State-Synthesis KW - Reaction-sintering PY - 2018 U6 - https://doi.org/10.1007/s10832-018-0124-3 SN - 1385-3449 SN - 1573-8663 VL - 40 IS - 3 SP - 225 EP - 234 PB - Springer AN - OPUS4-44336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Muhammad, S. A1 - Han, S.W. A1 - Na, S.J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study on the role of recondensation flux in high power laser welding by computational fluid dynamics simulations N2 - Partial penetration welding with fiber laser on 20mm thick plates was carried out in horizontal position to study the role of secondary heating in modeling of high power fiber laser welding. Experiments were carried out using 18.8kW laser with 1.5 m/min welding speed at Ar assist gas flow rates of 0, 17, 29, and 40 l/min, all four cases show similar bead shape with bright emission of vapor plume. Numerical simulations were performed using volume of fluid method by considering three different models as models A–C. Model A considers only Fresnel reflection inside the keyhole using real time tracking of free surface. Model B considers vapor recondensation flux inside keyhole along with model A. Finally, model C is used, which considers vapor plume heating at 4100K temperature along with models A B. Secondary heating by recondensation and vapor plume is vital in modeling of high power fiber laser welding; especially, the upper part of the bead is more influenced due to secondary heating. Tungsten particles are also used to visualize the flow pattern of melt pool. KW - Laser keyhole welding KW - Fresnel reflection KW - Secondary heat source KW - Plume heating KW - Vapor recondensation KW - High brightness KW - High power KW - Partial penetration KW - Fiber laser PY - 2018 U6 - https://doi.org/10.2351/1.4994246 SN - 1042-346X SN - 1938-1387 VL - 30 IS - 1 SP - 012013-1 EP - 012013-12 PB - Laser Institute of America CY - Orlando, Fla. AN - OPUS4-44345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen A1 - Kühn, Hans-Joachim ED - Schmauder, S. ED - Chawla, K. K. ED - Chawla, N. ED - Chen, W. ED - Kagawa, Y. T1 - High temperature mechanical testing of metals N2 - Performing mechanical tests at high temperatures is a nontrivial issue: Compared to room temperature testing, additional phenomena like time-dependent Deformation processes and oxidation effects raise the complexity of the material’s response, while more sophisticated test setups and additional control parameters increase the number of potential sources of error. To a large extent, these complications can be overcome by carefully following all recommendations given in the respective high temperature testing standards, but more comprehensive background information helps to identify points of specific importance in particular test campaigns. In this chapter, an overview is given on general high temperature testing issues like the appropriate choice of experimental equipment and key aspects of temperature measurement. In subsequent sections, the major static and dynamic high temperature test methods are reviewed and their Special features, as compared to testing at room temperature, are highlighted based on example data sets. Influences of specimen size and environmental effects are shortly outlined in a concluding section. In the whole chapter, a focus is set on testing of “classical” metallic high temperature materials, but many considerations are equally valid for testing of intermetallics, composites, and high temperature ceramics. KW - Creep, Creep Rupture, and Stress Rupture KW - Relaxation tests KW - Low Cycle Fatigue (LCF) KW - Thermomechanical Fatigue (TMF) KW - Fatigue crack propagation PY - 2018 SN - 978-981-10-6855-3 U6 - https://doi.org/10.1007/978-981-10-6855-3_44-1 SP - 1 EP - 38 PB - Springer Nature Singapore Pte Ltd. CY - Singapore AN - OPUS4-44349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Building macromolecular mimetics of cell constituents N2 - One of the holy grails in chemistry is to reconstruct some of life’s functions with synthetic materials. In this contribution, we demonstrate that “simple” macromolecular architectures such as dendritic amphiphiles, Janus dendrimers, thermoresponsive and hybrid organic-inorganic (co)polymers enable to mimic some of the functions of proteins for biomineralization, natural bactericides, biological membranes or the stimuli-responsive cytoskeleton. T2 - Makromolekulares Kolloquium Freiburg 2018 CY - Freiburg in Breisgau, Germany DA - 21.02.2018 KW - Thermoresponsive polymers KW - Cytoskeleton mimic PY - 2018 AN - OPUS4-44296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -