TY - CONF A1 - Miclea, Paul-Tiberiu T1 - Membrane filter cascade for size-selective analysis of nano-and micro particles N2 - From a metrological point of view, the analysis of micro and nanoplastics MNP requires not only representative and meaningful methods for sampling, preparation, and detection, but also defined and reproducible analytical procedures for the processes and materials used. For such a validation of the detection procedures (including the determination of process and laboratory blank values), the filters and laboratory conditions used in interaction with the final MNP measurement play a central role for detection limits regarding MNP size, MNP content and statistical measurement control, in addition to the reference materials mentioned above. On the basis of available filtration materials (e.g. metal mesh, silicon, aluminum oxide, polycarbonate) and metrological boundary conditions, key aspects for metrologically sound method development must be defined. Two key categories of analysis are developed for the characterization of MNP’s: analytical methods (e.g. µ-IR spectroscopy, µRaman) and mass spectrometry (eg. Py-GC/MS or TED-GC/MS). If in the first category the shape, size, number of particles and the size distribution present in the samples can be determined. In the second category the mass of the material can be measured and the volume of plastic present in the samples can be deduced from this. Both catagories are very sensitive in terms of the volume of material that can be analyzed; vibrational methods can detect single particles but mass-based method require enough particles to reach the limit of detection. That is why in this study we propose a filtration system, which in our opinion brings the two categories much closer to each other and allows true measurements of particle number and mass of the same sample. In this way it is possible not only to estimate the volume of plastic in the sample, but also to determine with much greater precision the number of particles and the type of plastic present. Furthermore, new methods for particle detection can be added and combined with existing methods. Our proposed system can be used for a single filter, but also for the use of several filters in cascade. In this way a separation of particles by size can be achieved. T2 - 13th Annual World Congress of Nano Science & Technology 2024 CY - Osaka, Japan DA - 22.05.2024 KW - Microplastics KW - Si filters KW - Filtration KW - Polymer 3R PY - 2024 AN - OPUS4-61097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria T1 - Development of a new Lysimeter System to assess Microplastic, PAH & Heavy Metal Emissions from Artificial Turf Sports Pitches N2 - Since September 2023, the European Commission introduced a new regulation to reduce emissions of microplastics (MP) into the environment, including the sale and use of intentionally added MP. Therein, the use of synthetic rubber granules in artificial turf is explicitly mentioned and banned for future use. Additionally, abrasions of grass fibres and other turf components are also considered as MP sources. Artificial turf pitches are multi component systems: e. g. grass fibres made of polyethylene (PE), synthetic infill made of ethylene propylene diene monomer rubber (EPDM), carpet backing of polypropylene (PP) glued with polyurethane (PU), winding yarn of polyethylene terephthalate or elastic layer of Styrene-butadiene rubber (SBR) bound with PU. While the ban has great impact on recreational sports, there is so far no sufficient data to estimate the MP emissions from artificial turf sports pitches into the environment and thus their relevance as a source of MP pollution. To close this gap, three artificial turf scenarios in different ageing states (unaged, artificially aged and aged in real time) were analysed in this study: the past (old turf: fossil based, synthetic infill), present (most commonly installed in Germany: fossil based, synthetic infill) and future (turf with recycled grass fibres, no synthetic infill). To simulate outdoor weathering during the service life of approx. 15 years, accelerated ageing by UV weathering and mechanical stress was carried out. The newly developed and in-house manufactured Microplastic Eluate Lysimeter (MEL) simulates contaminant transfer into the groundwater and allows the simultaneous sampling for MP and dissolved contaminants, like polycyclic aromatic hydrocarbons (PAH) or heavy metals (HM). MP mass contents were analysed using smart microfilter crucibles (mesh size: 5 µm) and Thermal Extraction Desorption Gas Chromatography/Mass Spectrometry and PAH and HM concentrations were determined using Gas Chromatography/Mass Spectrometry or Inductively Coupled Plasma Atomic Emission Spectroscopy, respectively. T2 - MICRO2024: Plastic Pollution from Micro to Nano CY - Arrecife, Spain DA - 23.09.2024 KW - Microplastics Eluate Lysimeter KW - Microplastics KW - Heavy Metals KW - PAH KW - TED-GC/MS PY - 2024 AN - OPUS4-61160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria T1 - Contaminant Emissions from Artificial Turf Sports Pitches - Simultaneous sampling for Microplastics, PAH and Heavy Metals N2 - In September 2023, the European Commission introduced a new regulation to reduce microplastic (MP) emissions into the environment, including the sale and use of intentionally added (large) MP < 5 mm (ISO/TR 21960: 2020). This explicitly applies to the use of synthetic rubber granulate infill in artificial turf installations, which are complex multi-component systems consisting of multiple synthetic polymers (Fig. 1). In addition, abrasions of synthetic grass fibres and other turf components are also considered as MP sources. Although this has a major impact on public recreational sports, there is so far no sufficient data to estimate the MP emissions from artificial turf sports pitches into the environment and thus their relevance as a source of MP pollution. To close this gap, this study compared environmental contaminant emissions of three artificial turf scenarios at different ageing states (unaged, artificially and real-time aged): the past (old turf: fossil based, synthetic infill), present (most commonly installed in Germany: fossil based, EPDM infill) and future (turf with recycled grass fibres, no synthetic infill). Accelerated ageing by UV weathering and mechanical stress was carried out to simulate the outdoor weathering during the lifespan of approx. 15 years. MP emissions and released environmentally relevant contaminants posing a risk to the groundwater were simultaneously sampled using the newly developed Microplastic Eluate Lysimeter manufactured at BAM (Fig. 2). MP contents were analysed using smart microfilter crucibles (mesh size: 5 μm) with subsequent MP detection by TED-GC/MS. Additionally, concentrations of polycyclic aromatic hydrocarbons were determined using GC/MS and heavy metals using ICP-AES. T2 - 22nd European Symposium on Polymer Spectroscopy (ESOPS) CY - Berlin, Germany DA - 08.09.2024 KW - Microplastics Eluate Lysimeter KW - Microplastics KW - TED-GC/MS KW - Heavy Metals KW - PAH PY - 2024 AN - OPUS4-61013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cirkovic Velickovic, T. A1 - Altmann, Korinna A1 - Dailey, L T1 - CUSP Conference WG1 & WG3: MATERIALS AND METHODS N2 - This talk is a presentation about the main results of the CUSP cluster on micro- and nanoplastics human health that work from 2021 to 2025 in Horizon Europe programme according to the WG1 and 3. These groups combined the analytics and the materials with interlaboratory comparisons (ILC). The talk reflects the need of realistic test materials with defined properties for micro- and nanoplastic research. Some were developed are now available. The talk also highlights the need for harmonisation and the results of different ILCs that were performed. T2 - CUSP conference CY - Brussels, Belgium DA - 25.02.2025 KW - Microplastics KW - Reference materials KW - Interlaboratory comparison (ILC) PY - 2025 AN - OPUS4-62703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Production of small micro- and nanoplastic reference materials supporting harmonization and standardization N2 - The MICROPLASTICdays at Ljubliana, Slowenia, were organized in cooperation with the PRIORITY cost action. The topic has been reference materials this time. The talk gives an idea of the preparation of reference materials in micro- and nanoplastic topic to support standardisation and regulation. It defines the term of micro-and nanoplastics and presents different case studies and critical attributes to the production depending on the enduser needs. T2 - MICROPLASTICdays CY - Ljubljana, Slovenia DA - 25.03.2025 KW - Microplastics KW - Nanoplastics KW - Reference materials PY - 2025 AN - OPUS4-62801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The disinfectant glutaraldehyde induces antibiotic tolerance underpinned by a Disrupted Cellular State and Heterogenous Regrowth Dynamics N2 - Glutaraldehyde is widely used as a disinfectant and preservative, but little is known about its effects on bacterial susceptibility to antibiotics and the selection of tolerant phenotypes. We found that short-term exposure to sub-inhibitory levels of glutaraldehyde makes E. coli resistant to high doses of bactericidal antibiotics from different classes. This tolerance is associated with delayed, heterogeneous regrowth dynamics and global transcriptome remodeling. We identified over 1200 differentially expressed genes, including those related to antibiotic efflux, metabolic processes, and the cell envelope. The cells entered a disrupted state likely due to the unspecific mode-of-action of glutaraldehyde. Despite this unregulated response, we identified several differentially expressed genes not previously associated with antibiotic tolerance or persistence that induce antibiotic tolerance when overexpressed alone. These findings highlight how the unspecific mode-of-action of disinfectants can make bacteria temporarily resistant to antibiotics. They have implications for settings where disinfectants and antibiotics are used in close proximity, such as hospitals and animal husbandry, and for the selection dynamics of tolerant pheno- and genotypes in fluctuating environments where microorganisms are exposed to these substances, such as sewage systems. A trade-off arises from overcoming the disrupted state as quickly as possible and maintaining antibiotic tolerance. T2 - Molecular Mechanisms in Evolution (GRS) Gordon Research Seminar CY - Easton, Massachusetts, USA DA - 24.06.2023 KW - Glutaraldehyde KW - Biocides KW - Tolerance KW - Bacteria KW - Disinfection KW - Heterogeneity KW - Antibiotics KW - AMR PY - 2023 AN - OPUS4-58032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haacke, Nasrin T1 - Runoff-Messungen zur Abschätzung der Dauerhaftigkeit von Materialien und des Eintrags von Schwermetallionen in die Umwelt N2 - Die Präsentation stellt das Runoff-Projekt in seiner Gesamtheit vor. Dabei liegt der Fokus vor allem auf die verschiedenen Untersuchungsverfahren zur Neubewertung der Dauerhaftigkeit von Dach- und Fassadenmaterialien. Dazu zählen elektrochemische Untersuchungen der Deckschichtstabilität, die Bestimmung der Korrosionsprodukte sowie des Massenverlustes und die Identifikation wichtiger Einflussfaktoren. T2 - 17. Sitzung des AK Korrosionsuntersuchung und -überprüfung CY - Dresden, Germany DA - 04.12.2023 KW - Runoff KW - Kupfer KW - Zink KW - Deschichtwiderstand KW - Dauerhaftigkeit KW - Schwermetalle PY - 2023 AN - OPUS4-59071 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - The interplay between biocides, phenotypic heterogeneity and resistance evolution N2 - An overview of the interplay between biocides, phenotypic heterogeneity and resistance evolution presented at the University Wroclaw. T2 - Invited seminar at the Department of Molecular Microbiology CY - Wroclaw, Poland DA - 08.04.2024 KW - Disinfectants KW - Biocide resistance KW - Phenotypic heterogeneity KW - Evolution PY - 2024 AN - OPUS4-61173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - Biocides and phenotypic heterogeneity N2 - An overview of our findings regarding the interplay between phenotypic heterogeneity in bacteria and biocides. T2 - One Health and Antimicrobial Resistance CY - Berlin, Germany DA - 29.01.2024 KW - Biocides KW - Phenotypic heterogeneity KW - Biocide resistance PY - 2024 AN - OPUS4-61174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nordholt, Niclas T1 - EVOCIDE: Preserving disinfectant efficacy by predicting evolution: exposing the principles of disinfectant survival and adaptation in bacteria N2 - Presentation of the EVOCIDE research proposal work programme.EVOCIDE seeks to gain a systems level understanding of disinfectant survival and evolution in bacteria. T2 - Joint Group Seminar Rolff-McMahon-Armitage-Steiner CY - Berlin, Germany DA - 20.12.2023 KW - Disinfectants KW - Evolution KW - Microbiology KW - Bacteria KW - Biocides PY - 2023 AN - OPUS4-59224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -