TY - JOUR A1 - Kang, Y. A1 - Nack, L. M. A1 - Liu, Y. A1 - Qi, B. A1 - Huang, Y. A1 - Liu, Z. A1 - Chakraborty, I. A1 - Schulz, F. A1 - Ahmed, A. A. A. A1 - Poveda, M. C. A1 - Hafizi, F. A1 - Roy, S. A1 - Mutas, M. A1 - Holzapfel, M. A1 - Sanchez-Cano, C. A1 - Wegner, Karl David A1 - Feliu, N. A1 - Parak, W. J. T1 - Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types N2 - Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs. KW - Cell proliferation KW - Exocytosis KW - Gold nanoparticles KW - Quantum dots KW - Fluorescence KW - Uptake studies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543476 DO - https://doi.org/10.1007/s40828-021-00159-6 SN - 2199-3793 VL - 8 IS - 1 SP - 1 EP - 8 PB - Springer CY - Berlin AN - OPUS4-54347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zavoiura, Oleksandr A1 - Resch-Genger, Ute A1 - Seitz, Oliver T1 - Quantum dot-PNA conjugates for target-catalyzed RNA detection N2 - Detection of pathogenic nucleic acids remains one of the most reliable approaches for the diagnosis of a broad range of diseases. Current PCR-based methods require experienced personnel and cannot be easily used for point-of care diagnostics, making alternative strategies for the sensitive, reliable, and cost-efficient detection of pathogenic nucleic acids highly desirable. Here, we report an enzyme-free method for the fluorometric detection of RNA that relies on a target-induced fluorophore transfer onto a semiconductor quantum dot (QD), uses PNA probes as selective recognition elements and can be read out with simple and inexpensive equipment. For QD-PNA conjugates with optimized PNA content, limits of detection of dengue RNA in the range of 10 pM to 100 nM can be realized within 5 h in the presence of a high excess of noncomplementary RNA. KW - FRET KW - Fluorescence KW - DNA KW - Assay KW - Quantum dot KW - Nano KW - Particle KW - Synthesis KW - Ligation Assay PY - 2018 DO - https://doi.org/10.1021/acs.bioconjchem.8b00157 SN - 1043-1802 VL - 29 IS - 5 SP - 1690 EP - 1702 PB - ACS Publications AN - OPUS4-45120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Ebel, Kenny A1 - Heinze, Katja A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby N2 - Photodynamic therapy (PDT) used for treating cancer relies on the generation of highly reactive oxygen species, for example, singlet oxygen 1O2, by light-induced excitation of a photosensitizer (PS) in the presence of molecular oxygen, inducing DNA damage in close proximity of the PS. Although many precious metal complexes have been explored as PS for PDT and received clinical approval, only recently, the potential of photoactive complexes of nonnoble metals as PS has been discovered. Using the DNA origami technology that can absolutely quantify DNA strand break cross sections, we assessed the potential of the luminescent transition metal complex [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) to damage DNA in an air-saturated aqueous environment upon UV/Vis illumination. The quantum yield for strand breakage, that is, the ratio of DNA strand breaks to the number of absorbed photons, was determined to 1–4%, indicating efficient transformation of photons into DNA strand breaks by [Cr(ddpd)2]3+. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - PDT KW - Singlet oxygen KW - DNA KW - Origami KW - Quantum yield PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573631 DO - https://doi.org/10.1002/chem.202203719 SP - 1 EP - 7 AN - OPUS4-57363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alnajjar, M. A. A1 - Bartelmeß, Jürgen A1 - Hein, R. A1 - Ashokkumar, Pichandi A1 - Nilam, M. A1 - Nau, W. M. A1 - Rurack, Knut A1 - Hennig, A. T1 - Rational design of boron-dipyrromethene (BODIPY) reporter dyes for cucurbit[7]uril N2 - We introduce herein boron-dipyrromethene (BODIPY) dyes as a new class of fluorophores for the design of reporter dyes for supramolecular host–guest complex formation with cucurbit[7]uril (CB7). The BODIPYs contain a protonatable aniline nitrogen in the meso-position of the BODIPY chromophore, which was functionalized with known binding motifs for CB7. The unprotonated dyes show low fluorescence due to photoinduced electron transfer (PET), whereas the protonated dyes are highly fluorescent. Encapsulation of the binding motif inside CB7 positions the aniline nitrogen at the carbonyl rim of CB7, which affects the pKa value, and leads to a host-induced protonation and thus to a fluorescence increase. The possibility to tune binding affinities and pKa values is demonstrated and it is shown that, in combination with the beneficial photophysical properties of BODIPYs, several new applications of host–dye reporter pairs can be implemented. This includes indicator displacement assays with favourable absorption and emission wavelengths in the visible spectral region, fluorescence correlation spectroscopy, and noncovalent surface functionalization with fluorophores. KW - BODIPY KW - Cucurbituril KW - Fluorescence KW - PH KW - Photoinduced Electron Transfer KW - Supramolecular Chemistry PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456361 UR - https://www.beilstein-journals.org/bjoc/content/pdf/1860-5397-14-171.pdf DO - https://doi.org/10.3762/bjoc.14.171 SN - 1860-5397 VL - 14 SP - 1961 EP - 1971 PB - Beilstein-Institut CY - Frankfurt a. M. AN - OPUS4-45636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zavoiura, O. A1 - Resch-Genger, Ute A1 - Seitz, O. T1 - Reactive Quantum Dot-Based FRET Systems N2 - Oligonucleotide-templated reactions (OTRs) between two reactive hybridization probes allow for the detection of a DNA or RNA of interest by exploiting the target molecule as a catalyst of chemical reactions. The product of such a reaction commonly exhibits distinct fluorescence properties and can be detected by the means of fluorescence spectroscopy. The vast majority of OTR systems utilize organic dyes as fluorescent reporters. However, the use of brighter emitters, such as semiconductor quantum dots (QDs), has potential to improve the sensitivity of detection by providing brighter signals and permitting the use of probes at very low concentrations. Here we report an RNA-templated reaction between two fluorescently labeled peptide nucleic acid (PNA)-based probes, which proceeds on the surface of a QD. The QD-Bound PNA probe bears a cysteine functionality, while the other PNA is functionalized with an organic dye as a thioester. OTR between these probes proceeds through a transfer of the organic dye to the QD and can be conveniently monitored via fluorescence resonance energy transfer (FRET) from the QD to the Cy5. The reaction was performed in a conventional fluorescence microplate reader and permits the detection of RNA in the picomolar range. KW - Fluorescence KW - Nano KW - Particle quantum dot KW - FRET KW - Assay KW - Sensor KW - RNA-templated reactions KW - Bioconjugation KW - Synthesis KW - Dye KW - Click chemistry KW - Peptide nucleic acid KW - Quantum dots KW - RNA KW - Fluorescence spectroscopy PY - 2020 DO - https://doi.org/10.1007/978-1-0716-0243-0_11 VL - 2105 SP - 187 EP - 198 PB - Springer Sience+Business Media AN - OPUS4-50553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, H. A1 - Song, W. A1 - Gröninger, Delia A1 - Zhang, L. A1 - Lu, Y. A1 - Chan, K. S. A1 - Zhou, Z. A1 - Rurack, Knut A1 - Shen, Z. T1 - Real-time monitoring of newly acidified organelles during autophagy enabled by reaction-based BODIPY dyes N2 - Real-time monitoring of newly acidified organelles during autophagy in living cells is highly desirable for a better understanding of intracellular degradative processes. Herein, we describe a reaction-based boron dipyrromethene (BODIPY) dye containing strongly electron-withdrawing diethyl 2-cyanoacrylate groups at the α-positions. The probe exhibits intense red fluorescence in acidic organelles or the acidified cytosol while negligible fluorescence in other regions of the cell. The underlying mechanism is a nucleophilic reaction at the central meso-carbon of the indacene core, resulting in the loss of π-conjugation entailed by dramatic spectroscopic changes of more than 200 nm between its colorless, non-fluorescent leuco-BODIPY form and its red and brightly emitting form. The reversible transformation between red fluorescent BODIPY and leuco-BODIPY along with negligible cytotoxicity qualifies such dyes for rapid and direct intracellular lysosome imaging and cytosolic acidosis detection simultaneously without any washing step, enabling the real-time monitoring of newly acidified organelles during autophagy. KW - Autophagy KW - BODIPY KW - Fluorescence KW - Lysosome KW - Real-time imaging PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498358 UR - https://www.nature.com/articles/s42003-019-0682-1 DO - https://doi.org/10.1038/s42003-019-0682-1 SN - 23993642 VL - 2 SP - 442 PB - Nature Research CY - London AN - OPUS4-49835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Q. A1 - Shinde, S. A1 - Grasso, G. A1 - Caroli, A. A1 - Abouhany, R. A1 - Lanzillotta, M. A1 - Pan, G. A1 - Wan, Wei A1 - Rurack, Knut A1 - Sellergren, B. T1 - Selective detection of phospholipids using molecularly imprinted fluorescent sensory core-shell particles N2 - Sphingosine-1-phosphate (S1P) is a bioactive sphingo-lipid with a broad range of activities coupled to its role in G-protein coupled receptor signalling. Monitoring of both intra and extra cellular levels of this lipid is challenging due to its low abundance and lack of robust affinity assays or sensors. We here report on fluorescent sensory core-shell molecularly imprinted polymer (MIP) particles responsive to near physiologically relevant levels of S1P and the S1P receptor modulator fingolimod phosphate (FP) in spiked human serum samples. Imprinting was achieved using the tetrabutylammonium (TBA) salt of FP or phosphatidic acid (DPPA·Na) as templates in combination with a polymerizable nitrobenzoxadiazole (NBD)-urea monomer with the dual role of capturing the phospho-anion and signalling its presence. The monomers were grafted from ca 300 nm RAFT-modified silica core particles using ethyleneglycol dimethacrylate (EGDMA) as crosslinker resulting in 10–20 nm thick shells displaying selective fluorescence response to the targeted lipids S1P and DPPA in aqueous buffered media. Potential use of the sensory particles for monitoring S1P in serum was demonstrated on spiked serum samples, proving a linear range of 18–60 μM and a detection limit of 5.6 μM, a value in the same range as the plasma concentration of the biomarker. KW - Molecularly imprinted polymers KW - Phospholipids KW - Fluorescence KW - Dye monomers PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509485 DO - https://doi.org/10.1038/s41598-020-66802-3 SN - 2045-2322 VL - 10 IS - 1 SP - 9924 PB - Nature Research CY - London AN - OPUS4-50948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Solid-State Emissive Aroyl-S,N-Ketene Acetals with Tunable N2 - N-Benzyl aroyl-S,N-ketene acetals can be readily synthesized by condensation of aroyl chlorides and N-Benzyl 2-methyl benzothiazolium salts in good to excellent yields, yielding a library of 35 chromophores with bright solid-state emission and aggregation-induced emission characteristics. Varying the substituent from electron-donating to electronwithdrawing enables the tuning of the solid-state emission Color from deep blue to red. KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509072 DO - https://doi.org/10.1002/anie.201916396 VL - 59 IS - 25 SP - 10037 EP - 10041 PB - Wiley Online Libary AN - OPUS4-50907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auxillos, J. A1 - Crouigneau, R. A1 - Li, Y.-F. A1 - Dai, Y. A1 - Stigliani, A. A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute A1 - Sandelin, A. A1 - Marie, R. A1 - Pedersen, S. F. T1 - Spatially resolved analysis of microenvironmental gradient impact on cancer cell phenotypes N2 - Despite the physiological and pathophysiological significance of microenvironmental gradients, e.g., for diseases such as cancer, tools for generating such gradients and analyzing their impact are lacking. Here, we present an integrated microfluidic-based workflow that mimics extracellular pH gradients characteristic of solid tumors while enabling high-resolution live imaging of, e.g., cell motility and chemotaxis, and preserving the capacity to capture the spatial transcriptome. Our microfluidic device generates a pH gradient that can be rapidly controlled to mimic spatiotemporal microenvironmental changes over cancer cells embedded in a 3D matrix. The device can be reopened allowing immunofluorescence analysis of selected phenotypes, as well as the transfer of cells and matrix to a Visium slide for spatially resolved analysis of transcriptional changes across the pH gradient. This workflow is easily adaptable to other gradients and multiple cell types and can therefore prove invaluable for integrated analysis of roles of microenvironmental gradients in biology. KW - Bioimaging KW - Fluorescence KW - Cell KW - Cancer KW - Method KW - Microfluids KW - Model KW - Calibration KW - Sensor KW - Ph KW - Probe KW - Workflow PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604631 DO - https://doi.org/10.1126/sciadv.adn3448 VL - 19 IS - 18 SP - 1 EP - 17 AN - OPUS4-60463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Andrea ED - Reese, M. ED - Goldhammer, T. ED - Schmalsch, C. ED - Weber, J. ED - Bannick, C. G. T1 - Spectroscopic evidence for adsorption of natural organic matter on microplastics N2 - The interaction of microcroplastics (MP) with dissolved organic matter, especially humic substances, is of great importance in understanding the behavior of microplastics in aquatic ecosystems. Surface modification by humic substances plays an essential role in transport and interaction of MP with abiotic and biotic components. Previous studies on the interaction between MP and humic substances were largely based on a model compound, humic acid (Sigma-Aldrich). In our work, we therefore investigated the interaction of natural organic matter (NOM) sampled from a German surface water with low-density polyethylene particles (LDPE). Highpressure size exclusion chromatography (HPSEC) and UV/vis absorption and fluorescence spectroscopy were used to characterize the incubation solutions after modifications due to the presence of LDPE, and Raman spectroscopy was used to characterize the incubated microplastics. While the studies of the solutions generally showed only very small effects, Raman spectroscopic studies allowed clear evidence of the binding of humic fractions to MP. The comparison of the incubation of NOM and a lignite fulvic acid which also was tested further showed that specific signatures of the humic substances used could be detected by Raman spectroscopy. This provides an elegant opportunity to conduct broader studies on this issue in the future. KW - Humic matter KW - Raman KW - HPSEC KW - Fluorescence KW - MCR PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574519 DO - https://doi.org/10.1002/appl.202200126 SN - 2702-4288 SP - 1 EP - 30 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -