TY - CONF A1 - Maack, Stefan A1 - Torrent, R. A1 - Ebell, Gino A1 - Völker, Tobias A1 - Küttenbaum, Stefan T1 - Testing to reassess – Corrosion activity assessment based on NDT using a prestressed concrete bridge as case-study T2 - Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures N2 - Corrosion of concrete reinforcement is one of the major damage mechanisms affecting both the load-bearing capacity and the serviceability of re-inforced concrete structures significantly. When externally discernible damages are observed during visual inspections on the structure, the extent of the damage inside the concrete is often already significant. Corrosion caused by carbonation often leads to severe discoloration of the surface or even large-area spalling of the concrete cover. In contrast, chloride-induced corrosion is usually difficult to observe visually but can cause much more serious damage in less time. The effect occurs locally and can lead to weakening of the cross-section of the reinforce-ment. This, in turn, can cause sudden structural collapses without prior notice. In the meanwhile, various non-destructive and minimally invasive testing methods are available to evaluate the resistance to penetration of corrosion-pro-moting pollutants and to detect active corrosion. In this paper, a bridge crossing the river Regen is used as a case-study to demonstrate how the information ob-tained applying different testing methods can be combined and evaluated in the context of structural reassessments. Both the results of the permeability testing and the electrical resistance measurement are considered, as well as active corro-sion areas are localized using the half-cell potential mapping combined with the concrete cover measurement with the eddy current method and ground penetrat-ing radar. The results are evaluated using drill cores and in addition laser-induced breakdown spectroscopy was applied to obtain information about possible chlo-ride ion transport into the concrete. T2 - EUROSTRUCT 2021 – 1ST conference of the european association on quality control of bridges and structures - Eurostruct CY - Padova, Italy DA - 30.08.2021 KW - Nondestructive testing KW - Corrosion KW - Bridge KW - Durability assessment KW - Civil engineering PY - 2022 SN - 978-3-030-91876-7 SP - 1 EP - 9 PB - Springer International Publishing AN - OPUS4-54006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Taffe, A. A1 - Braml, T. ED - Sykora, M. ED - Lenner, R. ED - de Koker, N. T1 - On the Treatment of Measurement Uncertainty in Stochastic Modeling of Basic Variables JF - Acta Polytechnica N2 - The acquisition and appropriate processing of relevant information about the considered system remains a major challenge in assessment of existing structures. Both the values and the validity of computed results such as failure probabilities essentially depend on the quantity and quality of the incorporated knowledge. One source of information are onsite measurements of structural or material characteristics to be modeled as basic variables in reliability assessment. The explicit use of (quantitative) measurement results in assessment requires the quantification of the quality of the measured information, i.e., the uncertainty associated with the information acquisition and processing. This uncertainty can be referred to as measurement uncertainty. Another crucial aspect is to ensure the comparability of the measurement results.This contribution attempts to outline the necessity and the advantages of measurement uncertainty calculations in modeling of measurement data-based random variables to be included in reliability assessment. It is shown, how measured data representing time-invariant characteristics, in this case non-destructively measured inner geometrical dimensions, can be transferred into measurement results that are both comparable and quality-evaluated. The calculations are based on the rules provided in the guide to the expression of uncertainty in measurement (GUM). The GUM-framework is internationally accepted in metrology and can serve as starting point for the appropriate processing of measured data to be used in assessment. In conclusion, the effects of incorporating the non-destructively measured data into reliability analysis are presented using a prestressed concrete bridge as case-study. T2 - International Probabilistic Workshop 2022 (IPW2022) CY - Stellenbosch, South Africa DA - 09.09.2022 KW - Reliability KW - Assessment KW - Existing structures KW - Measurement uncertainty PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556580 DO - https://doi.org/10.14311/APP.2022.36.0109 SN - 2336-5382 VL - 36 SP - 109 EP - 118 PB - Czech Technical University CY - Prague AN - OPUS4-55658 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin A1 - Niederleithinger, Ernst T1 - Low frequency ultrasonic dataset for pulse echo object detection in an isotropic homogeneous medium as reference for heterogeneous materials in civil engineering JF - Data in Brief N2 - The dataset presented contains ultrasonic data recorded in pulse echo mode. The investigated specimen is made of the isotropic homogeneous material polyamide and has a drill hole of constant diameter running parallel to the surface, which was scanned in a point grid using an automatic scanner system. At each measuring position, a pitch-catch measurement was performed using a sampling rate of 2 MHz. The probes used are arrays consisting of a spatially separated receiving and in-phase transmitting unit. The transmitting and receiving sides each consist of 12 point-shaped single probes. These dry-point contact (DPC) probes operate according to the piezoelectric principle at nominal frequencies of 55 kHz (shear waves) and 100 kHz (longitudinal waves), respectively, and do not require a coupling medium. The measurements are performed with longitudinal (100 kHz) and transverse (55 kHz) waves with different geometric orientations of the probe on the measurement surface. The data presented in the article provide a valid source for evaluating reconstruction algorithms for imaging in the low-frequency ultrasound range. KW - Non-destructive testing KW - Ultrasound KW - Pulse-echo method KW - Reference material KW - Reconstruction algorithm KW - Validation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547326 DO - https://doi.org/10.1016/j.dib.2022.108235 VL - 42 SP - 1 EP - 11 PB - Elsevier Inc. AN - OPUS4-54732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Algernon, D. A1 - Arndt, R. A1 - Ebsen, B. A1 - Feistkorn, S. A1 - Friese, M. A1 - Große, C. A1 - Kathage, S. A1 - Keßler, S. A1 - Kurz, J. A1 - Küttenbaum, Stefan A1 - Lohse, C. A1 - Maack, Stefan A1 - Niederleithinger, Ernst A1 - Schickert, M. A1 - Schröder, G. A1 - Taffe, A. A1 - Walther, A. A1 - Wilcke, M. A1 - Wolf, J. A1 - Wöstmann, Jens T1 - Richtlinie B-LF 01: Leitfaden zur Erstellung von Prüfanweisungen für die Zerstörungsfreie Prüfung im Bauwesen (ZfP Bau) N2 - Der vorliegende Leitfaden dient zur Unterstützung der Entwicklung und Umsetzung von Prüfanweisungen für ZfP-Verfahren im Bauwesen. Er gibt einen Überblick über Verwendungszweck, Erstellung und Inhalte von Prüfanweisungen unter Berücksichtigung einheitlicher Standardisierungsziele. KW - Prüfanweisung KW - Beton KW - Leitfaden PY - 2022 SN - 978-3-947971-23-7 SP - 1 EP - 9 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V. (DGZfP) CY - Berlin ET - 1. Aufl., April 2022 AN - OPUS4-54985 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Taffe, A. T1 - Approach to the development of a model to quantify the quality of tendon localization in concrete using ultrasound JF - MATEC Web of Conferences N2 - Each engineering decision is based on a number of more or less accurate information. In assessment of existing structures, additional relevant information collected with on-site inspections facilitate better decisions. However, observed data basically represents the physical characteristic of interest with an uncertainty. This uncertainty is a measure of the inspection quality and can be quantified by expressing the measurement uncertainty. The internationally accepted rules for calculating measurement uncertainty are well established and can be applied straightforwardly in many practical cases. Nevertheless, the calculations require the occasionally time-consuming development of an individually suitable measurement model. This contribution attempts to emphasize proposals for modelling the non-destructive depth measurement of tendons in concrete using the ultrasonic echo technique. The proposed model can serve as guideline for the determination of the quality of the measured information in future comparable inspection scenarios. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Kapstadt, South Africa DA - 03.10.2022 KW - Reliability KW - Measurement Uncertainty KW - Non-Destructive Testing KW - Existing Concrete Structures PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559927 DO - https://doi.org/10.1051/matecconf/202236403007 SN - 2261-236X VL - 364 SP - 1 EP - 8 PB - EDP Sciences CY - Les Ulis, France AN - OPUS4-55992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo T2 - MATEC Web of Conferences 364 N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559979 DO - https://doi.org/10.1051/matecconf/202236403007 SN - 2261-263X SP - 1 EP - 8 AN - OPUS4-55997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Taffe, A. T1 - On the accuracy of tendon localization in concrete using ultrasound N2 - Approaches to the development of a (GUM-) measurement model for the calculation of measurement uncertainties in the localization of tendons in concrete structures using the ultrasonic echo method including demonstration were presented. T2 - 6th International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Reliability KW - Measurement Uncertainty KW - Non-Destructive Testing KW - Existing Concrete Structures PY - 2022 AN - OPUS4-55991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Küttenbaum, Stefan A1 - Braml, T. A1 - Taffe, A. A1 - Maack, Stefan ED - Pellegrino, C. ED - Faleschini, F. ED - Zanini, M.A. ED - Matos, J.C. ED - Casas, J.R. ED - Strauss, A. T1 - From Uncertainty in Measurement to Certainty in Bridge Reassessment T2 - Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures. EUROSTRUCT 2021. Lecture Notes in Civil Engineering N2 - "The reassessment of bridges continues to take great importance both nationally and internationally. A major challenge is to find computation models reflecting the actual properties of the considered structures sufficiently accurate. Besides regular inspections, the conduction of advanced measurements is suitable to generate reliable information about a structure to be assessed. Prior to incorporating measurement results in reassessment, the relevance, the trueness, and the precision of the measured information needs to be stated. On the one hand, the use of information whose quality has not been assessed can lead to errors with serious consequences. On the other, the measurement of irrelevant information is inefficient. Although the use of measured data in assessment is currently mostly unregulated, their appreciation in reliability analyses is beneficial since the built environment can be assessed more realistically. Utilizing NDT in reassessment has the potential to extend remaining lifetimes of a structure, save resources, and improve infrastructural availabilities. The power of judgment regarding the decision on the reliability of an existing structure can be increased. In this contribution, an approach is outlined to process non-destructively gathered measurement data in a comparableway in order to include themeasured information in probabilistic reliability assessments of existing structures. An essential part is the calculation of measurement uncertainties. The effect of incorporating evaluated NDT-results is demonstrated by means of a prestressed concrete bridge and GPR measurements conducted on this bridge as a case-study. The bridge is assessed regarding SLS Decompression using the NDT-results." KW - Reliability KW - Assessment KW - Existing structures KW - NDT KW - Concrete PY - 2022 DO - https://doi.org/10.1007/978-3-030-91877-4_58 VL - 200 SP - 509 EP - 517 PB - Springer CY - Cham AN - OPUS4-54019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Taffe, A. A1 - Braml, T. T1 - On the Treatment of Measurement Uncertainty in Stochastic Modeling N2 - Measurement uncertainty calculations in stochastic moddeling of time-independent, NDT-based random variables to be used in refined assessment of existing structures T2 - International Probabilistic Workshop 2022 (IPW2022) CY - Stellenbosch, South Africa DA - 08.09.2022 KW - Reliability KW - Assessment KW - Existing structures KW - Measurement uncertainty PY - 2022 AN - OPUS4-55657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Maack, Stefan A1 - Taffe, A. A1 - Braml, T. T1 - Towards NDT supported decisions on the reliability of existing bridges N2 - 1) Concept for the NDT-supported assessment of existing structures 2) Demonstration: Shear force analysis of a prestressed concrete bridge T2 - ICOSSAR 2021-2022,13th International Conference on Structural Safety & Reliability CY - Online meeting DA - 13.09.2022 KW - Nachrechnung KW - Zuverlässigkeitsbewertung KW - Messunsicherheit KW - Querkraftnachweis PY - 2022 AN - OPUS4-55796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -