TY - JOUR A1 - Andresen, Elina A1 - Resch-Genger, Ute A1 - Michaelis, Matthias A1 - Prinz, Carsten A1 - Würth, Christian T1 - Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings† N2 - We demonstrate the potential of time-resolved luminescence spectroscopy for the straightforward assessment and in situ monitoring of the stability of upconversion nanocrystals (UCNPs). Therefore, we prepared hexagonal NaYF4:Yb3+,Er3+ UCNPs with various coatings with a focus on phosphonate ligands of different valency, using different ligand exchange procedures, and studied their dissolution behaviour in phosphate-buffered saline (PBS) dispersions at 20 °C and 37 °C with various analytical methods. The amount of the released UCNPs constituting fluoride ions was quantified by potentiometry using a Fluoride ion-sensitive electrode and particle disintegration was confirmed by transmission electron microscopy studies of the differently aged UCNPs. In parallel, the luminescence features of the UCNPs were measured with special emphasis on the lifetime of the sensitizer emission to demonstrate its suitability as Screening parameter for UCNP stability and changes in particle composition. The excellent correlation between the changes in luminescence lifetime and fluoride concentration highlights the potential of our luminescence lifetime method for UCNP stability screening and thereby indirect monitoring of the release of potentially hazardous fluoride ions during uptake and dissolution in biological systems. Additionally, the developed in situ optical method was used to distinguish the dissolution dynamics of differently sized and differently coated UCNPs. KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - TEM PY - 2020 DO - https://doi.org/10.1039/d0nr02931a VL - 12 IS - 23 SP - 12589 EP - 12601 PB - Royal Society od Chemistry AN - OPUS4-52088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramirez, Alejandra A1 - Pauli, Jutta A1 - Crasselt, C. A1 - Simon, S. A1 - Schmidt, W. A1 - Resch-Genger, Ute T1 - The effect of a polycarboxylate ether on C3A / CaSO4.2H2O passivation monitored by optical spectroscopy N2 - Polycarboxylate ethers (PCEs) are widely used in construction, but the exact nature of their interaction with cement is still debated. Aiming at a better understanding of the role of tricalcium Aluminate (C3A) in cement hydration, we assessed the potential of optical spectroscopy in combination with a water-soluble fluorescent organic reporter dye (S0586) to monitor the early hydration of C3A in the presence of 26 wt% CaSO4.2H2O (C3A26G-S) with and without PCE. As optical methods, steady-state fluorescence and diffuse reflectance (UV–VisDR) spectroscopy were employed. Phase characterization and particle size distribution were performed with in-situ X-ray diffraction (in-situ XRD) and dynamic light scattering (DLS). Our results show that fluorescence and UV–VisDR spectroscopy can be used to monitor the formation of metastable phases by the disaggregation of the dye S0586 in a cement paste as well as changes in ettringite formation. Addition of PCE slowed down the disaggregation of the dye as reflected by the corresponding changes of the dyes absorption and fluorescence. This prolonged induction period is a well-known side effect of PCEs and agrees with previous reported calorimetric studies and the Inhibition of gypsum dissolution observed by in-situ XRD. This demonstrates that fluorescence and UV–VisDR spectroscopy together with a suitable optical probe can provide deeper insights into the influence of PCE on C3A-gypsum hydration which could be e.g., utilized as screening method for comparing the influences of different types of PCEs. KW - Fluorescence KW - Cement KW - Nano KW - Particle KW - Optical spectroscopy KW - PCE KW - XRD KW - Calorimetry KW - Monitoring KW - Diffuse KW - Reflection KW - Phase KW - Dye KW - Optical probe KW - Cyanine KW - Sensor KW - Method KW - Analysis PY - 2020 DO - https://doi.org/10.1016/j.conbuildmat.2020.121856 VL - 270 SP - 121856 PB - Elsevier Ltd. AN - OPUS4-52118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, H. A1 - Song, W. A1 - Gröninger, Delia A1 - Zhang, L. A1 - Lu, Y. A1 - Chan, K. S. A1 - Zhou, Z. A1 - Rurack, Knut A1 - Shen, Z. T1 - Real-time monitoring of newly acidified organelles during autophagy enabled by reaction-based BODIPY dyes N2 - Real-time monitoring of newly acidified organelles during autophagy in living cells is highly desirable for a better understanding of intracellular degradative processes. Herein, we describe a reaction-based boron dipyrromethene (BODIPY) dye containing strongly electron-withdrawing diethyl 2-cyanoacrylate groups at the α-positions. The probe exhibits intense red fluorescence in acidic organelles or the acidified cytosol while negligible fluorescence in other regions of the cell. The underlying mechanism is a nucleophilic reaction at the central meso-carbon of the indacene core, resulting in the loss of π-conjugation entailed by dramatic spectroscopic changes of more than 200 nm between its colorless, non-fluorescent leuco-BODIPY form and its red and brightly emitting form. The reversible transformation between red fluorescent BODIPY and leuco-BODIPY along with negligible cytotoxicity qualifies such dyes for rapid and direct intracellular lysosome imaging and cytosolic acidosis detection simultaneously without any washing step, enabling the real-time monitoring of newly acidified organelles during autophagy. KW - Autophagy KW - BODIPY KW - Fluorescence KW - Lysosome KW - Real-time imaging PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498358 UR - https://www.nature.com/articles/s42003-019-0682-1 DO - https://doi.org/10.1038/s42003-019-0682-1 SN - 23993642 VL - 2 SP - 442 PB - Nature Research CY - London AN - OPUS4-49835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo, Ana B. A1 - Ashokkumar, Pichandi A1 - Shen, Z. A1 - Rurack, Knut T1 - On the Aggregation Behaviour and Spectroscopic Properties of Alkylated and Annelated BoronDipyrromethene (BODIPY) Dyes in Aqueous Solution N2 - The tendency of boron-dipyrromethene (BODIPY) dyes to associate in water is well known, and usually a cause for inferior fluorescence properties. Synthetic efforts to chemically improve BODIPYs’ water solubility and minimize this problem have been numerous in the past. However, a deeper understanding of the phenomena responsible for fluorescence quenching is still required. Commonly, the spectroscopic behaviour in aqueous media has been attributed to aggregate or excimer formation, with such works often centring on a single BODIPY family. Herein, we provide an integrating discussion including very diverse types of BODIPY dyes. Our studies revealed that even subtle structural changes can distinctly affect the association behaviour of the fluorophores in water, involving different photophysical processes. The palette of behaviour found ranges from unperturbed emission, to the formation of H or J aggregates and excimers, to the involvement of tightly bound, preformed excimers. These results are a first step to a more generalized understanding of spectroscopic properties vs. structure, facilitating future molecular design of BODIPYs, especially as probes for biological applications. KW - Aggregates KW - BODIPY KW - Excimers KW - Fluorescence KW - Photophysics PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497771 DO - https://doi.org/10.1002/cptc.201900235 SN - 2367-0932 VL - 4 IS - 2 SP - 120 EP - 131 PB - WILEY-VCH CY - Weinheim AN - OPUS4-49777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Gotor, Raul A1 - Tobias, Charlie A1 - Bell, Jérémy A1 - Martin-Sanchez, Pedro A1 - Rurack, Knut T1 - Dip Sticks Embedding Molecular Beacon-Functionalized Core−Mesoporous Shell Particles for the Rapid On-Site Detection of Microbiological Fuel Contamination N2 - Microbial contamination of fuels by fungi and bacteria presents risks of corrosion and fuel system fouling. In this work, a rapid test for the determination of microbial genomic DNA from aqueous fuel extracts is presented. It combines test strips coated with polystyrene core/mesoporous silica shell particles, to the surface of which modified fluorescent molecular beacons are covalently grafted, with a smartphone detection system. In the hairpin loop, the beacons incorporate a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA gene, which is also present to a significant extent in the 18S rRNA gene of fungi, allowing for broadband microbial detection. In the developed assay, the presence of genomic DNA extracts from bacteria and fungi down to ca. 20−50 μg L−1 induced a distinct fluorescence response. The optical read-out was adapted for on-site monitoring by combining a 3D-printed case with a conventional smartphone, taking advantage of the sensitivity of contemporary complementary metal oxide semiconductor (CMOS) detectors. Such an embedded assembly allowed to detect microbial genomic DNA in aqueous extracts down to ca. 0.2−0.7 mg L−1 and presents an important step toward the on-site uncovering of fuel contamination in a rapid and simple fashion. KW - Bacteria KW - Fungi KW - Rapid test KW - Fluorescence KW - Smartphone KW - Biofouling PY - 2020 DO - https://doi.org/10.1021/acssensors.0c01178 SN - 2379-3694 VL - 6 IS - 1 SP - 27 EP - 34 PB - American Chemical Society CY - Washington, DC AN - OPUS4-51956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maisuls, I. A1 - Wang, Cui A1 - Gutierrez Suburu, M. E. A1 - Wilde, S. A1 - Daniliuc, C.-G. A1 - Brunink, D. A1 - Doltsinis, N. L. A1 - Ostendorp, S. A1 - Kösters, J. A1 - Resch-Genger, Ute A1 - Strassert, C. A. T1 - Ligand-controlled and nanoconfinement-boosted luminescence employing Pt(II) and Pd(II) complexes: from color-tunable aggregation-enhanced dual emitters towards self-referenced oxygen reporters N2 - In this work, we describe the synthesis, structural and photophysical characterization of four novel Pd(II) and Pt(II) complexes bearing tetradentate luminophoric ligands with high photoluminescence quantum yields (FL) and long excited state lifetimes (s) at room temperature, where the results were interpreted by means of DFT calculations. Incorporation of fluorine atoms into the tetradentate ligand favors aggregation and thereby, a shortened average distance between the metal centers, which provides accessibility to metal–metal-to-ligand charge-transfer (3MMLCT) excimers acting as red-shifted Energy traps if compared with the monomeric entities. This supramolecular approach provides an elegant way to enable room-temperature phosphorescence from Pd(II) complexes, which are otherwise quenched by a thermal population of dissociative states due to a lower ligand field splitting. Encapsulation of These complexes in 100 nm-sized aminated polystyrene nanoparticles enables concentration-controlled aggregation-enhanced dual emission. This phenomenon facilitates the tunability of the absorption and emission colors while providing a rigidified environment supporting an enhanced FL up to about 80% and extended s exceeding 100 ms. Additionally, these nanoarrays constitute rare examples for selfreferenced oxygen reporters, since the phosphorescence of the aggregates is insensitive to external influences, whereas the monomeric species drop in luminescence lifetime and intensity with increasing triplet molecular dioxygen concentrations (diffusion-controlled quenching). KW - Fluorescence KW - Multiplexing KW - Lifetime KW - Bead KW - Particle KW - Dye KW - Barcoding KW - Encoding KW - Quantum yield KW - Label KW - Reporter KW - Pd(II) KW - Pt(II) KW - Complex KW - NMR KW - X-ray KW - Sythesis KW - Aggregation KW - Monomer KW - Color PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525288 DO - https://doi.org/10.1039/d0sc06126c VL - 12 IS - 9 SP - 3270 EP - 3281 PB - Royal Society of Chemistry AN - OPUS4-52528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo, Ana B. A1 - Xu, H.-J. A1 - Shen, Z. A1 - Rurack, Knut T1 - Influence of the meso-substituent on strongly red emitting phenanthrene-fused boron–dipyrromethene (BODIPY) fluorophores with a propeller-like conformation N2 - Highly emissive phenanthrene-fused boron–dipyrromethene (PBDP) dyes have been spectroscopically characterized in a series of solvents. The influence of different substituents (-H, -I, -CN, -DMA or a 15C5-crown ether) in the para-position of a phenyl ring attached to the meso-position of the BODIPY core is discussed. This family of dyes has an intense emission at lambda > 630 nm, with fluorescence quantum yields between 0.7 and 1.0 in all solvents studied, except in the case of the dimethylamino-substituted derivative, PBDP-DMA, which undergoes excited-state intramolecular charge transfer (CT), leading to broadband dual fluorescence in highly polar solvents. Introduction of a weaker electron donor such as a benzocrown to the meso-position is not able to trigger a second (charge or electron transfer) process and, interestingly, heavy atom (iodine, PBDP-I derivative) substitution at that moiety does also not have a relevant influence on the photophysics, i.e., enhanced intersystem crossing was not observed. Electrochemical studies of PBDP-DMA complement the data reported and stress the fact that the decrease in fluorescence of PBDP-DMA in highly polar solvents is due to an excited-state CT process rather than to a photoinduced electron transfer (PET). KW - BODIPY dyes KW - Charge transfer KW - Fluorescence KW - Ring fusion PY - 2018 DO - https://doi.org/10.1016/j.jphotochem.2017.10.034 SN - 1010-6030 VL - 352 SP - 98 EP - 105 PB - Elsevier CY - Amsterdam AN - OPUS4-43100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alnajjar, M. A. A1 - Bartelmeß, Jürgen A1 - Hein, R. A1 - Ashokkumar, Pichandi A1 - Nilam, M. A1 - Nau, W. M. A1 - Rurack, Knut A1 - Hennig, A. T1 - Rational design of boron-dipyrromethene (BODIPY) reporter dyes for cucurbit[7]uril N2 - We introduce herein boron-dipyrromethene (BODIPY) dyes as a new class of fluorophores for the design of reporter dyes for supramolecular host–guest complex formation with cucurbit[7]uril (CB7). The BODIPYs contain a protonatable aniline nitrogen in the meso-position of the BODIPY chromophore, which was functionalized with known binding motifs for CB7. The unprotonated dyes show low fluorescence due to photoinduced electron transfer (PET), whereas the protonated dyes are highly fluorescent. Encapsulation of the binding motif inside CB7 positions the aniline nitrogen at the carbonyl rim of CB7, which affects the pKa value, and leads to a host-induced protonation and thus to a fluorescence increase. The possibility to tune binding affinities and pKa values is demonstrated and it is shown that, in combination with the beneficial photophysical properties of BODIPYs, several new applications of host–dye reporter pairs can be implemented. This includes indicator displacement assays with favourable absorption and emission wavelengths in the visible spectral region, fluorescence correlation spectroscopy, and noncovalent surface functionalization with fluorophores. KW - BODIPY KW - Cucurbituril KW - Fluorescence KW - PH KW - Photoinduced Electron Transfer KW - Supramolecular Chemistry PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456361 UR - https://www.beilstein-journals.org/bjoc/content/pdf/1860-5397-14-171.pdf DO - https://doi.org/10.3762/bjoc.14.171 SN - 1860-5397 VL - 14 SP - 1961 EP - 1971 PB - Beilstein-Institut CY - Frankfurt a. M. AN - OPUS4-45636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wittkamp, M. A1 - Ameskamp, J. A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding in time-domain flow cytometry N2 - Time-resolved flow cytometry represents an alternative to commonly applied spectral or intensity multiplexing in bioanalytics. At present, the vast majority of the reports on this topic focuses on phase-domain techniques and specific applications. In this report, we present a flow cytometry platform with time-resolved detection based on a compact setup and straightforward time-Domain measurements utilizing lifetime-encoded beads with lifetimes in the nanosecond range. We provide general assessment of time-domain flow cytometry and discuss the concept of this platform to address achievable resolution limits, data analysis, and requirements on suitable encoding dyes. Experimental data are complemented by numerical calculations on photon count numbers and impact of noise and measurement time on the obtained lifetime values. KW - Flow cytometry KW - Fluorescence KW - Life sciences KW - Lifetime encoding KW - Polymer particles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465765 DO - https://doi.org/10.1038/s41598-018-35137-5 SN - 2045-2322 VL - 8 IS - 1 SP - 16715, 1 EP - 11 PB - Nature CY - London AN - OPUS4-46576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Witthuhn, Heike A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Cover profile for the article "Mix‐&‐read determination of Mercury(II) at trace levels with hybrid mesoporous silica materials incorporating fluorescent probes by a simple mix‐&‐load technique" N2 - Invited for this month’s cover picture is the group of Dr. Knut Rurack at the Department of Analytical Chemistry; Reference Materials at the Bundesanstalt fuer Materialforschung und -pruefung (BAM) in Berlin (Germany). The cover picture shows how differences in color and fluorescence on a test strip can be easily read out with a mobile device. Two reference spots Frame the sensitive spot that indicates the presence of trace amounts of HgII below the threshold in a natural water sample. This dipstick contains a hybrid material that combines boron-dipyrromethene (BODIPY) probes sterically loaded into specifically tailored mesoporous silica particles, allowing for ultrasensitive HgII detection through enhanced fluorescence in a few seconds. The applicability in real water samples and fish extracts are also studied. KW - Mercury KW - Fluorescence KW - Dip-stick assay KW - Group profile PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471267 DO - https://doi.org/10.1002/open.201800231 SN - 2191-1363 VL - 7 IS - 12 SP - 932 EP - 933 PB - Wiley-VCH CY - Weinheim AN - OPUS4-47126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -