TY - CONF A1 - Denkler, Tilman T1 - OITB Quality Assurance concept and minimum requirements for testing services offered on the Metabuilding platform N2 - A brief description of the Quality Assurance concept of the Metabuilding Labs Open Ivvovation Test Bed (OITB) and presentation of the minimum requirements for testing services offered on the Metabuilding platform, wehich were elaborated in 2 workshops in summer 2023. T2 - 4th General Meeting of the Metabuilding Labs project (Horizon 2020) CY - Valladolid, Spain DA - 10.10.2023 KW - Open Innovation Test Bed KW - Metabuilding Labs PY - 2023 AN - OPUS4-58566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - O3BET Quality Protocols N2 - Presentation of the process-oriented approach for the development of the quality protocolls (standard operation procedures and work instructions) for the O3BETs. O3BETs are innovative testing facilities for building envelopes which are developed in the course of the Metabuilding Labs EU Horizon 2020 project. T2 - 4th General Meeting of the Metabuilding Labs project (Horizon 2020) CY - Valladolid, Spain DA - 10.10.2023 KW - Open Innovation Test Bed KW - Metabuilding Labs KW - O3BET PY - 2023 AN - OPUS4-58567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - WP8 - Ensure the quality of testing processes and service offers of the OITB from quality management to training N2 - The MBLabs consortium comprises various organizations that operate testing facilities encompassing a broad spectrum of tests relevant to the construction sector, particularly building envelopes. In the future, additional testing facilities will join the METABUILDING platform to offer their services. These services will be integrated in the MBLabs Open Innovation Test Bed and accessible via the METABUILDING platform. The METABUILDING platform is operated by the METABUILDING association. In Task 8.5 the Quality Assurance system of the MBLabs OITB is developed. The presentation gives an overview regarding the development of this system after 3 years of project execution. T2 - Metabuilding Labs Review Meeting CY - Valladolid, Spain DA - 21.03.2024 KW - Quality assurance KW - Open innovation test bed PY - 2024 AN - OPUS4-59788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - WP8 - METABUILDING LABS OITB catalogue of testing infrastructures and services, its structuring and exploitation, training and quality management N2 - Developments of Workpackage 8 in the last year are presented. Focuss on the development of quality assurance procedures for the O3BETs. Upcoming activites for the tasks 8.2, 8.3, 8.4, 8.5 and 8.6 are described. T2 - 5th General Meeting Metabuilding Labs Project CY - Online meeting DA - 06.06.2024 KW - Open Innovation Test Bed KW - Quality assurance KW - Quality management PY - 2024 AN - OPUS4-60208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Vries, H. A1 - Jacobs, K. A1 - Egyedi, T. A1 - Eto, M. A1 - Fertig, S. A1 - Kanevskaia, O. A1 - Klintner, L. A1 - Koch, Claudia A1 - Mijatovic, I. A1 - Mirtsch, Mona A1 - Morone, P. A1 - Orviska, M. A1 - Riillo, C. A1 - Scaramuzzino, G. ED - Jacobs, K. T1 - Standardization: Towards an agenda for research N2 - Standardization research is a fairly new and is a still-evolving field of research, with possibly major practical ramifications. This article presents a summary of the authors’ subjective views of the most pressing research topics in the field. These include, among others, standards (e.g. incorporation of ethical issues), the potential impact of standards, the corporate management of standardization and legal issues like Intellectual Property Rights (IPR). In addition, gaps have been identified with a respect to a basic understanding of standardization, suggesting a need for better education in the field. KW - EURAS KW - Impact of standards KW - Intellectual property rights (IPR) KW - Research agenda KW - Standardization research PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-467873 DO - https://doi.org/10.4018/IJSR.2018010104 SN - 2470-8542 VL - 16 IS - 1 SP - 52 EP - 59 PB - IGI Global AN - OPUS4-46787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dace, Elina A1 - Cascavilla, Alessandro A1 - Bianchi, Marco A1 - Chioatto, Elisa A1 - Zecca, Emy A1 - Ladu, Luana A1 - Yilan, Gülsah T1 - Barriers to transitioning to a circular bio-based economy: Findings from an industrial perspective N2 - The transition from a linear fossil-based to a circular bio-based economy represents an opportunity and a suitable pathway for achieving several sustainable development goals. However, the transition is a complex process since it requires transformative policies, purposeful innovation, access to finance, risk-taking capacity as well as new and sustainable business models and markets. Accordingly, the first step in this transition process is the identification of barriers that are hampering the transition to a sustainable circular bio-based economy. With this motivation in mind, this study reviews grey literature to identify barriers focusing on four critical sectors facing major challenges within the current linear economy and requiring a sustainable transition most urgently: construction, chemicals, plastics, and textile sectors. Employing an adapted STEEP methodology (Social, Technological, Economical, Environmental, Political), a total of 193 different barriers have been identified and clustered under six categories: cultural, technical, economic, environmental, governance, and structural. Regardless of the sector, cultural and structural barriers are identified as the most prominent; the lack of incentives for consumer behaviour change and lack of stakeholder collaboration were the most cited barriers among the literature records. From a value chain perspective, most of the barriers are related to the material processing and product manufacturing stage. Finally, potential solutions, extracted from the grey literature, are proposed to fill the gaps and overcome the identified barriers. Many of the identified barriers are common across the four investigated sectors, indicating the solutions or measures can be applicable in a wider perspective to promote the transition in the right direction. KW - Circular Bio-based Economy KW - Barriers KW - Sustainability PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602062 DO - https://doi.org/10.1016/j.spc.2024.05.029 VL - 48 SP - 407 EP - 418 PB - Elsevier Ltd. AN - OPUS4-60206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blind, Knut A1 - Asna Ashari, Parsa A1 - Weiss, Daniel T1 - Transitions in the mobility sector: Empirical evidence from hydrogen fuel cell, electric, and internal combustion engine vehicles N2 - This presentation was held at the 14th International Sustainability Transitions Conference 2023 in Utrecht. Against the backdrop of the sustainability transition of economies worldwide, decarbonizing road traffic is high on the agenda. This has focused the interest of policymakers and automobile manufacturers on sustainable, zero-emission powertrain technologies. Among these technologies, hydrogen fuel cell (FC) vehicles have a positive climate impact, given that their hydrogen is produced from renewable energy. However, FC vehicles have not yet gained significant market shares. Therefore, based on the technological innovation systems (TIS) approach, this study analyzes how FC vehicles are influenced by EVs and internal combustion engine (ICE) vehicles as their context structures. To operationalize the technology relations between our focal FC-TIS and its context structures, we use the sum of international publications, patents filed at the European Patent Office, and international ISO and IEC standards as indicators for each technology. Our results show that the FC-TIS is dominated by its context structures, especially regarding commercially relevant patents and international standards. Therefore, we conclude that the FC-TIS is in its formative life-cycle phase and identify the need for intensified patenting and standardization in relation to the competing EVs and ICE vehicles. T2 - 14th International Sustainability Transitions Conference 2023 CY - Utrecht, Netherlands DA - 30.08.2023 KW - Fuel cell vehicles KW - Publications KW - Patents KW - Standards KW - Technological innovation system (TIS) KW - Technology interaction PY - 2023 AN - OPUS4-59332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blind, K. A1 - Krüger, M. A1 - Kinne, J. A1 - Mirtsch, Mona ED - Jacobs, K. T1 - Organisation Innovation in the Digital Layer: Exploring the Adoption of the Management System Standard ISO/IEC 27001 N2 - Despite the increasing relevance of cybersecurity for companies’ performance, there is limited research on the adoption of ISO/IEC 27001, an international information security management standard. The aim of our study is to expand this limited body of literature. First, we analyse the influence of companies’ networks on the adoption of ISO/IEC 27001 as an organisational innovation based on firm website data and their hyperlinks, using the entire population of ISO/IEC 27001 certified firms identified via web mining. Second, we validate the method of constructing and analysing companies’ “digital layer” following the call for new methodological approaches to study the organisational adoption of innovations. Our findings reveal that companies' decision to adopt ISO/IEC 27001 increases significantly with their number of linkages to other companies and to those having the same certificate. Finally, their cognitive and organisational distances to linked partners have the expected inverted u-shaped influence on their own adoption decision. T2 - 11th International Conference on Standardisation and Innovation in Information Technology (SIIT 2021) CY - Aachen, Germany DA - 06.09.2021 KW - Information Security KW - Hyperlinks KW - Management system standard KW - Digital Layer PY - 2021 SN - 978-3-95886-421-4 SP - 95 PB - Verlagshaus Mainz GmbH Aachen CY - Mainz AN - OPUS4-54411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bischoff, Tristan T1 - Testing and evaluating norms for hot water storage tank efficiency N2 - Überprüfung der aktuell gesetzlich festgeschriebenen Prüfnormen (EN 12977, EN 12897) zur Wärmeverlustmessung von Warmwasserspeichern mit Hilfe eines Ringversuchs mit fünf Laboren. T2 - Conference of young scientists on energy and natural science issues CY - Kaunas, Lithuania DA - 24.5.2022 KW - Heat storage KW - Standing Losses KW - Round Robin Trial KW - Statistical Analysis KW - NAPE-Project KW - Energy-Label PY - 2022 UR - https://vimeo.com/710278130/8fae7db4d5 AN - OPUS4-55050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bischoff, Tristan T1 - Heat storage testing method with realistic operating conditions N2 - Development of a new testing method for comparing efficient stratified heat storages. T2 - World sustainable energy days CY - Online meeting DA - 21.06.2021 KW - Heat storage KW - Stratification KW - Testing Methods KW - Exergy KW - Load profile PY - 2021 AN - OPUS4-52791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bischoff, Tristan T1 - Testing and evaluating norms for hot water storage tank efficiency N2 - A round robin test was performed with different laboratories comparing the results for standing heat losses of hot water storage tanks utilizing the current norms for testing. Evaluating these results provides an empirical basis for further developing testing methods. T2 - Conference of young scientists on energy and natural science issues 2022 CY - Kaunas, Lithuania DA - 24.05.2022 KW - Heat storage KW - Standing Losses KW - EU regulations KW - Statistical Analysis KW - Round Robin Test KW - Energy-Label KW - NAPE Project PY - 2022 SN - 2783-6339 SP - 133 EP - 135 AN - OPUS4-55852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa A1 - Weiss, D. A1 - Blind, K. ED - Jakobs, K. T1 - Fuel-cell Vehicles in Relation to Electric and Internal Combustion Engine Vehicles – An Analysis of Technology Relations based on Publications, Patents, Standards N2 - Against the backdrop of the sustainability transition of economies worldwide, decarbonizing road traffic is high on the agenda. This has focused the interest of policymakers and automobile manufacturers on sustainable, zero-emission powertrain technologies. Among these technologies, hydrogen fuel cell (FC) vehicles have a positive climate impact, given that their hydrogen is produced from renewable energy. However, FC vehicles have not yet gained significant market shares. Therefore, based on the technological innovation systems (TIS) approach, this study analyzes how FC vehicles are influenced by EVs and internal combustion engine (ICE) vehicles as their context structures. To operationalize the technology relations between our focal FC-TIS and its context structures, we use the sum of international publications, patents filed at the European Patent Office, and international ISO and IEC standards as indicators for each technology. Our results show that the FC-TIS is dominated by its context structures, especially regarding commercially relevant patents and international standards. Therefore, we conclude that the FC-TIS is in its formative life-cycle phase and identify the need for intensified patenting and standardization in relation to the competing EVs and ICE vehicles. T2 - 27th EURAS Annual Standardisation Conference & 12th International Conference on Standardisation and Innovation in Information Technology (SIIT) - (Responsible) Standardisation for Smart Systems CY - Aachen, Germany DA - 28.06.2023 KW - Fuel cell vehicles KW - Patents KW - Publications KW - Standards KW - Technological innovation system (TIS) KW - Technology interaction PY - 2023 SN - 978-3-95886-491-7 SP - 1 EP - 20 PB - Verlagshaus Mainz CY - Aachen AN - OPUS4-57870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asna Ashari, Parsa A1 - Oh, Hyochan A1 - Koch, Claudia T1 - Pathways to the hydrogen economy: A multidimensional analysis of the technological innovation systems of Germany and South Korea N2 - The global trend towards decarbonization and the demand for energy security have put hydrogen energy into the spotlight of industry, politics, and societies. Numerous governments worldwide are adopting policies and strategies to facilitate the transition towards hydrogen-based economies. To assess the determinants of such transition, this study presents a comparative analysis of the technological innovation systems (TISs) for hydrogen technologies in Germany and South Korea, both recognized as global frontrunners in advancing and implementing hydrogen-based solutions. By providing a multidimensional assessment of pathways to the hydrogen economy, our analysis introduces two novel and crucial elements to the TIS analysis: (i) We integrate the concept of ‘quality infrastructure’ given the relevance of safety and quality assurance for technology adoption and social acceptance, and (ii) we emphasize the social perspective within the hydrogen TIS. To this end, we conducted 24 semi-structured expert interviews, applying qualitative open coding to analyze the data. Our results indicate that the hydrogen TISs in both countries have undergone significant developments across various dimensions. However, several barriers still hinder the further realization of a hydrogen economy. Based on our findings, we propose policy implications that can facilitate informed policy decisions for a successful hydrogen transition. KW - Hydrogen economy KW - Technological innovation system KW - Quality infrastructure KW - Multidimensional technology adoption KW - Social acceptance PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593312 DO - https://doi.org/10.1016/j.ijhydene.2023.08.286 IS - Volume 49, Part D SP - 405 EP - 421 PB - Elsevier AN - OPUS4-59331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asna Ashari, Parsa A1 - Blind, Knut T1 - The effects of hydrogen research and innovation on international hydrogen trade N2 - Climate change and the pressure to decarbonize, as well as energy security concerns, have drawn the attention of policymakers and the industry to hydrogen energy. To ad-vance the hydrogen economy at a global scale, research and innovation progress is of significant importance, among others. However, previous studies have provided only lim-ited quantitative evidence of the effects of research and innovation on the formation of a global hydrogen market. Instead, they postulate rather than empirically support this rela-tionship. Therefore, this study analyzes the effects of research and innovation measured by scientific publications, patents, and standards on bilateral hydrogen trade flows for 32 countries between 1995 and 2019 in a gravity model of trade, using regression analyses and Poisson Pseudo Maximum Likelihood (PPML) estimation. The main results of the PPML estimation show that research and innovation progress is indeed associated with increased trade, especially with patenting and (international) standardization enhancing hydrogen export volumes. As policy implications, we derive that increased public R&D funding can help increase the competitiveness of hydrogen energy and boost market growth, along with infrastructure support and harmonized standards and regulations. KW - Hydrogen supply KW - Global hydrogen market KW - Research and innovation KW - Push and pull effects KW - Hydrogen policies PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594875 DO - https://doi.org/10.1016/j.enpol.2023.113974 SN - 0301-4215 VL - 186 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-59487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Koch, Claudia T1 - Knowledge and technology transfer via publications, patents, standards: Exploring the hydrogen technological innovation system N2 - Clean technologies play a crucial role in reducing greenhouse gas emissions and protecting the climate. Hydrogen is a promising energy carrier and fuel that can be used in many applications. We explore the global hydrogen technological innovation system (TIS) by analyzing the three knowledge and technology transfer channels of publications, patents, and standards. Since the adoption of hydrogen technologies requires trust in their safety,this study specifically also focuses on hydrogen safety. Our results show that general and hydrogen safety research has increased significantly while patenting experienced stagnation. An analysis of the non-patent literature in safety patents shows little recognition of scientific publications. Similarly, publications are underrepresented in the analyzed 75 international hydrogen and fuel cell standards. This limited transfer of knowledge from published research to standards points to the necessity for greater involvement of researchers in standardization. We further derive implications for the hydrogen TIS and recommendations for a better and more impactful alignment of the three transfer channels. KW - Technological innovation system KW - Hydrogen safety KW - Knowledge and technology transfer KW - Publications KW - Patents KW - Standards PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564250 DO - https://doi.org/10.1016/j.techfore.2022.122201 SN - 0040-1625 VL - 187 SP - 1 EP - 14 PB - Elsevier Inc. AN - OPUS4-56425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa A1 - Blind, K. ED - Jakobs, K. ED - Kim, D.-h. T1 - The Impact of Publications, Patents, and Standards on International Trade - The Case of Hydrogen N2 - Hydrogen as a clean energy carrier has received increased attention due to climate change and the need to introduce new, low-emissions technologies to the market. However, the drivers of increased hydrogen use have been barely explored. Therefore, this research paper investigates the impacts of publications, patents, and standards on international hydrogen trade, an established technology diffusion channel. In a fixed-effects (FE) regression model covering 37 countries between 1995 and 2020, we demonstrate that publications, patents, and standards are associated with increased levels of hydrogen exports and imports. Furthermore, we test the technology gap theory and explore the meaning of our empirical results for the hydrogen technological innovation system (TIS). Among others, we show that publications, patents, and standards can contribute to a more developed hydrogen TIS. T2 - 26th EURAS Annual Standardisation Conference – Standards for Digital Transformation: Blockchain and Innovation CY - Glasgow, Great Britain DA - 08.06.2022 KW - Hydrogen Trade KW - Publications KW - Patents KW - Standards KW - Technological Innovation System KW - Technology Gap Theory PY - 2022 SN - 978-3-95886-446-7 SP - 25 EP - 44 PB - Verlag Mainz CY - Mainz AN - OPUS4-55061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa A1 - Blind, K. ED - Jakobs, K. T1 - An Analysis of the Three Knowledge and Technology Transfer Channels: Publications, Patents, Standards – The Case of Hydrogen Technology N2 - Climate change and the need to reduce greenhouse gas emissions pose tremendous challenges to policymakers, the economy, and society. In this context, the development of clean, low-emission technologies plays a crucial role in mitigating the negative impact of fossil fuels on the climate. Hydrogen is a promising energy carrier and fuel that, thanks to its versatility, can be used in many applications. However, the adoption of hydrogen technology requires sufficient trust in its safety. To proxy the development of hydrogen safety innovations, we provide an analysis along the three knowledge and technology transfer channels of publications, patents, and standards. Our results show that research on hydrogen safety has increased significantly in the last decades, with hydrogen safety patents experiencing a general upward trend between 1980 and 2020, just recently decreasing. However, an analysis of almost 100 international hydrogen and fuel cell standards shows only a small number of references to scientific publications. This apparently limited transfer of knowledge from publications points to the need to optimize the coordination of the three knowledge and technology transfer channels for the future development of hydrogen technology. Based on the exploration of this gap, we recommend that research on the three channels for hydrogen be intensified and that the impact of hydrogen safety technology research and development on their diffusion be investigated. T2 - 25th EURAS Annual Standardisation Conference – Standardisation and Innovation CY - Aachen, Germany DA - 05.09.2021 KW - Hydrogen KW - Fuel Cells KW - Knowledge and Technology Transfer KW - Publications KW - Patents KW - Standards KW - Safety PY - 2021 SN - 978-3-95886-421-4 SP - 1 EP - 20 CY - Mainz AN - OPUS4-53912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa A1 - Blind, K. T1 - The Impact of Publications, Patents, and Standards on International Trade - The Case of Hydrogen N2 - Hydrogen as a clean energy carrier has received increased attention due to climate change and the need to introduce new, low-emissions technologies to the market. However, the drivers of increased hydrogen use have been barely explored. Therefore, this research paper investigates the impacts of publications, patents, and standards on international hydrogen trade, an established technology diffusion channel. In a fixed-effects (FE) regression model covering 37 countries between 1995 and 2020, we demonstrate that publications, patents, and standards are associated with increased levels of hydrogen exports and imports. Furthermore, we test the technology gap theory and explore the meaning of our empirical results for the hydrogen technological innovation system (TIS). Among others, we show that publications, patents, and standards can contribute to a more developed hydrogen TIS. T2 - 26th EURAS Annual Standardisation Conference – Standards for Digital Transformation: Blockchain and Innovation CY - Glasgow, United Kingdom DA - 08.06.2022 KW - Hydrogen Trade KW - Publications KW - Patents KW - Standards KW - Technological Innovation System KW - Technology Gap Theory PY - 2022 AN - OPUS4-55062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa A1 - Blind, K. T1 - Knowledge and Technology Transfer via Publications, Patents, and Standards - The Case of Hydrogen Technology N2 - Climate change and the need to reduce greenhouse gas emissions pose tremendous challenges to policymakers, the economy, and society. In this context, the development of clean, low-emission technologies plays a crucial role in mitigating the negative impact of fossil fuels on the climate. Hydrogen is a promising energy carrier and fuel that, thanks to its versatility, can be used in many applications. However, the adoption of hydrogen technology requires sufficient trust in its safety. To proxy the development of hydrogen safety innovations, we provide an analysis along the three knowledge and technology transfer channels of publications, patents, and standards. Our results show that research on hydrogen safety has increased significantly in the last decades, with hydrogen safety patents experiencing a general upward trend between 1980 and 2020, just recently decreasing. However, an analysis of almost 100 international hydrogen and fuel cell standards shows only a small number of references to scientific publications. This apparently limited transfer of knowledge from publications points to the need to optimize the coordination of the three knowledge and technology transfer channels for the future development of hydrogen technology. Based on the exploration of this gap, we recommend that research on the three channels for hydrogen be intensified and that the impact of hydrogen safety technology research and development on their diffusion be investigated. T2 - European Policy for Intellectual Property 2021 Conference - IP and the Future of Innovation CY - Online meeting DA - 08.09.2021 KW - Hydrogen and fuel cell technology KW - Hydrogen safety KW - Knowledge and technology transfer KW - Publications KW - Patents KW - Standards PY - 2021 AN - OPUS4-53239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa A1 - Blind, K. T1 - An Analysis of the Three Knowledge and Technology Transfer Channels: Publications, Patents, Standards – The Case of Hydrogen Technology N2 - Climate change and the need to reduce greenhouse gas emissions pose tremendous challenges to policymakers, the economy, and society. In this context, the development of clean, low-emission technologies plays a crucial role in mitigating the negative impact of fossil fuels on the climate. Hydrogen is a promising energy carrier and fuel that, thanks to its versatility, can be used in many applications. However, the adoption of hydrogen technology requires sufficient trust in its safety. To proxy the development of hydrogen safety innovations, we provide an analysis along the three knowledge and technology transfer channels of publications, patents, and standards. Our results show that research on hydrogen safety has increased significantly in the last decades, with hydrogen safety patents experiencing a general upward trend between 1980 and 2020, just recently decreasing. However, an analysis of almost 100 international hydrogen and fuel cell standards shows only a small number of references to scientific publications. This apparently limited transfer of knowledge from publications points to the need to optimize the coordination of the three knowledge and technology transfer channels for the future development of hydrogen technology. Based on the exploration of this gap, we recommend that research on the three channels for hydrogen be intensified and that the impact of hydrogen safety technology research and development on their diffusion be investigated. T2 - 25th EURAS Annual Standardisation Conference – Standardisation and Innovation CY - Online meeting DA - 06.09.2021 KW - Hydrogen Standards KW - Fuel Cells KW - Knowledge and Technology Transfer KW - Publications KW - Patents KW - Standards KW - Safety PY - 2021 AN - OPUS4-53215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa A1 - Weiss, Daniel A1 - Blind, Knut T1 - Fuel-cell Vehicles in Relation to Electric and Internal Combustion Engine Vehicles – An Analysis of Technology Relations based on Publications, Patents, Standards N2 - This presentation was held at the EURAS 2023 Conference in Aachen. Against the backdrop of the sustainability transition of economies worldwide, decarbonizing road traffic is high on the agenda. This has focused the interest of policymakers and automobile manufacturers on sustainable, zero-emission powertrain technologies. Among these technologies, hydrogen fuel cell (FC) vehicles have a positive climate impact, given that their hydrogen is produced from renewable energy. However, FC vehicles have not yet gained significant market shares. Therefore, based on the technological innovation systems (TIS) approach, this study analyzes how FC vehicles are influenced by EVs and internal combustion engine (ICE) vehicles as their context structures. To operationalize the technology relations between our focal FC-TIS and its context structures, we use the sum of international publications, patents filed at the European Patent Office, and international ISO and IEC standards as indicators for each technology. Our results show that the FC-TIS is dominated by its context structures, especially regarding commercially relevant patents and international standards. Therefore, we conclude that the FC-TIS is in its formative life-cycle phase and identify the need for intensified patenting and standardization in relation to the competing EVs and ICE vehicles. T2 - 27th EURAS Annual Standardisation Conference - (Responsible) Standardisation for Smart Systems CY - Aachen, Germany DA - 28.06.2023 KW - Technological innovation system (TIS) KW - Technology interaction KW - Fuel cell vehicles KW - Publications KW - Patents KW - Standards PY - 2023 AN - OPUS4-57841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa T1 - Exploring the Technological Innovation System for Hydrogen Technologies - Four Essays on the Roles of Research, Innovation, and Safety N2 - Presentation of the doctoral thesis held at the PhD Colloquium of the Chair of Innovation Management, Freie Universität Berlin. Hydrogen has recently come into political and industrial focus due to its potential to advance the transition to a net-zero economy. Despite this recognized potential, the market ramp-up of hydrogen technologies has not yet been realized at large. Therefore, this thesis attempts to investigate how advances in hydrogen research, innovation, and safety link up to market formation using the Technological Innovation Systems (TIS) and Quality Infrastructure (QI) frameworks. Thereupon, the thesis formulates several recommendations for transitioning to a hydrogen economy. T2 - PhD Colloquium of the Chair of Innovation Management (Freie Universität Berlin) CY - Berlin, Germany DA - 09.01.2024 KW - Hydrogen KW - Research and innovation KW - Innovation system KW - Safety PY - 2024 AN - OPUS4-59400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa A1 - Oh, H.-C. A1 - Koch, Claudia T1 - Drivers and Barriers to the Adoption of Hydrogen Technologies in Germany and the Republic of Korea - A Multidimensional Stakeholder Analysis N2 - This presentation was held at the Eu-SPRI 2023 Conference and provides a comparative analysis of the hydrogen economies in Germany and the Republic of Korea, highlighting similarities and differences. Thereupon, the presentation delves into the requirements for the development of a hydrogen economy, including recommendations for policymaking. T2 - The Eu-SPRI Annual Conference 2023 CY - Brighton, UK DA - 14.06.2023 KW - Country comparison KW - Hydrogen economy KW - Technological innovation system KW - Multidimensional hydrogen technology adoption PY - 2023 AN - OPUS4-57716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa A1 - Oh, H. A1 - Koch, Claudia T1 - Drivers and Barriers to the Adoption of Hydrogen Technologies in Germany and the Republic of Korea - A Multidimensional Stakeholder Analysis N2 - The presentation provides a comparative analysis of the hydrogen economies in Germany and the Republic of Korea, highlighting similarities and differences. Thereupon, the presentation delves into the requirements for the development of a hydrogen economy, including the political and regulatory framework. T2 - Colloquium of the Research Institute for Sustainability (RIFS) Helmholtz Centre Potsdam - Research Group "Geopolitics of Transitions in Energy and Industry" CY - Online meeting DA - 05.06.2023 KW - Hydrogen economy KW - Technological innovation system KW - Country comparison PY - 2023 AN - OPUS4-57606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Neues Energielabel N2 - Warum gibt es ein neues Label und welche Änderungen ergeben sich daraus? Kurzvortrag anlässlich der VZBV-Veranstaltung "Mehr Transparenz für Verbraucher durch Energielabel und Energieausweis" im Rahmen der Berliner Energietage 2018 T2 - Berliner Energietage 2018 CY - Berlin, Germany DA - 07.05.2018 KW - Energieverbrauchskennzeichnung KW - Verbraucherschutz KW - Energieeffizienz PY - 2018 AN - OPUS4-44869 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Ökodesign und Energielabel: Entwicklung, geltendes Recht und Ausblick N2 - Der Vortrag gibt einen Überblick über die Entwicklung der Anforderungen, die geltenden und kommenden Regeln für Produkte unter den beiden Rechtsinstrumenten und berührt die Frage, was in Zukunft den Schwerpunkt der Rechtssetzung darstellen wird T2 - Jahrestagung 2020 FA Haushaltstechnik der dgh CY - Nuremberg, Germany DA - 06.02.2020 KW - Ökodesign KW - Energieverbrauchskennzeichnung KW - Energieeffizienz KW - Ressourceneffizienz KW - EU-Recht PY - 2020 AN - OPUS4-50355 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Die Ökodesign-Richtlinie - geltendes Recht und neue Entwicklungen N2 - Überblick zur Ökodesignrichtlinie und zur Energieverbrauchskennzeichnung mit den Schwerpunkten Elektromotoren und Ressourceneffizienzanforderungen. T2 - Umwelt-Workshop der IHK Reutlingen CY - Reutlingen, Baden-Wuerttemberg, Germany DA - 09.09.2019 KW - Ökodesign KW - Energieeffizienz KW - Ressourceneffizienz PY - 2019 AN - OPUS4-48904 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris A1 - Schlegel, Moritz-Caspar T1 - One step back, two steps forward - resource efficiency requirements within ecodesign N2 - Resource efficiency is a much discussed topic in terms of improving the sustainability of energy related and energy non-related products. Resource efficiency aspects such as the availability of spare parts, the ability to dismantle, etc. have been included in draft working documents in the revision of several already existing Ecodesign regulations as a first step. However, often these aspects are not consistent with the current technology and design of these products. A possible reason could be a lack of sufficient consultation or of a methodology which is sufficiently tailored for this topic. The established strategies and tools, used by policymakers, such as the Methodology for the Ecodesign of Energy-related Products (MEErP), do not seem to deal with these aspects appropriately. Draft requirements need to be very well developed before being discussed with member states and other related stakeholders, because including resource efficiency parameters could lead to additional, very wide-ranging effects on society. This topic cannot be covered well with legislative tools developed primarily for energy aspects. In this paper, a method is presented which can be used to combine products’ properties with crucial resource efficiency indicators. The method can be used to develop a set of draft legislative requirements and to pre-evaluate these requirements by target groups which would be affected by additional legal requirements. These include: market surveillance authorities, standardization organizations, manufacturers and their associations, environmental organizations and research facilities. The method incorporates stakeholders’ feedback to identify potential resource efficiency measures for materials and/or products, their impact on the European ecology, economy and society. Based on this it would help to develop legislative requirements which are feasible and desirable. The results can then be fed into the formal legislative process, probably speeding it up. T2 - ECEEE 2019 Summer Study on Energy Efficiency CY - Belambra Presqu'île de Giens, France DA - 03.06.2019 KW - Circular economy KW - Ecodesign KW - Energy policy KW - Resources PY - 2019 AN - OPUS4-48427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Ökodesign und EnvK - Entwicklung, geltendes Recht und Ausblick - Schwerpunkt Haushaltsgeräte N2 - Folien zum Vortrag beim HEA-Fachausschuss effiziente Haushaltsgeräte zu den Themen Ökodesign und EnVK T2 - Sitzung des Fachausschusses effiziente Haushaltsgeräte der HEA CY - Berlin, Germany DA - 16.10.2019 KW - Energieverbrauchskennzeichnung KW - Energieeffizeinz KW - Ökodesign KW - Ressourceneffizienz PY - 2019 AN - OPUS4-49370 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Ökodesign und EnvK - Entwicklung, geltendes Recht und Ausblick - Schwerpunkt Gebäudetechnik N2 - Folien zum Vortrag beim HEA-Fachausschuss FA Effiziente Gebäudeenergieversorgung, HEA T2 - Sitzung des Fachausschusses effiziente Gebäudeenergieversorgung, HEA CY - Berlin, Germany DA - 16.10.2019 KW - Energieverbrauchskennzeichnung KW - Energieeffizeinz KW - Ökodesign KW - Ressourceneffizienz PY - 2019 AN - OPUS4-49373 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Aktuelles zur Ökodesign-Verordnung - Entwicklung und Einschätzung zum Inverkehrbringen N2 - Vorstellung der Rechtsinstrumente Ökodesign, Darstellung der Entwicklung und Einschätzung zu Szenarien zum Inverkehrbringen am Beispiel Kühlmöbel T2 - Handel-Hersteller-Dialog der FG Kühlmöbel des VDMA CY - Online meeting DA - 07.12.2020 KW - Ökodesign KW - Energieverbrauchskennzeichnung KW - Energieeffizienz KW - Kühlmöbel KW - Supermarktkälte PY - 2020 AN - OPUS4-51817 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Die neue Ökodesignverordnung - Von der Richtlinie zur Verordnung / Der digitale Produktpass N2 - Der Vortrag stellt den Vorschlag der EU-Kommission für eine neue Verordnung zum Ökodesign nachhaltiger Produkte vor. Der digitale Produktpass ist einer der Schwerpunkte. T2 - Jahrestagung der VEREV CY - Berlin, Germany DA - 8.11.2022 KW - Ökodesign KW - Nachhaltigheit KW - Effizienz KW - EU-Recht PY - 2022 AN - OPUS4-56826 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao A1 - Richter, Silke A1 - Benner, Philipp A1 - Recknagel, Sebastian T1 - The use of reference materials to improve the calibration strategy in glow discharge optical emission spectroscopy with machine learning N2 - Glow discharge optical emission spectroscopy (GD-OES) is a technique for the analysis of solids such as metals, semiconductors, and ceramics. A low-pressure glow discharge plasma is applied in this system, which ‘sputters’ and promotes the sample atoms to a higher energy state. When the atoms return to their ground state, they emit light with characteristic wavelengths, which a spectrometer can detect. Thus, GD-OES combines the advantages of ICP-OES with solid sampling techniques, which enables it to determine the bulk elemental composition and depth profiles. However, direct solid sampling methods such as glow-discharge spectroscopy require reference materials for calibration due to the strong matrix effect. Reference materials are essential when the accuracy and reliability of measurement results need to be guaranteed to generate confidence in the analysis. These materials are frequently used to determine measurement uncertainty, validate methods, suitability testing, and quality assurance. In addition, they guarantee that measurement results can be compared to recognized reference values. Unfortunately, the availability of certified reference materials suited to calibrate all elements in different matrix materials is limited. Therefore various calibration strategies and the preparation of traceable matrix-matched calibration standards will be discussed. Machine learning is an essential component of the growing field of data science. Through statistical methods, algorithms are trained to make classifications or predictions, uncovering key insights within data mining projects. Therefore, it was tried in our work to combine GD-OES with machine learning strategies to establish a new and robust calibration model, which can be used to identify the elemental composition and concentration of metals from a single spectrum. For this purpose, copper reference materials from different manufacturers, which contain various impurity elements, were investigated using GD-OES. The obtained spectra information are evaluated with different algorithms (e.g., gradient boosting and artificial neural networks), and the results are compared and discussed in detail. T2 - Winter Conference on Plasma Chemistry 2022 CY - Tucson, AZ, USA DA - 17.01.2022 KW - GDOES KW - Machine learning KW - Reference materials KW - Calibration KW - Cooper PY - 2022 AN - OPUS4-56497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Winckelmann, Alexander A1 - Hoffmann, Volker A1 - You, Zengchao A1 - Richter, Silke A1 - Recknagel, Sebastian T1 - What does GD-OES reveal about the aging and manufacturing processes of lithium-ion batteries? N2 - Glow-Discharge Optical Emission Spectroscopy (GD-OES), a powerful analytical technique, sheds light on the two critical aspects of lithium-ion batteries (LIBs): manufacturing and aging 1, 2. We optimized cell production in manufacturing by adjusting parameters, including cathode doping, electrolyte concentration, and pressing force. GD-OES provided in-depth elemental composition and homogeneity analysis, which is crucial for identifying optimal manufacturing conditions. These findings were validated by electrochemical impedance spectroscopy, confirming the quality of the manufactured batteries. Shifting the focus to aging, we use GD-OES for fluorine depth profiling, a key element in understanding polymer and electrolyte degradation. However, fluorine presents analytical challenges. We addressed this by substituting argon with a neon:argon mixture, which significantly enhanced fluorine detection sensitivity. This advancement not only improves accuracy but also holds the potential to guide sustainable and cost-efficient manufacturing strategies. Through its versatility, GD-OES has proven to be a powerful tool for not only optimizing LIB manufacturing processes but also gaining deeper insights into their aging mechanisms. This research extends beyond academic interest, offering tangible benefits for the industry by translating into improved battery quality, extended lifespan, and overall performance. T2 - The 6th International Glow Discharge Spectroscopy Symposium CY - Liverpool, United Kingdom DA - 21.04.2024 KW - GD-OES KW - Depth profiles KW - Lithium KW - Battery KW - Fluorine KW - Aging KW - Manufacturing KW - Glow-discharge PY - 2024 AN - OPUS4-59945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Vogl, Jochen A1 - Riedel, Jens A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Applications of atomic absorption spectrometry for lithium isotope analysis N2 - An alternative method for lithium isotope analysis by using high-resolution atomic absorption spectrometry (HR-CS-AAS) is proposed herein. This method is based on monitoring the isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by state-of-the-art HR-CS-AAS. Isotope analysis can be used for (i) the traceable determination of Li concentration and (ii) isotope amount ratio analysis based on a combination of HR-CS-AAS and spectral data analysis by machine learning (ML). In the first case, the Li spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Precision was further improved by using lanthanum as internal spectral standard. The procedure has been validated using human serum-certified reference materials. The results are metrologically comparable and compatible with the certified values. In the second case, for isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol mol−1. The training ML model was validated with certified reference materials. The procedure was applied to the isotope amount ratio determination of a set of stock chemicals and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. These determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9‰ to 6.2‰. This precision was sufficient to resolve naturally occurring variations. The NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification to assess its suitability for technical applications. The results obtained were metrologically compatible with each other. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium KW - HR-CS-AAS KW - Chemometrics KW - Atomic spectrometry PY - 2022 AN - OPUS4-56498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Imbert, E. ED - Ladu, Luana T1 - Special issue "Metrics for sustainable chemistry" N2 - This special issue addresses the current need to enhance the conceptual and empirical implementation of sustainability assessment methodologies and related metrics within the GSC (Green and Sustainable Chemistry), collecting 7 papers. KW - Green and sustainable chemistry (GSC) KW - Special issue KW - Sustainability assessment methodologies PY - 2022 UR - https://www.sciencedirect.com/journal/current-opinion-in-green-and-sustainable-chemistry/special-issue/103FS5FCQ68 SN - 2452-2236 SP - 100160 EP - 100844 PB - Elsevier CY - Amsterdam AN - OPUS4-60022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -