TY - JOUR A1 - Wang, Cui A1 - Kitzmann, W.R. A1 - Weigert, Florian A1 - Förster, Ch. A1 - Wang, X. A1 - Heintze, K. A1 - Resch-Genger, Ute T1 - Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby N2 - The molecular ruby analogue [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) exhibits near infrared (NIR) emission with a high photoluminescence (PL) quantum yield ΦPL of 11 % and a lifetime of 898 μs in deaerated water at room temperature. While ligand-based control of the photophysical properties has received much attention, influences of the counter anions and microenvironment are still underexplored. In this study, the luminescence properties of the molecular ruby were systematically examined for the counter anions Cl−, Br−, [BF4]−, [PF6]−, [BPh4]−, and [BArF24]− in acetonitrile (MeCN) solution, in crystals, and embedded into polystyrene nanoparticles (PSNP). Stern-Volmer analyses of the oxygen quenching studies in the intensity and lifetime domain showed the highest oxygen sensitivity of the complexes with the counter anions of [BF4]− and [BArF24]−, which also revealed the longest luminescence lifetimes. Embedding [Cr(ddpd)2][PF6]3 in PSNPs and shielding with poly(vinyl alcohol) yields a strongly NIR-emissive oxygen-insensitive material with a record ΦPL of 15.2 % under ambient conditions. KW - Fluorescence KW - Sensor KW - Oxygen KW - Quantum yield KW - Quality assurance KW - Complex KW - Cr(III) KW - Lifetime KW - Ligand KW - Solid state KW - X-Ray analysis KW - Structure-property relationship KW - Nano KW - Polymer KW - Particle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546057 DO - https://doi.org/10.1002/cptc.202100296 SN - 2367-0932 VL - 6 IS - 6 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Nirmalananthan-Budau, Nithiya A1 - Weigert, Florian A1 - Götze, J. P. A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Aggregation-induced emission leading to two distinct emissive species in the solid-state structure of high-dipole organic chromophores N2 - The concept of aggregation-induced emission represents a means to rationalise photoluminescence of usually nonfluorescent excimers in solid-state materials. In this publication, we study the photophysical properties of selected diaminodicyanoquinone (DADQ) derivatives in the solid state using a combined approach of experiment and theory. DADQs are a class of high-dipole organic chromophores promising for applications in non-linear optics and light-harvesting devices. Among the compounds investigated, we find both aggregation-induced emission and aggregation-caused quenching effects rationalised by calculated energy transfer rates. Analysis of fluorescence spectra and lifetime measurements provide the interesting result that (at least) two emissive species seem to contribute to the photophysical properties of DADQs. The main emission peak is notably broadened in the long-wavelength limit and exhibits a blue-shifted shoulder. We employ high-level quantum-chemical methods to validate a molecular approach to a solid-state problem and show that the complex emission features of DADQs can be attributed to a combination of H-type aggregates, monomers, and crystal structure defects. KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Theory KW - Quantum yield KW - Mechanism KW - Quantum chemistry KW - Modelling KW - Aggregation KW - Lifetime KW - Single particle KW - Microscopy KW - Solid KW - Crystal PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531138 DO - https://doi.org/10.1039/d1cp02534a SP - 1 EP - 9 PB - Royal Society of Chemistry AN - OPUS4-53113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Puertollano, Daniel A1 - Tobias, Charlie A1 - Bell, Jérémy A1 - Abad-Somovilla, A. A1 - Abad-Fuentes, A. A1 - Rurack, Knut T1 - Superparamagnetic Bead-Based Microfluidic Fluoroimmunoassay Platform for Rapid Ochratoxin A Detection in Flour N2 - Simplification and reduction of time and costs are the primary goals in the development and use of onsite methods in diagnostics and food safety. To facilitate the transition from laboratory techniques to simple, miniaturized devices, we have developed a modular microfluidic platform. This platform integrates a competitive fluorescence immunoassay on the surface of superparamagnetic beads, serving as a complementary technique to traditional cytometry assays. In the first chip module, a fast competitive reaction (5 min) occurs, after which the particles are retained in the second module. This module consists of a PDMS chip and a permanent magnet, allowing only the fluorescent competitor to reach the detection module. Ochratoxin A (OTA) was chosen as the model analyte for device development, using fluorescein-labeled OTA as a competitor. The system efficiently separates particles, with OTA concentration directly correlated to the amount of fluorescent competitor remaining in solution after the competitive reaction. This innovative setup allows to perform rapid measurements with small sample volumes in a short time (10 min), achieving a limit of detection for OTA of 1.2 μg L–1. The system was successfully applied to the accurate determination of OTA in wheat flour spiked at regulatorily relevant concentrations. Using this device, conventional cytometry immunoassays can be seamlessly transformed into user-friendly, miniaturized analytical methods at reduced cost for applications outside of a laboratory directly at the point of need. KW - Bead-based assay KW - Fluorescence KW - Immunoassay KW - Microfluidics KW - mycotoxins PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638472 DO - https://doi.org/10.1021/acssensors.5c01119 SN - 2379-3694 SP - 1 EP - 10 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-63847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Gotor, Raúl A1 - Johann, Sergej A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Bell, Jérémy T1 - Fluorescent Hydrophobic Test Strips with Sterically Integrated Molecular Rotors for the Detection of Hydrocarbons in Water and Soil with an Embedded Optical Read-Out N2 - Contamination of natural bodies of water or soil with oils and lubricants (or generally, hydrocarbon derivatives such as petrol, fuels, and others) is a commonly found phenomenon around the world due to the extensive production, transfer, and use of fossil fuels. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPHs) in water and soil. The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol (4-DNS-OH). This dye is embedded in a hydrophobic polymeric matrix (polyvinylidene fluoride), avoiding interactions with water and providing a robust support for use in a test strip fashion. Together with the strips, an embedded optical system was designed for fluorescence signal read-out, featuring a Bluetooth low-energy connection to a commercial tablet device for data processing and analysis. This system works for the detection and quantification of TPHs in water and soil through a simple extraction protocol using a cycloalkane solvent with a limit of detection of 6 ppm. Assays in surface and sea waters were conclusive, proving the feasibility of the method for in-the-field operation. KW - Test strip KW - Sensor KW - Smartphone KW - Fluorescence KW - Test Streifen KW - Sensoren KW - Fluoreszenz KW - Petrol KW - Öl PY - 2023 DO - https://doi.org/10.1021/acs.energyfuels.3c01175 SN - 0887-0624 SP - 1 EP - 6 PB - American Chemical Society CY - Washington, United States AN - OPUS4-57892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yanbaeva, M. A1 - Soyka, J. A1 - Holthoff, J. M. A1 - Rietsch, P. A1 - Engelage, E. A1 - Ruff, A. A1 - Resch-Genger, Ute A1 - Weiss, R. A1 - Eigler, S. A1 - Huber, S. M. T1 - Dimethylene-Cyclopropanide Units as Building Blocks for Fluorescence Dyes N2 - Many organic dyes are fluorescent in solution. In the solid state, however, quenching processes often dominate, hampering material science applications such as light filters, light-emitting devices, or coding tags. We show that the dimethylene-cyclopropanides caffold can be used to form two structurally different types of chromophores, which feature fluorescence quantum yields up to 0.66 in dimethyl sulfoxide and 0.53 in solids. The increased fluorescence in the solid state for compounds bearing malonate substituents instead of dicyanomethide ones is rationalized by the induced twist between the planes of the cyclopropanide core and a pyridine ligand. KW - Fluorescence KW - Dye KW - Sensor KW - Quantum yield KW - Spectroscopy KW - Photophysics KW - Synthesis KW - Solvatochromism PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-614931 DO - https://doi.org/10.1002/chem.202402476 VL - 30 IS - 56 SP - 1 EP - 7 PB - Chemistry - A European Journal AN - OPUS4-61493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Eckert, J. G. A1 - Elahi, T. A1 - Lübkemann, F. A1 - Hübner, Oskar A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Luminescence encoding of polymer microbeads with organic dyes and semiconductor quantum dots during polymerization N2 - Luminescence-encoded microbeads are important tools for many applications in the life and material sciences that utilize luminescence detection as well as multiplexing and barcoding strategies. The preparation of such beads often involves the staining of premanufactured beads with molecular luminophores using simple swelling procedures or surface functionalization with layer-by-layer (LbL) techniques. Alternatively, these luminophores are sterically incorporated during the polymerization reaction yielding the polymer beads. The favorable optical properties of semiconductor quantum dots (QDs), which present broadly excitable, size-tunable, narrow emission bands and low photobleaching sensitivity, triggered the preparation of beads stained with QDs. However, the colloidal nature and the surface chemistry of these QDs, which largely controls their luminescence properties, introduce new challenges to bead encoding that have been barely systematically assessed. To establish a straightforward approach for the bead encoding with QDs with minimized loss in luminescence, we systematically assessed the incorporation of oleic acid/oleylamine-stabilized CdSe/CdS-core/shell-QDs into 0.5–2.5 μm-sized polystyrene (PS) microspheres by a simple dispersion polymerization synthesis that was first optimized with the organic dye Nile Red. Parameters addressed for the preparation of luminophore-encoded beads include the use of a polymer-compatible ligand such as benzyldimethyloctadecylammonium chloride (OBDAC) for the QDs, and crosslinking to prevent luminophore leakage. The physico-chemical and optical properties of the resulting beads were investigated with electron microscopy, dynamic light scattering, optical spectroscopy, and fluorescence microscopy. Particle size distribution, fluorescence quantum yield of the encapsulated QDs, and QD leaking stability were used as measures for bead quality. The derived optimized bead encoding procedure enables the reproducible preparation of bright PS microbeads encoded with organic dyes as well as with CdSe/CdS-QDs. Although these beads show a reduced photoluminescence quantum yield compared to the initially very strongly luminescent QDs, with values of about 35%, their photoluminescence quantum yield is nevertheless still moderate. KW - Polymerization KW - Quantum dots KW - Microbeads KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553430 DO - https://doi.org/10.1038/s41598-022-16065-x SN - 2045-2322 VL - 12 SP - 1 EP - 16 PB - Nature Publishing Group CY - London AN - OPUS4-55343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, C. A1 - Schwibbert, Karin A1 - Gadicherla, A. K. A1 - Thiele, Dorothea A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550751 DO - https://doi.org/10.1038/s41598-022-13518-1 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stein, L. A1 - Wang, Cui A1 - Förster, C. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Bulky ligands protect molecular ruby from oxygen quenching N2 - Chromium(III) complexes can show phosphorescence from the spin-flip excited doublet states 2E/2T1 in the near-infrared with high photoluminescence quantum yields and extremely long lifetimes in the absence of dioxygen. The prototype molecular ruby, [Cr(ddpd)2]3+ (ddpd = N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine), has a photoluminescence quantum yield and a luminescence lifetime of 13.7% and 1.1 ms in deaerated acetonitrile, respectively. However, its luminescence is strongly quenched by 3O2 via an efficient Dexter-type energy transfer process. To enable luminescence applications of molecular rubies in solution under aerobic conditions, we explored the potential of sterically demanding ddpd ligands to shield the chromium(III) center from O2 using steady state and time-resolved photoluminescence spectroscopy. The structures of the novel complexes with sterically demanding ligands were investigated by single crystal X-ray diffraction and quantum chemically by density functional theory calculations. The O2 sensitivity of the photoluminescence was derived from absolutely measured photoluminescence quantum yields and excited state lifetimes under inert and aerobic conditions and by Stern–Volmer analyses of these data. Optimal sterically shielded chromium(III) complexes revealed photoluminescence quantum yields of up to 5.1% and excited state lifetimes of 518 μs in air-saturated acetonitrile, underlining the large potential of this ligand design approach to broaden the applicability of highly emissive chromium(III) complexes. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - Sensor KW - Oxygen PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570807 DO - https://doi.org/10.1039/d2dt02950b VL - 51 IS - 46 SP - 17664 EP - 17670 PB - The Royal Society of Chemistry CY - Berlin AN - OPUS4-57080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Eckert, J. G. A1 - Lutowski, Marc A1 - Geißler, Daniel A1 - Hertwig, Andreas A1 - Hidde, Gundula A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Influence of nanoparticle encapsulation and encoding on the surface chemistry of polymer carrier beads N2 - Surface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.g., biomolecules or targeting ligands is relevant. In this study, we explore the influence of QD encoding on the amount of carboxylic acid (COOH) surface FGs of 2 μm polystyrene microparticles (PSMPs). This is done for frequently employed oleic acid and oleylamine stabilized, luminescent core/shell CdSe QDs and two commonly used encoding procedures. This included QD addition during bead formation by a thermally induced polymerization reaction and a post synthetic swelling procedure. The accessible number of COOH groups on the surface of QD-encoded and pristine beads was quantified by two colorimetric assays, utilizing differently sized reporters and electrostatic and covalent interactions. The results were compared to the total number of FGs obtained by a conductometric titration and Fourier transform infrared spectroscopy (FTIR). In addition, a comparison of the impact of QD and dye encoding on the bead surface chemistry was performed. Our results demonstrate the influence of QD encoding and the QD-encoding strategy on the number of surface FG that is ascribed to an interaction of the QDs with the carboxylic acid groups on the bead surface. These findings are of considerable relevance for applications of nanoparticle-encoded beads and safe-by-design concepts for nanomaterials. KW - Optical spectroscopy KW - Particle KW - Optical assay KW - IR spectroscopy KW - Fluorescence KW - Quantum yield KW - Quality assurance KW - Nano KW - Synthesis KW - Surface chemistry KW - Quantification KW - Method KW - Conductometry PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581502 DO - https://doi.org/10.1038/s41598-023-38518-7 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 15 PB - Springer Nature CY - London AN - OPUS4-58150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reiber, T. A1 - Hübner, Oskar A1 - Dose, C. A1 - Yushchenko, D. A. A1 - Resch-Genger, Ute T1 - Fluorophore multimerization on a PEG backbone as a concept for signal amplification and lifetime modulation N2 - Fluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g., for flow cytometry and fluorescence microscopy, that are preferably of molecular nature. This requires versatile concepts for fluorophore multimerization, which involves the shielding of dyes from other chromophores and possible quenchers in their neighborhood. In addition, to increase the number of readout parameters for fluorescence microscopy and eventually also flow cytometry, control and tuning of the labels’ fluorescence lifetimes is desired. Searching for bright multi-chromophoric or multimeric labels, we developed PEGylated dyes bearing functional groups for their bioconjugation and explored their spectroscopic properties and photostability in comparison to those of the respective monomeric dyes for two exemplarily chosen fluorophores excitable at 488 nm. Subsequently, these dyes were conjugated with anti-CD4 and anti-CD8 immunoglobulins to obtain fluorescent conjugates suitable for the labeling of cells and beads. Finally, the suitability of these novel labels for fluorescence lifetime imaging and target discrimination based upon lifetime measurements was assessed. Based upon the results of our spectroscopic studies including measurements of fluorescence quantum yields (QY) and fluorescence decay kinetics we could demonstrate the absence of significant dye-dye interactions and self-quenching in these multimeric labels. Moreover, in a first fluorescence lifetime imaging (FLIM) study, we could show the future potential of this multimerization concept for lifetime discrimination and multiplexing. KW - Imaging KW - Quantum yield KW - Quality assurance KW - Antibody KW - Conjugate KW - Cell KW - FLIM KW - PEG KW - Flow cytometry KW - Lifetime KW - Energy transfer KW - Quantitative spectroscopy KW - Nano KW - Particle KW - Fluorescence KW - Dye KW - Amplification KW - Microscopy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602197 DO - https://doi.org/10.1038/s41598-024-62548-4 SN - 2045-2322 VL - 14 IS - 1 SP - 1 EP - 11 AN - OPUS4-60219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Ebel, Kenny A1 - Heinze, Katja A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby N2 - Photodynamic therapy (PDT) used for treating cancer relies on the generation of highly reactive oxygen species, for example, singlet oxygen 1O2, by light-induced excitation of a photosensitizer (PS) in the presence of molecular oxygen, inducing DNA damage in close proximity of the PS. Although many precious metal complexes have been explored as PS for PDT and received clinical approval, only recently, the potential of photoactive complexes of nonnoble metals as PS has been discovered. Using the DNA origami technology that can absolutely quantify DNA strand break cross sections, we assessed the potential of the luminescent transition metal complex [Cr(ddpd)2]3+ (ddpd=N,N’-dimethyl-N,N’-dipyridine-2-ylpyridine-2,6-diamine) to damage DNA in an air-saturated aqueous environment upon UV/Vis illumination. The quantum yield for strand breakage, that is, the ratio of DNA strand breaks to the number of absorbed photons, was determined to 1–4%, indicating efficient transformation of photons into DNA strand breaks by [Cr(ddpd)2]3+. KW - Fluorescence KW - Synthesis KW - Production KW - Optical spectroscopy KW - Ligand KW - Photophysics KW - Cr(III) KW - Mechanism KW - NIR KW - PDT KW - Singlet oxygen KW - DNA KW - Origami KW - Quantum yield PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573631 DO - https://doi.org/10.1002/chem.202203719 SP - 1 EP - 7 AN - OPUS4-57363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavernaro, Isabella A1 - Sander, P. C. A1 - Andresen, Elina A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Expanding the Toolbox of Simple, Cost-Efficient, and Automatable Methods for Quantifying Surface Functional Groups on Nanoparticles� Potentiometric Titration N2 - Measuring surface functional groups (FGs) on nanomaterials (NMs) is essential for designing dispersible and stable NMs with tailored and predictable functionality. FG screening and quantification also plays a critical role for subsequent processing steps, NM long-term stability, quality control of NM production, and risk assessment studies and enables the implementation of sustainable and safe(r)-by-design concepts. This calls for simple and cost-efficient methods for broadly utilized FGs that can be ideally automated to speed up FG screening, monitoring, and quantification. To expand our NM surface analysis toolbox, focusing on simple methods and broadly available, cost-efficient instrumentation, we explored a NM-adapted pH titration method with potentiometric and optical readout for measuring the total number of (de)protonable FGs on representatively chosen commercial and custom-made aminated silica nanoparticles (SiO2 NPs). The accuracy and robustness of our stepwise optimized workflows was assessed by several operators in two laboratories and method validation was done by cross-comparison with two analytical methods relying on different signal generation principles. This included traceable, chemo-selective quantitative nuclear magnetic resonance spectroscopy (qNMR) and thermogravimetric analysis (TGA), providing the amounts of amino silanes released by particle dissolution and the total mass of the surface coatings. A comparison of the potentiometric titration results with the reporter-specific amounts of surface amino FGs determined with the previously automated fluorescamine (Fluram) assay highlights the importance of determining both quantities for surface-functionalized NMs. In the future, combined NM surface analysis with optical assays and pH titration will simplify quality control of NM production processes and stability studies and can yield large data sets for NM grouping that facilitates further developments in regulation and standardization. KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Characterization KW - Advanced material KW - Surface KW - Standardization KW - Reference material KW - Functional group KW - Quantification KW - Coating KW - Automation KW - Potentiometry KW - Method KW - Validation KW - Optical assay KW - Fluram KW - Fluorescamine KW - qNMR KW - Comparison KW - ILC PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-642371 DO - https://doi.org/10.1021/acsmeasuresciau.5c00062 SN - 2694-250X SP - 1 EP - 13 PB - American Chemical Society CY - Washington, DC AN - OPUS4-64237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Maria A1 - Güttler, Arne A1 - Pauli, Jutta A1 - Vogel, K. A1 - Homann, Christian A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Extending certified spectral fluorescence standards for the calibration and performance validation of fluorescence instruments to the NIR—closing the gap from 750 to 940 nm with two novel NIR dyes N2 - Fluorescence techniques such as fluorescence spectroscopy, microfluorometry, and fluorescence microscopy, providing spectral, intensity, polarization, and lifetime information, are amongst the most broadly utilized analytical methods in the life and materials sciences. However, the measured fluorescence data contain sample- and instrument-specific contributions, which hamper their comparability across instruments and laboratories. Comparable, instrument-independent fluorescence data require the determination of the fluorescence instrument’s wavelength-dependent spectral responsivity, also termed emission correction curve, for the same instrument settings as those used for the fluorescence measurements as a prerequisite for the subsequent correction of the measured instrument-specific data. Such a spectral correction is essential for the performance comparison of different fluorescent labels and reporters, quantitative fluorescence measurements, the determination of the fluorescence quantum yield, and the spectroscopic measure for the fluorescence efficiency of a fluorophore. Simple-to-use tools for obtaining emission correction curves are chromophore-based reference materials (RMs), referred to as fluorescence standards, with precisely known, preferably certified instrument-independent fluorescence spectra. However, for the increasingly used near-infrared (NIR) wavelength region >700 nm, at present, no spectral fluorescence standards are available. To close this gap, we developed two novel spectral fluorescence standards, BAM F007 and BAM-F009, with broad emission bands from about 580 to 940 nm in ethanolic solution. These liquid fluorescence standards currently under certification, which will be released in 2025, will expand the wavelength range of the already available certified Calibration Kit BAM F001b-F005b from about 300–730 to 940 nm. In this research article, we will detail the criteria utilized for dye and matrix selection and the homogeneity and stability tests accompanying dye certification as well as the calculation of the wavelength-dependent uncertainty budgets of the emission spectra BAM F007 and BAM-F009, determined with the traceably calibrated BAM reference spectrofluorometer. These fluorescence standards can provide the basis for comparable fluorescence measurements in the ultraviolet, visible, and NIR for the fluorescence community. KW - Quality assurance KW - Reference material KW - Fluorescence KW - Dye KW - Traceability KW - Metrology KW - Calibration KW - Reference data KW - Reference product KW - Digital certificate KW - NIR KW - Instrument performance validation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626317 DO - https://doi.org/10.1007/s00216-024-05723-w SN - 1618-2650 SP - 1 EP - 15 PB - Springer AN - OPUS4-62631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deumer, J. A1 - Andresen, Elina A1 - Gollwitzer, C. A1 - Schürmann, R. A1 - Resch-Genger, Ute T1 - Adding More Shape to Nanoscale Reference Materials-LiYF4:Yb,Tm Bipyramids as Standards for Sizing Methods and Particle Number Concentration N2 - The increasing industrial use of nanomaterials calls for the reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry, and test and reference materials (RMs) with sizes and shapes, closely matching real-world nonspheric nano-objects. An efficient strategy to minimize efforts in producing nanoscale RMs (nanoRMs) for establishing, validating, and standardizing methods for characterizing nanomaterials are multimethod nanoRMs. Ideal candidates are lanthanide-based, multicolor luminescent, and chemically inert nanoparticles (NPs) like upconversion nanoparticles (UCNPs), which can be prepared in different sizes, shapes, and chemical composition with various surface coatings. This makes UCNPs interesting candidates as standards not only for sizing methods, but also for element-analytical methods like laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS), quantitative bioimaging methods like X-ray fluorescence computed tomography (XFCT), and luminescence methods and correlative measurements. Here, we explore the potential of two monodisperse LiYF4:Yb,Tm bipyramids with peak-to-peak distances of (43 ± 2) nm and (29 ± 2) nm as size standards for small-angle X-ray scattering (SAXS) and tools for establishing and validating the sophisticated simulations required for the analysis of SAXS data derived from dispersions of nonspheric nano-objects. These SAXS studies are supplemented by two-dimensional (2D)-transmission electron microscopy measurements of the UCNP bipyramids. Additionally, the particle number concentration of cyclohexane dispersions of these UCNP bipyramids is determined by absolute SAXS measurements, complemented by gravimetry, thermogravimetric analysis (TGA), and inductively coupled plasma optical emission spectrometry (ICP-OES). This approach enables traceable particle number concentration measurements of ligand-capped nonspheric particles with unknown chemical composition. KW - Fluorescence KW - Upconversion nanoparticles KW - SAXS KW - Particle number concentration KW - Reference material KW - Traceability KW - Quality assurance KW - Quantum yield KW - Spectroscopy KW - Synthesis KW - Quantification KW - NanoRM KW - Nano KW - Particle KW - Bipyramid KW - Reference data KW - Simulation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-617940 DO - https://doi.org/10.1021/acs.analchem.4c03641 SP - 1 EP - 8 PB - ACS Publications AN - OPUS4-61794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Carl, F. A1 - Grauel, Bettina A1 - Pons, Monica A1 - Würth, Christian A1 - Haase, M. T1 - LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals N2 - We developed a procedure to prepare luminescent LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with a size of approximately 40 nm revealing luminescence decay times of the dopant ions that approach those of high-quality laser crystals of LiYF4:Yb (Yb:YLF) and LiYF4:Yb,Er (Yb,Er:YLF) with identical doping concentrations. As the luminescence decay times of Yb3+ and Er3+ are known to be very sensitive to the presence of quenchers, the long decay times of the core/shell nanocrystals indicate a very low number of defects in the core particles and at the core/shell interfaces. This improvement in the performance was achieved by introducing two important modifications in the commonly used oleic acid based synthesis. First, the shell was prepared via anewly developed method characterized by a very low nucleation rate for particles of pure LiYF4 shell material. Second, anhydrous acetates were used as precursors and additional drying steps were applied to reduce the incorporation of OH− in the crystal lattice, known to quench the emission of Yb3+ ions. Excitation power density (P)-dependent absolute measurements of the upconversion luminescence quantum yield (Φ,UC) of LiYF4:Yb,Er/LiYF4 core/shell particles reveal a maximum value of 1.25% at P of 180 W·cm−2. Although lower than the values reported for NaYF4:18%Yb,2%Er core/shell nanocrystals with comparable sizes, these Φ, UC values are the highest reported so far for LiYF4:18%Yb,2%Er/LiYF4 nanocrystals without additional dopants. Further improvements May nevertheless be possible by optimizing the dopant concentrations in the LiYF4 nanocrystals. KW - Nano KW - Crystal KW - Quantum yield KW - LiYF4 KW - Synthesis KW - Lifetime KW - Fluorescence KW - NIR KW - Photoluminescence KW - Lanthanide KW - Upconversion nanoparticle KW - Nanomaterial PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515395 DO - https://doi.org/10.1007/s12274-020-3116-y SN - 1998-0124 VL - 14 IS - 3 SP - 797 EP - 806 PB - Springer AN - OPUS4-51539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Solid-State Emissive Aroyl-S,N-Ketene Acetals with Tunable N2 - N-Benzyl aroyl-S,N-ketene acetals can be readily synthesized by condensation of aroyl chlorides and N-Benzyl 2-methyl benzothiazolium salts in good to excellent yields, yielding a library of 35 chromophores with bright solid-state emission and aggregation-induced emission characteristics. Varying the substituent from electron-donating to electronwithdrawing enables the tuning of the solid-state emission Color from deep blue to red. KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509072 DO - https://doi.org/10.1002/anie.201916396 VL - 59 IS - 25 SP - 10037 EP - 10041 PB - Wiley Online Libary AN - OPUS4-50907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Denißen, M. A1 - Hannen, R. A1 - Itskalov, D. A1 - Biesen, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Reiss, G. J. A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - One-pot synthesis of a white-light emissive bichromophore operated by aggregation-induced dual emission (AIDE) and partial energy transfer N2 - Merocyanine–triarylamine bichromophores are readily synthesized by sequentially Pd-catalyzed insertion alkynylation–Michael–Suzuki four-component reactions. White-light emissive systems form upon aggregation in 1 : 99 and 0.1 : 99.9 vol% CH2Cl2–cyclohexane mixtures, ascribed to aggregation-induced dual emission (AIDE) in combination with partial energy transfer between both chromophore units as supported by spectroscopic studies. KW - Energy transfer KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission KW - Merocyanine PY - 2020 DO - https://doi.org/10.1039/d0cc03451g VL - 56 IS - 54 SP - 7407 PB - Royal Society of Chemistry AN - OPUS4-50936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - May, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Communication of Bichromophore Emission upon Aggregation – Aroyl-S,N-ketene Acetals as Multifunctional Sensor Merocyanines N2 - Aroyl-S,N-ketene acetal-based bichromophores can be readily synthesized in a consecutive three-component synthesis in good to excellent yields by condensation of aroyl chlorides and an N-(p-bromobenzyl) 2-methyl benzothiazolium salt followed by a Suzuki coupling, yielding a library of 31 bichromophoric fluorophores with substitution patterntunable emission properties. Varying both chromophores enables different communication pathways between the chromophores, exploiting aggregation-induced emission (AIE) and energy transfer (ET) properties, and thus, furnishing aggregation-based fluorescence switches. Possible applications range from fluorometric analysis of alcoholic beverages to pH sensors. KW - Dye KW - Fluorescence KW - Aggregation induced emission KW - Signal enhancement KW - Energy transfer KW - Switch KW - Sensor KW - Quantum yield KW - Lifetime KW - Photophysics KW - Synthesis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531123 DO - https://doi.org/10.1002/chem.202102052 VL - 27 IS - 53 SP - 13426 EP - 13434 PB - Wiley-VCH AN - OPUS4-53112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frenzel, F. A1 - Fiedler, S. A1 - Bardan, A. A1 - Güttler, Arne A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Influence of Measurement Geometry and Blank on Absolute Measurements of Photoluminescence Quantum Yields of Scattering Luminescent Films N2 - For a series of 500 μm-thick polyurethane films containing different concentrations of luminescent and scattering YAG:Ce microparticles, we systematically explored and quantified pitfalls of absolute measurements of photoluminescence quantum yields (Φf) for often employed integrating sphere (IS) geometries, where the sample is placed either on a sample holder at the bottom of the IS surface or mounted in the IS center. Thereby, the influence of detection and illumination geometry and sample position was examined using blanks with various scattering properties for measuring the number of photons absorbed by the sample. Our results reveal that (i) setup configurations where the scattering sample is mounted in the IS center and (ii) transparent blanks can introduce systematic errors in absolute Φf measurements. For strongly scattering, luminescent samples, this can result in either an under- or overestimation of the absorbed photon flux and hence an under- or overestimation of Φf. The size of these uncertainties depends on the scattering properties of the sample and instrument parameters, such as sample position, IS size, wavelength-dependent reflectivity of the IS surface coating, and port configuration. For accurate and reliable absolute Φf measurements, we recommend (i) a blank with scattering properties closely matching those of the sample to realize similar distributions of the diffusely scattered excitation photons within the IS, and (ii) a sufficiently high sample absorption at the excitation wavelength. For IS setups with center-mounted samples, measurement geometries should be utilized that prevent the loss of excitation photons by reflections from the sample out of the IS. KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Quantum yield KW - Characterization KW - Silica KW - Scattering KW - Uncertainty KW - Film KW - Pphosphor KW - YAG:Ce KW - LED KW - Converter material KW - Solid material KW - Polymer KW - Composite material KW - Advanced material PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638304 DO - https://doi.org/10.1021/acs.analchem.4c06726 SN - 1520-6882 SP - 1 EP - 8 PB - ACS Publications AN - OPUS4-63830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, R. A1 - Teich, W. A1 - Frenzel, Florian A1 - Hoffmann, Katrin A1 - Radke, J. A1 - Rösler, J. A1 - Faust, K. A1 - Blank, A. A1 - Brandenburg, S. A1 - Misch, M. A1 - Vajkoczy, P. A1 - Onken, J. S. A1 - Resch-Genger, Ute T1 - Optical characterization of sodium fluorescein in vitro and ex vivo N2 - Objective: The utilization of fluorescein-guided biopsies and resection has been recently discussed as a suitable strategy to improve and expedite operative techniques for the resection of central nervous system (CNS) tumors. However, little is known about the optical properties of sodium fluorescein (NaFl) in human tumor tissue and their potential impact on ex vivo analyses involving fluorescence-based methods. Methods: Tumor tissue was obtained from a study cohort of an observational study on the utilization of fluorescein-guided biopsy and resection (n=5). The optical properties of fluorescein-stained tissue were compared to the optical features of the dye in vitro and in control samples consisting of tumor tissue of high-grade glioma patients (n=3) without intravenous (i.v.) application of NaFl. The dye-exposed tumor tissues were used for optical measurements to confirm the detectability of NaFl emission ex vivo. The tissue samples were fixed in 4%PFA, immersed in 30% sucrose, embedded in Tissue-Tek OCT compound, and cut to 10 mm cryosections. Spatially resolved emission spectra from tumor samples were recorded on representative slides with a Confocal Laser Scanning Microscope FV1000 (Olympus GmbH, Hamburg, Germany) upon excitation with lexc = 488 nm. Results: Optical measurements of fluorescein in 0.9% sodium chloride (NaCl) under in vitro conditions showed an absorption maximum of lmax abs = 479 nm as detected with spectrophotometer Specord 200 and an emission peak at lmax em = 538 nm recorded with the emCCD detection system of a custom-made microscope-based single particle setup using a 500 nm long-pass filter. Further measurements revealed pH- and concentration-dependent emission spectra of NaFl. Under ex vivo conditions, confocal laser scanning microscopy of fluorescein tumor samples revealed a slight bathochromic shift and a broadening of the emission band. Conclusion: Tumor uptake of NaFl leads to changes in the optical properties – a bathochromic shift and broadening of the emission band – possibly caused by the dye’s high pH sensitivity and concentration-dependent reabsorption acting as an innerfilter of the dye’s emission, particularly in the short wavelength region of the Emission spectrum where absorption and fluorescence overlap. Understanding the ex vivo optical properties of fluorescein is crucial for testing and validating its further applicability as an optical probe for intravital microscopy, immunofluorescence localization studies, and flow cytometry analysis. KW - Fluorescence KW - Optical probe KW - Sensor KW - Fluorescein KW - PH KW - Imaging KW - Tissue KW - Cancer KW - Medical diagnostics KW - Tumor KW - In vivo KW - Ex vivo KW - Quantum yield KW - Dye KW - Quality assurance KW - Microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527843 DO - https://doi.org/10.3389/fonc.2021.654300 SN - 2234-943X VL - 11 SP - 1 EP - 8 PB - Frontiers Media CY - Lausanne AN - OPUS4-52784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Borcherding, H. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Lifetime encoding in flow cytometry for bead‑based sensing of biomolecular interaction N2 - To demonstrate the potential of time-resolved flow cytometry (FCM) for bioanalysis, clinical diagnostics, and optically encoded bead-based assays, we performed a proof-of-principle study to detect biomolecular interactions utilizing fluorescence lifetime (LT)-encoded micron-sized polymer beads bearing target-specific bioligands and a recently developed prototype lifetime flow cytometer (LT-FCM setup). This instrument is equipped with a single excitation light source and different fluorescence detectors, one operated in the photon-counting mode for time-resolved measurements of fluorescence decays and three detectors for conventional intensity measurements in different spectral windows. First, discrimination of bead-bound biomolecules was demonstrated in the time domain exemplarily for two targets, Streptavidin (SAv) and the tumor marker human chorionic gonadotropin (HCG). In a second step, the determination of biomolecule concentration levels was addressed representatively for the inflammation-related biomarker tumor necrosis factor (TNF-α) utilizing fluorescence intensity measurements in a second channel of the LT-FCM instrument. Our results underline the applicability of LT-FCM in the time domain for measurements of biomolecular interactions in suspension assays. In the future, the combination of spectral and LT encoding and multiplexing and the expansion of the time scale from the lower nanosecond range to the longer nanosecond and the microsecond region is expected to provide many distinguishable codes. This enables an increasing degree of multiplexing which could be attractive for high throughput screening applications. KW - Fluorescence KW - Sensor KW - Assay KW - Protein KW - Multiplexing KW - Flow cytometry KW - Barcoding KW - Lifetime KW - Dye KW - Bead KW - Bead-based assay KW - Method KW - Quantification PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516007 DO - https://doi.org/10.1038/s41598-020-76150-x VL - 10 IS - 1 SP - 19477 PB - Nature AN - OPUS4-51600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Fürstenwerth, Paul Christian A1 - Witte, J. F. A1 - Resch-Genger, Ute T1 - Synthesis and spectroscopic characterization of a fluorescent phenanthrene-rhodamine dyad for ratiometric measurements of acid pH values N2 - We present the rational design, synthesis and spectroscopic characterization of a novel dual excitation, three color emitting, pH-responsive fluorescent probe consisting of two phenanthrene and one rhodamine B units linked by click chemistry. The rhodamine moiety, excitable at λEx = 315 nm and at λEx = 560 nm in its ring-opened form, provides the pH-responsive fluorophore, while the pH-insensitive phenanthrene, excited at λEx = 315 nm, serves as inert internal reference, The presence of two phenanthrene moieties enables a blue monomer and a blueish green excimer emission at 351 nm and 500 nm, respectively. Opening of the rhodamine B spirolactam ring at an acidic pH below 5.0 (pKa = 2.59 ± 0.04) switches on its emission at 580 nm. Simultaneously, the phenanthrene excimer emission decreases caused by a change in orientation of the phenanthrene units, while the monomer emission is barely affected. This sensor design enables ratiometric measurements in the low acidic pH range utilizing the intensity ratios of the rhodamine B and phenanthrene excimer emission at 580 nm and 500 nm. Alternatively, also the intensity ratios of the rhodamine B and the phenanthrene monomer emission could be exploited or the sum of the phenanthrene monomer and excimer fluorescence. To the best of our knowledge, this is the first report of ratiometric sensing utilizing such a versatile type of tricolor emissive dyad probe bearing phenanthrene moieties and showing phenanthrene monomer and excimer emission. KW - Fluorescence KW - Optical probe KW - Sensor KW - Dye KW - Rhodamine KW - Synthesis KW - Photophysics KW - PH KW - Quantum yield KW - Quality assurance KW - Mechanism KW - Chemodosimeter KW - Phenanthrene KW - Ratiometric KW - Dyad PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530554 DO - https://doi.org/10.1039/d1nj01573g SN - 1144-0546 VL - 45 IS - 31 SP - 13755 EP - 13762 PB - Royal Society of Chemistry AN - OPUS4-53055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wasternack, J. A1 - Schröder, H. V. A1 - Witte, J. F. A1 - Ilisson, M. A1 - Hupatz, H. A1 - Hille, J. F. A1 - Gaedke, M. A1 - Valkonen, A. M. A1 - Sobottka, S. A1 - Krappe, A. A1 - Schubert, M. A1 - Paulus, B. A1 - Rissanen, K. A1 - Sarkar, B. A1 - Eigler, S. A1 - Resch-Genger, Ute A1 - Schalley, C. A. T1 - Switchable protection and exposure of a sensitive squaraine dye within a redox active rotaxane N2 - In nature,molecular environments in proteins can sterically protect and stabilize reactive species such as organic radicals through non-covalent interactions.Here, wereport a near-infrared fluorescent rotaxane in which the stabilization of a chemically labile squaraine fluorophore by the coordination of a tetralactam macrocycle can be controlled chemically and electrochemically. The rotaxane can be switched between two co-conformations inwhich thewheel either stabilizes or exposes the fluorophore. Coordination by the wheel affects the squaraine’s stability across four redox states and renders the radical anion significantly more stable—by a factor of 6.7—than without protection by a mechanically bonded wheel. Furthermore, the fluorescence properties can be tuned by the redox reactions in a stepwise manner. Mechanically interlockedmolecules provide an excellent scaffold to stabilize and selectively expose reactive species in a co-conformational switching process controlled by external stimuli. KW - Fluorescence KW - Dye KW - Sensor KW - Quantum yield KW - Spectroscopy KW - Photophysics KW - Synthesis KW - Squaraine KW - Switch KW - Redox-active KW - Rotaxane PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-614959 DO - https://doi.org/10.1038/s42004-024-01312-1 VL - 7 SP - 1 EP - 11 AN - OPUS4-61495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramirez, Alejandra A1 - Pauli, Jutta A1 - Crasselt, C. A1 - Simon, S. A1 - Schmidt, W. A1 - Resch-Genger, Ute T1 - The effect of a polycarboxylate ether on C3A / CaSO4.2H2O passivation monitored by optical spectroscopy N2 - Polycarboxylate ethers (PCEs) are widely used in construction, but the exact nature of their interaction with cement is still debated. Aiming at a better understanding of the role of tricalcium Aluminate (C3A) in cement hydration, we assessed the potential of optical spectroscopy in combination with a water-soluble fluorescent organic reporter dye (S0586) to monitor the early hydration of C3A in the presence of 26 wt% CaSO4.2H2O (C3A26G-S) with and without PCE. As optical methods, steady-state fluorescence and diffuse reflectance (UV–VisDR) spectroscopy were employed. Phase characterization and particle size distribution were performed with in-situ X-ray diffraction (in-situ XRD) and dynamic light scattering (DLS). Our results show that fluorescence and UV–VisDR spectroscopy can be used to monitor the formation of metastable phases by the disaggregation of the dye S0586 in a cement paste as well as changes in ettringite formation. Addition of PCE slowed down the disaggregation of the dye as reflected by the corresponding changes of the dyes absorption and fluorescence. This prolonged induction period is a well-known side effect of PCEs and agrees with previous reported calorimetric studies and the Inhibition of gypsum dissolution observed by in-situ XRD. This demonstrates that fluorescence and UV–VisDR spectroscopy together with a suitable optical probe can provide deeper insights into the influence of PCE on C3A-gypsum hydration which could be e.g., utilized as screening method for comparing the influences of different types of PCEs. KW - Fluorescence KW - Cement KW - Nano KW - Particle KW - Optical spectroscopy KW - PCE KW - XRD KW - Calorimetry KW - Monitoring KW - Diffuse KW - Reflection KW - Phase KW - Dye KW - Optical probe KW - Cyanine KW - Sensor KW - Method KW - Analysis PY - 2020 DO - https://doi.org/10.1016/j.conbuildmat.2020.121856 VL - 270 SP - 121856 PB - Elsevier Ltd. AN - OPUS4-52118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gröninger, Delia A1 - Weller, Michael G. A1 - Martínez Mánez, R. A1 - Rurack, Knut ED - Climent Terol, Estela T1 - Multiplexed Detection of Analytes on Single Test Strips with Antibody-Gated Indicator-Releasing Mesoporous Nanoparticles N2 - Rapid testing methods for the use directly at apointof need are expected to unfold their true potential especiallywhen offering adequate capabilities for the simultaneousmeasurement of multiple analytes of interest. Considering theunique modularity,high sensitivity,and selectivity of antibody-gated indicator delivery (gAID) systems,amultiplexed assayfor three small-molecule explosives (TATP, TNT,PETN) wasthus developed, allowing to detect the analytes simultaneouslywith asingle test strip at lower ppb concentrations in the liquidphase in < 5min using afluorescence reader or asmartphonefor readout. While the TNT and PETN systems were newlydeveloped here,all the three systems also tolerated harshermatrices than buffered aqueous model solutions.Besidesasingle-track strip,the outstanding modularity of the hybridbiosensor materials in combination with strip-patterningtechnologies allowed us to obtain amultichannel strip inastraightforwardmanner,offering comparable analyticalperformance while allowing to be tailored even more to theusersneed. KW - Multiplexing KW - Explosives detection KW - Gated materials KW - Fluorescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518424 DO - https://doi.org/10.1002/anie.202009000 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 52 SP - 23862 EP - 23869 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hudson, A.D. A1 - Jamieson, O. A1 - Crapnell, R.D. A1 - Rurack, Knut A1 - Soares, T.C.C. A1 - Mecozzi, F. A1 - Laude, A. A1 - Gruber, J. A1 - Novakovic, K. A1 - Peeters, M. T1 - Dual detection of nafcillin using a molecularly imprinted polymer-based platform coupled to thermal and fluorescence read-out N2 - Reported here is the production of molecularly imprinted polymer (MIP) films, integrating a fluorescent moiety that serves as both an element for template interaction and signalling, for the thermal and optical detection of the beta-lactam antibiotic nafcillin. Fluorescein methacrylate (FluMa) was synthesized and introduced during the molecular imprinting process as the sole monomer and in a 1 : 1 mixture with methacrylic acid (MAA), allowing to draw first conclusions on the MIP formation potential of such a rather large and rigid monomer. At first, MIP microparticles containing FluMa were prepared by free radical polymerisation. Optical batch rebinding experiments revealed that FluMa can act as a functional monomer for selective detection of nafcillin; however, the addition of MAA as co-monomer significantly improved performance. Subsequently, thin MIP films containing FluMa were deposited onto functionalised glass slides and the influence of porogen, drying time, and monomer composition was studied. These MIP-functionalised glass electrodes were mounted into a customised 3D-printed flow cell, where changes in the liquid were either evaluated with a thermal device or using fluorescence bright field microscopy. Thermal analysis demonstrated that multiple MIP layers enhanced sensor specificity, with detection in the environmentally relevant range. The fluorescence bright field microscope investigations validated these results, showing an increase in the fluorescence intensity upon exposure of the MIP-functionalised glass slides to nafcillin solutions. These are promising results for developing a portable sensor device that can be deployed for antibiotics outside of a dedicated laboratory environment, especially if sensor design and fluorophore architecture are optimised. KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Antibiotics KW - Heat-transfer Measurements KW - Thin films PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540044 DO - https://doi.org/10.1039/D1MA00192B VL - 2 IS - 15 SP - 5105 EP - 5115 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-54004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Homann, Christian A1 - Peeters, Régis A1 - Mirmajidi, Hana A1 - Berg, Jessica A1 - Fay, Michael A1 - Rodrigues, Lucas Carvalho Veloso A1 - Radicchi, Eros A1 - Jain, Akhil A1 - Speghini, Adolfo A1 - Hemmer, Eva T1 - Rapid microwave-assisted synthesis of morphology-controlled luminescent lanthanide-doped Gd2O2S nanostructures N2 - Gadolinium oxysulfide (Gd2O2S) is an attractive material of demonstrated suitability for a variety of imaging applications, leveraging its magnetic, scintillating, and luminescent properties, particularly when doped with optically active lanthanide ions (Ln3+). For many of these applications, control over size and morphology at the nanoscale is crucial. This study demonstrates the rapid microwave-assisted Synthesis of colloidal Ln2O2S (Ln = Gd and dopants Yb, Er, Tb) nanostructures in as little as 20 min. Structural characterization using X-ray diffraction analysis (XRD), Raman spectroscopy, as well as Transmission electron microscopy (TEM), including elemental mapping via energy dispersive X-ray spectroscopy (EDS), unveiled the key role of elemental sulphur (S8) in the reaction mixtures for materials growth. By systematically varying the Ln-to-S ratio from 1 : 0.5 to 1 : 15, controlled morphologies ranging from triangular nanoplatelets to berry- and flower-like shapes were achieved. Doping with Er3+/Yb3+ endowed the nano-triangles with upconverting and near-infrared emitting properties. Tb3+-doped Gd2O2S exhibited the characteristic green Tb3+ emission under UV excitation, while also showing X-ray excited optical luminescence (XEOL), rendering the material interesting as a potential nano-scintillator. KW - Upconversion KW - Microwave-assisted synthesis KW - Synthesis KW - Fluorescence KW - Nano KW - Particle KW - NIR KW - XRD KW - X-ray fluoressence KW - Morphology control KW - Raman PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-647907 DO - https://doi.org/10.1039/D5TC01646K SN - 2050-7526 VL - 13 IS - 35 SP - 18492 EP - 18507 PB - Royal Society of Chemistry (RSC) AN - OPUS4-64790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shan A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Dual-Fluorescent Nanoparticle Probes Consisting of a Carbon Nanodot Core and a Molecularly Imprinted Polymer Shell N2 - Dual-fluorescent molecularly imprinted nanoparticles with a red-emissive carbon nanodot-doped silica core and a chlorogenic acid-imprinted fluorescent polymer layer are prepared and their use in ratiometric fluorometric analysis is described. Nanoparticle probes consisting of a shielded and stably emitting core and a shell with embedded binding sites that indicates the presence of an analyte with a change in emission allow for internally referenced measurements potentially accounting for detrimental influences from instrument drifts, light source fluctuations or sensor materials-related inhomogeneities. KW - Molecular imprinting KW - Fluorescence KW - Core-shell particles KW - Chlorogenic acid KW - Ratiometric measurement PY - 2021 DO - https://doi.org/10.1007/978-1-0716-1629-1_17 VL - 2359 SP - 195 EP - 208 PB - Springer CY - Humana, New York, NY AN - OPUS4-53336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Genger, C. A1 - Welker, P. A1 - Huebner, Oskar A1 - Resch-Genger, Ute T1 - Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies N2 - A first tricolor fluorescent pH nanosensor is presented, which was rationally designed from biocompatible carboxylated polystyrene nanoparticles and two analyte-responsive molecular fluorophores. Its fabrication involved particle staining with a blue-red-emissive dyad, consisting of a rhodamine moiety responsive to acidic pH values and a pH-inert quinoline fluorophore, followed by the covalent attachment of a fluorescein dye to the particle surface that signals neutral and basic pH values with a green fluorescence. These sensor particles change their fluorescence from blue to red and green, depending on the pH and excitation wavelength, and enable ratiometric pH measurements in the pH range of 3.0−9.0. The localization of the different sensor dyes in the particle core and at the particle surface was confirmed with fluorescence microscopy utilizing analogously prepared polystyrene microparticles. To show the application potential of these polystyrene-based multicolor sensor particles, fluorescence microscopy studies with a human A549 cell line were performed, which revealed the cellular uptake of the pH nanosensor and the differently colored emissions in different cell organelles, that is, compartments of the endosomal-lysosomal pathway. Our results demonstrate the underexplored potential of biocompatible polystyrene particles for multicolor and multianalyte sensing and bioimaging utilizing hydrophobic and/or hydrophilic stimuli-responsive luminophores. KW - Microparticle KW - Fluorescence KW - Sensor KW - pH KW - Quantum yield KW - Multiplexing KW - Imaging KW - Cell KW - Quality assurance KW - Nano KW - Polymer KW - Bioimaging KW - Particle KW - Application PY - 2022 DO - https://doi.org/10.1021/acs.analchem.2c00944 VL - 94 IS - 27 SP - 9656 EP - 9664 PB - ACS AN - OPUS4-55365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, F. A1 - Rietsch, P. A1 - Sinha, S. A1 - Krappe, A. A1 - Joswig, J.-O. A1 - Götze, J. P. A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Eigler, S. A1 - Paulus, B. T1 - Fluorescence Quenching in J‑Aggregates through the Formation of Unusual Metastable Dimers N2 - Molecular aggregation alters the optical properties of a system as fluorescence may be activated or quenched. This is usually described within the well-established framework of H- and J-aggregates. While H-aggregates show nonfluorescent blueshifted absorption bands with respect to the isolated monomer, Jaggregates are fluorescent displaying a redshifted peak. In this publication, we employ a combined approach of experiment and theory to study the complex aggregation features and photophysical properties of diaminodicyanoquinone derivatives, which show unusual and puzzling nonfluorescent redshifted Absorption bands upon aggregation. Our theoretical analysis demonstrates that stable aggregates do not account for the experimental observations. Instead, we propose an unprecedented mechanism involving metastable dimeric species formed from stable dimers to generate nonfluorescent J-aggregates. These results represent a novel kind of aggregation-induced optical effect and may have Broad implications for the photophysics of dye aggregates. KW - Fluorescence KW - Llifetime KW - Dye KW - Quantum yield KW - Label KW - Reporter KW - Aggregation KW - Monomer KW - Heory KW - Mechanism KW - photophysics PY - 2021 DO - https://doi.org/10.1021/acs.jpcb.1c01600 SN - 1520-5207 VL - 125 IS - 17 SP - 4438 EP - 4446 PB - ACS Publikations AN - OPUS4-52619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Billimoria, K. A1 - Diaz Fernandez, Y. A. A1 - Andresen, Elina A1 - Sorzabal-Bellido, I. A1 - Huelga-Suarez, G. A1 - Bartczak, D. A1 - Ortiz de Solórzano, C. A1 - Resch-Genger, Ute A1 - Goenaga Infante, H. T1 - The potential of bioprinting for preparation of nanoparticle-based calibration standards for LA-ICP-ToF-MS quantitative imaging N2 - This paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin- based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were com- pared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 μm spatial resolution. By using bioprinting, the between batch variability for three independent standards of the same concentration of 89 Y (range 0–600 mg/kg) was reduced to 5% compared to up to 27% for cryosectioning. On this basis, the relative standard deviation ( RSD ) obtained between three independent calibration slopes measured within 1 day also reduced from 16% (using cryosectioning ) to 5% (using bioprinting), supporting the use of a single standard preparation replicate for each of the concentrations to achieve good calibration performance using bioprinting. This helped reduce the analysis time by approximately 3-fold. With cryosectioning each standard was prepared and sectioned individually, whereas using bio-printing it was possible to have up to six different standards printed simultaneously, reducing the preparation time from approximately 2 h to under 20 min (by approxi- mately 6-fold). The bio-printed calibration standards were found stable for a period of 2 months when stored at ambient temperature and in the dark. KW - Environmental analysis KW - LA-ICP-MS KW - Lanthanide KW - Tag KW - Fluorescence KW - Nanoparticles KW - Reference material KW - Quality assurance KW - 3D-printing KW - Synthesis KW - Production KW - Multimodal PY - 2022 DO - https://doi.org/10.1093/mtomcs/mfac088 SN - 1756-591X VL - 14 IS - 12 SP - 1 EP - 9 PB - Oxford University Press CY - Oxford AN - OPUS4-57018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, J. A1 - Güttler, Arne A1 - Schneider, T. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Fluorescence Quantum Yield Standards for the UV/Visible/NIR: Development, Traceable Characterization, and Certification N2 - The rational design of next generation molecular and nanoscale reporters and the comparison of different emitter classes require the determination of the fluorometric key performance parameter fluorescence quantum yield (Φf), i.e., the number of emitted photons per number of absorbed photons. Main prerequisites for reliable Φf measurements, which are for transparent luminophore solutions commonly done relative to a reference, i.e., a fluorescence quantum yield standard of known Φf, are reliable and validated instrument calibration procedures to consider wavelength-, polarization-, and time-dependent instrument specific signal contributions, and sufficiently well characterized fluorescence quantum yield standards. As the standard’s Φf value directly contributes to the calculation of the sample’s Φf, its accuracy presents one of the main sources of uncertainty of relative Φf measurements. To close this gap, we developed a first set of 12 fluorescence quantum yield standards, which absorb and emit in the wavelength region of 330−1000 nm and absolutely determined their Φf values with two independently calibrated integrating sphere setups. Criteria for standard selection and the configuration of these novel fluorescence reference materials are given, and the certification procedure is presented including homogeneity and stability studies and the calculation of complete uncertainty budgets for the certified Φf values. The ultimate goal is to provide the community of fluorescence users with available reference materials as a basis for an improved comparability and reliability of quantum yield data since the measurement of this spectroscopic key property is an essential part of the characterization of any new emitter. KW - Optical spectroscopy KW - Traceability KW - Reference product KW - Dye KW - Fluorescence KW - Quantum yield KW - Reference material KW - Reference data KW - Certification KW - Quality assurance PY - 2023 DO - https://doi.org/10.1021/acs.analchem.2c05530 VL - 95 SP - 5671 EP - 5677 PB - American Chemical Society AN - OPUS4-58151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Radunz, Sebastian A1 - Kraus, Werner A1 - Bischoff, F. A. A1 - Emmerling, Franziska A1 - Resch-Genger, Ute A1 - Tschiche, Harald T1 - Temperature- and Structure-Dependent Optical Properties and Photophysics of BODIPY Dyes N2 - We report on the temperature- and structural-dependent optical properties and photophysics of a set of boron dipyrromethene (BODIPY) dyes with different substitution patterns of their meso-aryl subunit. Single-crystal Xray diffraction analysis of the compounds enabled a classification of the dyes into a sterically hindered and a unhindered group. The steric hindrance refers to a blocked rotational motion of the aryl subunit around the bond connecting this moiety to the meso-position of the BODIPY core. The energy barriers related to this rotation were simulated by DFT calculations. As follows from the relatively low rotational barrier calculated to about 17 kcal/mol, a free rotation is only possible for sterically unhindered compounds. Rotational barriers of more than 40 kcal/mol determined for the sterically hindered compounds suggest an effective freezing of the rotational motion in These molecules. With the aid of temperature-dependent spectroscopic measurements, we could show that the ability to rotate directly affects the optical properties of our set of BODIPY dyes. This accounts for the strong temperature dependence of the fluorescence of the sterically unhindered compounds which show a drastic decrease in fluorescence quantum yield and a significant shortening in fluorescence lifetime upon heating. The optical properties of the sterically hindered compounds, however, are barely affected by temperature. Our results suggest a nonradiative deactivation of the first excited singlet state of the sterically unhindered compounds caused by a conical intersection of the potential energy surfaces of the Ground and first excited state which is accessible by rotation of the meso-subunit. This is in good agreement with previously reported deactivation mechanisms. In addition, our results suggest the presence of a second nonradiative depopulation pathway of the first excited singlet state which is particularly relevant for the sterically hindered compounds. KW - Fluorescence KW - Sensor KW - Switch KW - pH KW - BODIPY KW - Dye KW - Probe KW - Synthesis KW - Photophysics KW - Mechanism PY - 2020 DO - https://doi.org/10.1021/acs.jpca.9b11859 SN - 1089-5639 VL - 124 IS - 9 SP - 1787 EP - 1797 PB - American Chemical Society AN - OPUS4-50639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Pérez-Padilla, Víctor A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Ratiometric detection of perfluoroalkyl carboxylic acids using dual fluorescent nanoparticles and a miniaturised microfluidic platform N2 - The widespread contamination of soil and water with perfluoroalkyl substances (PFAS) has caused considerable societal and scientific concern. Legislative measures and an increased need for remediation require effective on-site analytical methods for PFAS management. Here we report on the development of a green-fluorescent guanidine-BODIPY indicator monomer incorporated into a molecularly imprinted polymer (MIP) for the selective detection of perfluorooctanoic acid (PFOA). Complexation of PFOA by the indicator, which is mediated by concerted protonation-induced ion pairing-assisted hydrogen bonding, significantly enhances fluorescence in polar organic solvents. The MIP forms as a thin layer on silica nanoparticles doped with tris(bipyridine)ruthenium(II) chloride, which provides an orange emission signal as internal reference, resulting in low measurement uncertainties. Using a liquid-liquid extraction protocol, this assay enables the direct detection of PFOA in environmental water samples and achieves a detection limit of 0.11 µM. Integration into an opto-microfluidic system enables a compact and user-friendly system for detecting PFOA in less than 15 minutes. KW - PFAS KW - Molecular imprinting KW - Microfluidics KW - Fluorescence KW - Onsite assay PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650270 DO - https://doi.org/10.1038/s41467-025-66872-9 SN - 2041-1723 VL - 16 IS - 1 SP - 1 EP - 16 PB - Springer Science and Business Media LLC AN - OPUS4-65027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tavernaro, Isabella A1 - Rajotte, Isabelle A1 - Thibeault, Marie-Pier A1 - Sander, Philipp C. A1 - Kodra, Oltion A1 - Lopinski, Gregory A1 - Radnik, Jörg A1 - Johnston, Linda J. A1 - Brinkmann, Andreas A1 - Resch-Genger, Ute T1 - Quantifying surface groups on aminated silica nanoparticles of different size, surface chemistry, and porosity with solution NMR, XPS, optical assays, and potentiometric titration N2 - We assessed the quantification of surface amino functional groups (FGs) for a large set of commercial and custom-made aminated silica nanoparticles (SiO2 NPs) with sizes of 20–100 nm, prepared with different sol–gel routes, different amounts of surface amino FGs, and different porosity with four methods providing different, yet connected measurands in a bilateral study of two laboratories, BAM and NRC, with the overall aim to develop standardizable measurements for surface FG quantification. Special emphasis was dedicated to traceable quantitative magnetic resonance spectroscopy (qNMR) performed with dissolved SiO2 NPs. For the cost efficient and automatable screening of the amount of surface amino FGs done in a first step of this study, the optical fluorescamine assay and a potentiometric titration method were utilized by one partner, i.e., BAM, yielding the amount of primary amino FGs accessible for the reaction with a dye precursor and the total amount of (de)protonatable FGs. These measurements, which give estimates of the minimum and maximum number of surface amino FGs, laid the basis for quantifying the amount of amino silane molecules with chemo-selective qNMR with stepwise fine-tuned workflows, involving centrifugation, drying, weighting, dissolution, measurement, and data evaluation steps jointly performed by BAM and NRC. Data comparability and relative standard deviations (RSDs) obtained by both labs were used as quality measures for method optimization and as prerequisites to identify method-inherent limitations to be later considered for standardized measurement protocols. Additionally, the nitrogen (N) to silicon (Si) ratio in the near-surface region of the SiO2 NPs was determined by both labs using X-ray photoelectron spectroscopy (XPS), a well established surface sensitive analytical method increasingly utilized for microparticles and nano-objects which is currently also in the focus of international standardization activities. Overall, our results underline the importance of multi-method characterization studies for quantifying FGs on NMs involving at least two expert laboratories for effectively identifying sources of uncertainty, validating analytical methods, and deriving NM structure–property relationships. KW - Advanced Materials KW - Amino Groups KW - Calibration KW - Characterization KW - Functional groups KW - Method Comparison KW - Nano Particle KW - Validation KW - XPS KW - Optical Assay KW - Quantification KW - Surface Analysis KW - Reference Materials KW - Synthesis KW - Fluorescence PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-649992 DO - https://doi.org/10.1039/d5na00794a VL - 7 IS - 21 SP - 6888 EP - 6900 PB - Royal Society of Chemistry AN - OPUS4-64999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Wang, Shu A1 - Radnik, Jörg A1 - You, Yi A1 - Resch-Genger, Ute T1 - Assessing the protective effects of different surface coatings on NaYF4:YB3+, Er3+, upconverting nanoparticles in buffer and DMEM N2 - We studied the dissolution behavior of β NaYF4:Yb(20%), Er(2%) UCNP of two different sizes in biologically relevant media i.e., water (neutral pH), phosphate buffered saline (PBS), and Dulbecco’s modified Eagle medium (DMEM) at different temperatures and particle concentrations. Special emphasis was dedicated to assess the influence of different surface functionalizations, particularly the potential of mesoporous and microporous silica shells of different thicknesses for UCNP stabilization and protection. Dissolution was quantified electrochemically using a fluoride ion selective electrode (ISE) and by inductively coupled plasma optical emission spectrometry (ICP OES). In addition, dissolution was monitored fluorometrically. These experiments revealed that a thick microporous silica shell drastically decreased dissolution. Our results also underline the critical influence of the chemical composition of the aqueous environment on UCNP dissolution. In DMEM, we observed the formation of a layer of adsorbed molecules on the UCNP surface that protected the UCNP from dissolution and enhanced their fluorescence. Examination of this layer by X ray photoelectron spectroscopy (XPS) and mass spectrometry (MS) suggested that mainly phenylalanine, lysine, and glucose are adsorbed from DMEM. These findings should be considered in the future for cellular toxicity studies with UCNP and other nanoparticles and the design of new biocompatible surface coatings. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515984 DO - https://doi.org/10.1038/s41598-020-76116-z SN - 2045-2322 VL - 10 IS - 1 SP - 19318-1 EP - 19318-11 PB - Springer Nature CY - London AN - OPUS4-51598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wen, Keqing A1 - Gorbushina, Anna A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - Microfluidic platform with precisely controlled hydrodynamic parameters and integrated features for generation of microvortices to accurately form and monitor biofilms in flow N2 - Microorganisms often live in habitats characterized by fluid flow, and their adhesion to surfaces in industrial systems or clinical settings may lead to pipe clogging, microbially influenced corrosion, material deterioration, food spoilage, infections, and human illness. Here, a novel microfluidic platform was developed to investigate biofilm formation under precisely controlled (i) cell concentration, (ii) temperature, and (iii) flow conditions. The developed platform central unit is a single-channel microfluidic flow cell designed to ensure ultrahomogeneous flow and condition in its central area, where features, e.g., with trapping properties, can be incorporated. In comparison to static and macroflow chamber assays for biofilm studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes and have better environment control and smaller sample requirements. Flow simulations and experiments with fluorescent particles were used to simulate bacteria flow in the platform cell for calculating flow velocity and direction at the microscale level. The combination of flow analysis and fluorescent strain injection in the cell showed that microtraps placed at the center of the channel were efficient in capturing bacteria at determined positions and to study how flow conditions, especially microvortices, can affect biofilm formation. The microfluidic platform exhibited improved performances in terms of homogeneity and robustness for in vitro biofilm formation. We anticipate the presented platform to be suitable for broad, versatile, and high-throughput biofilm studies at the microscale level. KW - Topographical pattern KW - E. coli KW - Fluorescence KW - Bacteria trapping KW - Particle velocimetry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610450 DO - https://doi.org/10.1021/acsbiomaterials.4c00101 SN - 2373-9878 VL - 10 IS - 7 SP - 4626 EP - 4634 PB - ACS Publ. CY - Washington, DC AN - OPUS4-61045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prakash, Swayam A1 - Mishra, Ashok Kumar T1 - Facile Fluorometric Detection of Faecal Pigments: Challenges and Solutions Concerning Water Quality Testing N2 - AbstractDetection and monitoring of faecal contaminants in water is an important component of water quality testing protocol worldwide. However, a systematic overview of the faecal indicator paradigm, including its fundamentals and challenges in analytical applications, is missing. In particular, with respect to the advantages of using faecal indication pigments (FIP) over faecal indication bacteria (FIB). This discussion is based on two FIPs, Urobilin (UB) and Stercobilin (SB), which can enable rapid and real‐time indication of faecal contaminants in ground/surface water. Novel strategies for enhancing sensitive fluorescence‐based techniques for trace concentration detection have been discussed in detail, with specific reference to understanding their physicochemical properties, photophysics, metal‐ligand complexation, molecular aggregations, thermodynamics, fluorescence response and matrix interferences in aqueous media or environmental samples. The insights provided in this perspective article could inspire procedures by avoiding ambiguities and misinterpretations. KW - Faecal contamination KW - Fluorescence KW - Metal complexes KW - Water analysis KW - Optical and chemical sensing KW - Spectroscopy PY - 2025 DO - https://doi.org/10.1002/asia.202401750 SN - 1861-471X SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-63082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oskoei, Párástu A1 - Afonso, Rúben A1 - Bastos, Verónica A1 - Nogueira, João A1 - Keller, Lisa-Marie A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Daniel-da-Silva, Ana L. A1 - Oliveira, Helena T1 - Upconversion Nanoparticles with Mesoporous Silica Coatings for Doxorubicin Targeted Delivery to Melanoma Cells N2 - Melanoma is one of the most aggressive skin cancers and requires innovative therapeutic strategies to overcome the limitations of conventional therapies. In this work, upconversion nanoparticles coated with mesoporous silica and functionalized with folic acid (UCNP@mSiO2-FA) were developed as a targeted nanocarrier system for the delivery of doxorubicin (DOX). The UCNPs were synthesized via thermal decomposition, coated with mesoporous silica shells, and functionalized with folic acid (FA) to enable receptor-mediated targeting. DOX was then loaded into the mesoporous silica coating by adsorption, yielding UCNP@mSiO2-FA-DOX. The different UCNPs were characterized for size, composition, colloidal stability, and loading and release of DOX. This comprehensive physicochemical characterization confirmed a high DOX loading efficiency and a slightly increased drug release under acidic conditions, mimicking the tumour microenvironment. In vitro assays using four melanoma cell lines (A375, B16-F10, MNT-1, and SK-MEL-28) revealed an excellent biocompatibility of UCNP@mSiO2-FA and a significantly higher cytotoxicity of UCNP@mSiO2-FA-DOX compared to unloaded UCNPs, in a dose-dependent manner. Cell cycle analysis demonstrated G2/M phase arrest after treatment with UCNP@mSiO2-FA-DOX, confirming its antiproliferative effect. Overall, UCNP@mSiO2-FA-DOX represents a promising nanoplatform for targeted melanoma therapy, combining active tumour targeting and enhanced anticancer efficacy. KW - Fluorescence KW - Synthesis KW - Nano KW - Particle KW - Silica KW - Cell KW - Uptake KW - Drug KW - Characterization KW - DOX KW - Imaging KW - Toxicity KW - Release KW - pH PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653596 DO - https://doi.org/10.3390/molecules31010074 SN - 1420-3049 VL - 31 IS - 1 SP - 1 EP - 18 PB - MDPI AG AN - OPUS4-65359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Michaelis, Matthias A1 - Prinz, Carsten A1 - Würth, Christian T1 - Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings† N2 - We demonstrate the potential of time-resolved luminescence spectroscopy for the straightforward assessment and in situ monitoring of the stability of upconversion nanocrystals (UCNPs). Therefore, we prepared hexagonal NaYF4:Yb3+,Er3+ UCNPs with various coatings with a focus on phosphonate ligands of different valency, using different ligand exchange procedures, and studied their dissolution behaviour in phosphate-buffered saline (PBS) dispersions at 20 °C and 37 °C with various analytical methods. The amount of the released UCNPs constituting fluoride ions was quantified by potentiometry using a Fluoride ion-sensitive electrode and particle disintegration was confirmed by transmission electron microscopy studies of the differently aged UCNPs. In parallel, the luminescence features of the UCNPs were measured with special emphasis on the lifetime of the sensitizer emission to demonstrate its suitability as Screening parameter for UCNP stability and changes in particle composition. The excellent correlation between the changes in luminescence lifetime and fluoride concentration highlights the potential of our luminescence lifetime method for UCNP stability screening and thereby indirect monitoring of the release of potentially hazardous fluoride ions during uptake and dissolution in biological systems. Additionally, the developed in situ optical method was used to distinguish the dissolution dynamics of differently sized and differently coated UCNPs. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - TEM PY - 2020 DO - https://doi.org/10.1039/d0nr02931a VL - 12 IS - 23 SP - 12589 EP - 12601 PB - Royal Society od Chemistry AN - OPUS4-52088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kossatz, Philipp A1 - Mezhov, Alexander A1 - Andresen, Elina A1 - Prinz, Carsten A1 - Schmidt, Wolfram A1 - Resch-Genger, Ute T1 - Assessing the Applicability of Lanthanide-Based Upconverting Nanoparticles for Optically Monitoring Cement Hydration and Tagging Building Materials N2 - Chemically stable, lanthanide-based photon upconversion micro- and nanoparticles (UCNPs) with their characteristic multicolor emission bands in the ultraviolet (UV), visible (vis), near-infrared (NIR), and short-wave infrared (SWIR) arepromising optical reporters and barcoding tags. To assess the applicability of UCNPs for the monitoring of early stage cement hydration processes and as authentication tags for cementitious materials, we screened the evolution of the luminescence of Selfmade core-only NaYF4:Yb,Er UCNPs and commercial μm-sized Y2O2S:Yb,Er particles during the first stages of cement hydration, which largely determines the future properties of the hardened material. Parameters explored from the UCNP side included particle size, morphology, surface chemistry or coating, luminescence properties, and concentration in different cement mixtures. From the cement side, the influence of the mineral composition of the cement matrix was representatively examined for ordinary Portland cement (OPC) and its constituents tricalcium aluminate (C3A), tricalcium silicate (C3S), and gypsum at different water to cement ratios. Based on reflection and luminescence measurements, enabling online monitoring, which were complemented by XRD and isothermal heat-flow calorimetric measurements to determine whether the incorporation of these particles could impair cement hydration processes, well suited lanthanide particle reporters could be identified as well as application conditions. In addition, thereby the reporter influence on cement hydration kinetics could be minimized while still preserving a high level of information content. The best performance for the luminescence probing of changes during early stage cement hydration processes was observed for 25 nm-sized oleate (OA)-coated UCNPs added in a concentration of 0.1 wt %. Higher UCNP amounts of 1.0 wt % delayed cement hydration processes size- and surface coatingspecifically in the first 24 h. Subsequent luminescence stability screening studies performed over a period of about one year support the applicability of UCNPs as optical authentication tags for construction materials. KW - Quality assurance KW - Fluorescence KW - Nano KW - Particle KW - Synthesis KW - Quantum yield KW - NIR KW - Mechanism KW - Characterization KW - XRD KW - Calorimetry KW - Advanced material KW - Cement KW - Monitoring KW - Surface KW - Size KW - Lifetime KW - Barcode KW - Lanthanide KW - Upconversion KW - Encoding KW - Method PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638318 DO - https://doi.org/10.1021/acsomega.5c02236 SN - 2470-1343 VL - 10 IS - 29 SP - 31587 EP - 31599 PB - ACS Publications CY - Washington, DC AN - OPUS4-63831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -