TY - CONF A1 - Hassenstein, Christian A1 - Heckel, Thomas A1 - Tomasson, Ingimar A1 - Vöhringer, Daniel A1 - Tkatchenko, Viktoria A1 - Kern, René A1 - Berendt, Torsten A1 - Wassermann, Jonas A1 - Prager, Jens T1 - Automated adaptive TFM method for Gas turbine Testing in NDE 4.0 N2 - Nondestructive testing of gas turbine blades is essential for their maintenance and service process which is critical to ensure both safety and efficiency of these highly stressed parts. In this presentation, a novel ultrasonic testing method is explored in order to acquire part thickness information in the turbine blade’s airfoil. In established industry processes, the measurements are mainly carried out manually and only at a few specific positions of the inspected parts. The proposed method scans the part using a robot arm guiding an ultrasonic array sensor. For ultrasonic coupling to the complex-shaped surface geometry, the inspected part and sensor are immersed into water. A two-step TFM[1, 2] (Total Focusing Method) approach is used to reconstruct the outer and inner surfaces subsequently from the ultrasonic raw data, which are acquired using the FMC[3] (Full Matrix Capture) measurement principle. For each sensor position, the location and geometry of the outer surface is first identified and then used to create an image of an area inside the material. From that image, the inner surface is reconstructed. Finally, part thickness information is deducted from merging location data of inner and outer surface. The result is a high resolution, high precision mapping of the inspected part’s wall thickness. T2 - ECNDT 2023 CY - Lisbon, Portugal DA - 03.07.2023 KW - NDE KW - Gasturbines KW - Maintenance KW - Repair KW - Overhaul KW - Ultrasound PY - 2023 AN - OPUS4-59584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -