TY - JOUR A1 - Schuberth, Jens A1 - Ebert, Thomas A1 - Schlegel, Moritz-Caspar A1 - Rödig, Lisa A1 - Jepsen, Dirk A1 - Memelink, Robin A1 - Hauschke, Fynn T1 - The Front-Runner Approach - Facilitating Progressive Product Policy by Using Information from EU Product Databases N2 - The European Commission has recently announced two guiding principles for EU product policy: First, product policy shall ensure that the performance of front-runner products in terms of sustainability becomes the norm, and second, the effectiveness of the current Ecodesign legislative framework is going to be significantly improved. Within this paper, already existing front-runner approaches and recent and ongoing product policy-making processes were reviewed. Based on the results, an EU front-runner approach is outlined. The presented approach (i) refers to performance levels of the best products already available on the market, (ii) aggregates information in existing databases, and (iii) works semi-automated. Together, all three attributes have a high potential to facilitate and accelerate the specification of appropriate minimum requirements for products at the EU level. This way, EU policymakers can deliver on the core objectives of the Ecodesign legislative framework much better. The basic mechanism and its legal entrenchment of the approach are illustrated for the energy efficiency of energy-related products. In addition, the Front-Runner Approach can be applied to any product group in the scope of the upcoming Ecodesign for Sustainable Products Regulation and to a wide range of product-related minimum requirements, such as durability, reparability, or recycled content. The study’s objective is to suggest a tailor-made and dynamic approach to keep the EU product legislation up to date using innovative technology based on the investigation of current regulations and identify the gap. Experiences from three international case studies suggest that a front-runner approach to setting energy-performance standards can drive innovation and reduce energy consumption via promoting energy-efficient products; transparency about available products is one of the key factors and can be established by a database. The EU front-runner approach comprises extending the existing energy label database (or making use of the digital product passport) and introducing a legislative procedure that triggers changes in the energy efficiency requirements in the specific EU regulations if the database shows that a certain threshold value is reached. Challenges such as limited EU staff capacities and opportunities such as increased dynamic are discussed. KW - Ecodesign KW - ESPR KW - Energy labelling KW - EPREL KW - Policy making KW - Front-runner KW - Material efficiency KW - Resource efficiency KW - Energy efficiency PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595132 DO - https://doi.org/10.3390/en17020504 VL - 17 IS - 2 SP - 1 EP - 11 PB - MDPI AN - OPUS4-59513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schuberth, J. A1 - Wachau, André A1 - Schuhmann, K.-U. ED - Sironi, M. T1 - Strukturiertes Vorgehen erforderlich N2 - Seit September 2015 gelten für neue Heizgeräte EU-weit einheitliche Mindeststandards: Heizkessel müssen mindestens den Standard der Brennwerttechnik erreichen (ausgenommen sind B1-Gasetagenheizungen für Mehrfachbelegung). Wird ein alter Wärmeerzeuger ausgetauscht, muss daher stets der Schornstein für die Abgasabführung im Überdruck geeignet sein und gegen Kondensat ertüchtigt werden, also feuchtebeständig sein. Handelt es sich um eine mehrfach belegte Abgasanlage der Arten C4, C8 oder B3, sind alle am Schornsteinstrang angeschlossenen Gasgeräte betroffen. In einem Expertengremium des DVGW wurden Handlungsempfehlungen erarbeitet. Einige Lösungsansätze vermeiden einen sofortigen Austausch aller Geräte an einem gemeinsamen Schornsteinstrang. KW - Gasetagenheizungen KW - Heizkessel KW - Abgasanlage KW - Schornstein PY - 2018 UR - https://www.ikz.de/heizungstechnik/news/detail/strukturiertes-vorgehen-erforderlich/ VL - Juli 2018 SP - 18 EP - 23 PB - STROBEL VERLAG GmbH & Co. KG CY - Arnsberg AN - OPUS4-46893 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schuberth, J. A1 - Ebert, T. A1 - Schlegel, Moritz-Caspar A1 - Rödig, L. A1 - Jepsen, D. T1 - A Front-Runner Approach for EU product policy - Impulse for raising untapped energy saving potentials N2 - In 2020, the European Commission has announced to propose a Sustainable Product Policy for the EU which shall ensure that the performance of front-runners in sustainability progressively becomes the norm. In addition, the European Commission has re-emphasised the necessity to significantly improve the effectiveness of the current Ecodesign framework for energy-related products. With this paper, we present an initial outline of a policy approach which we call the “EU frontrunner approach”. The approach aims at installing a regulatory framework which enables a semi-automated, progressive adaptation of ecodesign minimum requirements for products. It builds on performance levels of the best products available on the market by aggregating information in a database. The “front-runner approach” could first be applied to progressively adapt product-related minimum energy-efficiency requirements. This way it would serve as a starting point to introduce this conceptto the EU policy arena. While the approach can be applied for energy efficiency, it is neither limited to energy-related products nor to energy-related requirements. It can be applied to the wide range of nonenergy related products within the scope of the upcoming Ecodesign for Sustainable Products Regulation (ESPR) as well as to non-energy-related requirements, such as minimum requirements for durability, reparability, recyclability and recycled content. KW - Ecodesign KW - Energy Labelling KW - Circular Economy KW - Efficiency KW - Policy making PY - 2022 UR - https://www.umweltbundesamt.de/publikationen/a-front-runner-approach-for-eu-product-policy SP - 1 EP - 12 PB - German Environment Agency CY - Dessau-Roßlau AN - OPUS4-55503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Rockland, Ulrike T1 - Wer schließt eigentlich unsere "Kreis"laufwirtschaft? N2 - Die Ressourcen der Erde sind nicht nur endlich, sondern werden zudem ineffizient genutzt. Mit dem im Dezember 2015 verabschiedeten Aktionsplan zur Kreislaufwirtschaft fördert die Europäische Kommission den Übergang zur stärker kreislauforientierten Wirtschaft. So werden Anforderungen an Reparaturfähigkeit, Lebensdauer und Recyclingfähigkeit von Produkten zukünftig in der Ökodesign-Richtlinie gesetzt. Die Ökodesign-Richtlinie regelt momentan die Energieeffizienz von energieverbrauchsrelevanten Produkten. Um Anforderungen an den nachhaltigen Einsatz von Ressourcen zu formulieren, fehlen jedoch Normen und Definitionen. Diese Normen werden Momentan geschaffen - erst danach können gesetzliche Anforderungen folgerichtig umgesetzt werden. KW - Kreislaufwirtschaft KW - Circular economy KW - Normung KW - Ökodesign KW - Lebensdauer KW - Reparierbarkeit KW - Recyclingfähigkeit KW - Durability KW - Reparability KW - Recyclability PY - 2018 VL - 11 SP - 21 EP - 23 PB - Beuth Verlag CY - Berlin AN - OPUS4-46884 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlegel, Moritz-Caspar A1 - McAlister, Catriona A1 - Rama, Mathieu T1 - Pioneering durability in electronics - The role of standardisation in policymaking and vice versa N2 - This paper highlights the role of standardisation in enabling greener electronics in the EU. It presents an analysis of the evolving landscape of material efficiency standardization, the majority of which has been undertaken in the framework of the European Ecodesign Directive, soon to be repealed by the Ecodesign for Sustainable Products Regulation. The impending policy shift will include a very broad extension of product scope, a strengthening of the way in which material efficiency aspects are addressed, and wider potential for product labelling. During the stakeholder consultation process, the European Commission announced that the durability of products would be one of the major topics in the new regulatory approach - hence the specific focus of this paper on durability scoring. The paper first examines the policy and standardization context, and then provides an overview of material efficiency indexes and scoring systems currently in place or being developed. It highlights where standardization is following policymaking, and where standardization is paving the way for more circular products. Scoring systems and indexes could potentially be used for both (i) setting minimum requirements for products entering the EU market, and (ii) consumer labels on material efficiency aspects such as product durability that could trigger environmentally sustainable purchase decisions. Subsequently, a methodological framework for a comprehensive durability scoring system that could be developed in standards is proposed, and the potential for these to be used as a basis for product legislation is explored. Potential durability criteria are listed, divided into technical, servicerelated and further aspects. Technical aspects include external factors that influence the durability of products such as drop/shock resistance. Service-related aspects include, for example, pre-purchase information provision on battery replaceability or availability of software updates. Other aspects include for example pro. T2 - EGG+ Electronics Goes Green 2024+ CY - Berlin, Germany DA - 18.06.2024 KW - Circular Economy KW - Durability KW - Material efficiency KW - Ecodesign KW - ESPR KW - Labelling KW - Consumer PY - 2024 SN - ISBN 978-3-00-079329-5 SP - 56 EP - 62 AN - OPUS4-60399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Koch, Claudia A1 - Mirtsch, Mona A1 - Harrer, Andrea T1 - Smart Products Enable Smart Regulations—Optimal Durability Requirements Facilitated by the IoT N2 - The challenges and opportunities linked with IoT have been intensively discussed in recent years. The connectivity of things over their entire life cycle and the smart properties associated with it provide new functionalities and unprecedented availability of (usage) data. This offers huge opportunities for manufacturers, service providers, users, and also policymakers. The latter May impact policy areas such as the regulations on resource and materials efficiency under the Ecodesign Directive 2009/125/EC. With the general approach as it is practiced today, legal requirements are usually set for entire product groups without considering the products individually, including user behavior and environmental conditions. The increasing number of smart products and the growing availability of product data are sparking a discussion on whether these requirements could be more product and application-specific. This paper presents a method for calculating the economically and ecologically optimal durability of a product. It allows determining the point in time when a product should be replaced by combining consumer data with product design data. This novel Approach could contribute to making product regulation more flexible and possibly more efficient. In this context, fundamental challenges associated with smart products in policymaking are also discussed. KW - Ecodesign KW - Internet of Things KW - Connectivity KW - Resource efficiency KW - Policy making PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524924 DO - https://doi.org/10.3390/su13084395 VL - 13 IS - 8 SP - 4395 PB - MDPI CY - Basel AN - OPUS4-52492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Grzimek, V. A1 - Günther, G. A1 - Svetogorov, R. A1 - Veziri, C. M. A1 - Kapsi, M. A1 - Karanikolos, G. N. A1 - Prokhnenko, O. A1 - Bewley, R. A1 - Russina, M. T1 - Explaining water adsorption in one-dimensional channels in AlPO4-5 on molecular scale N2 - The adsorption of water in one-dimensional channels in porous aluminophosphate material AlPO4-5 has been studied by a combination of gravimetric Analysis techniques, neutron and X-ray diffraction and Neutron spectroscopy. Molecular structure of AlPO4-5 consists of 12-membered rings of alternating, corner-sharing AlO4 and PO4 tetrahedra connected by oxygen bridges into sheets in the (a, b) plane. The sheets are connected by oxygen bridges along the c crystal axis and form onedimensional channels of which the largest, formed by the 12-membered rings, have a van der Waals Diameter of about 8.3 Å. Gradually increasing the amount of adsorbed water we could follow the evolution of the confined water mobility in a systematic way and identify the molecular mechanism of water adsorption. We focused particularly on the range of low and medium relative pressures up to p/p0=0.32, where a Change from a hydrophobic behavior to a steep, capillary condensation like water intake has been observed. At the Initial adsorption stages water occupies positions close to the pore walls causing the contraction of channels in the (a, b) plane and the prolongation of the channels along c axis in AlPO4-5. With the progressing intake water molecules form chains along the main channels. The cooperative interactions between water molecules lead to the onset of phonon-like cooperative modes and, surprisingly, to the increase of diffusive-like motion, which slow down only in the final adsorption stages when AlPO4-5 channels are completely filled. KW - AlPO4-5 KW - Water adsorption KW - Confined water KW - 1-dimensional, KW - Diffusion PY - 2018 DO - https://doi.org/10.1016/j.micromeso.2018.11.025 SN - 1387-1811 VL - 304 SP - 109201 PB - Elsevier Inc. AN - OPUS4-46798 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlegel, Moritz-Caspar A1 - Giegerich, J. A1 - Dworak, C. T1 - Neue Trendlinien für das Ökodesign - Materialeffizienz von energieverbrauchsrelevanten Produkten (M/543) N2 - Die Kreislaufwirtschaftsinitiative der Europäischen Kommission fordert eine grundlegende Erweiterung bestehender Rechtsrahmen. Anforderungen zu einer gesetzlich vorgeschriebenen Lebensdauer, Reparierbarkeit, Recyclingfähigkeit, etc. von Produkten sollen unter der Ökodesign-Richtlinie geregelt werden. Bei diesem Vorhaben steht der Normungsauftrag M/543 im Zentrum. Es wurde 2015 von der Europäischen Kommission vergeben und bislang sind acht horizontale bzw. generische EN-Normen geplant. Trotz der zu erwartenden hohen Reichweite dieses Vorhabens scheinen die Inhalte und der eigentliche Zweck der zu erarbeitenden Normen vielen Marktakteuren noch nicht vollständig bekannt zu sein, daher sollen im Rahmen des Webinars diese Inhalte kurz vorgestellt werden. T2 - DIN-Akademie CY - Webinar DA - 30.04.2019 KW - Kreislaufwirtschaft KW - Circular economy KW - Lebensdauer KW - Reparierbarkeit KW - Recyclinkgfähigkeit KW - Ökodesign KW - Rechtssetzung PY - 2019 AN - OPUS4-47905 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlegel, Moritz-Caspar A1 - Giegerich, J. T1 - Kicking the can down the Circular Economy Road – Basic needs in Standardization for Electronics- and ICT-products N2 - As consequence of the European Green Deal and the European Commission's Circular Economy Action Plan, the product landscape in the EU will undergo fundamental changes. The legal requirements for products are being expanded, not least through the Proposal for an Ecodesign Regulation for Sustainable Products published by the European Commission in 2022. Following the current developments, requirements for the circularity of products will be increased next to the already existing minimum requirements for products’ energy efficiency. Following this development, the lead question has to be: Is the market, in particular small- and medium-sized enterprises, well prepared for this planned green transformation of our economy? The answer is: No, not yet. What is needed are suitable standards for the implementation of these requirements to reduce additional burdens to an appropriate level and to support fair competition between all market actors concerned. The German Institute for Standardization, the German Commission for Electro-technical, Electronic & Information Technologies and the Association of German Engineers have conducted a review study with the aim of identifying fundamental needs for revising existing standards and for creating new standards - both of which are intended to support and accelerate the transformation of the current economy towards a Circular Economy. More than 700.000 normative documents were analyzed, and the results were discussed and consolidated with more than 1000 experts from manufacturers (organizations), consumer- and environmental organizations as well as from the public sector. As a result, more than 200 gaps in the standardization landscape were identified. In this study, we highlight and analyze the most important needs for standardization activities in the field of electrotechnical-, electronic- and ICT-products. In the discussion with the experts for electrotechnical-, electronic- and ICT products, it has been confirmed that a timely implementation of ambitious political decisions of a circular economy requires a normative basis to ensure its consistency. Furthermore, consensus between experts was that legislation in product regulation would be key and should not be extended to the area of waste legislation. As most important standardization activities accompanying product legislation, the following were identified: (i) creation of a set of indicators enabling a holistic assessment of product circularity, (ii) quality assurance of secondary raw materials and consumers awareness of the product circularity both enabled by appropriate analytics and (iii) clear regulation concerning product liability of repaired, refurbished or remanufactured products. One issue of relevance to all experts concerns the product safety, which must not, under any circumstances, decrease when changing product design to reach a higher degree of circularity. The mentioned and further standardization activities would be essential to kick the can down the circular economy road and are analyzed and summarized in this study. T2 - PLATE Product Lifetime and the Environment Conference 2023 CY - Espoo, Finland DA - 31.05.2023 KW - Circular Economy KW - Electronics KW - ICT KW - Standardization PY - 2023 SP - 1 EP - 5 AN - OPUS4-57613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlegel, Moritz-Caspar A1 - Akkerman, Floris T1 - One step back, two steps forward – Resource efficiency requirements within ecodesign N2 - Resource efficiency is a much discussed topic in terms of improving the sustainability of energy related and energy non-related products. Resource efficiency aspects such as the availability of spare parts, the ability to dismantle, etc. have been included in draft working documents in the revision of several already existing Ecodesign regulations as a first step. However, often these aspects are not consistent with the current technology and design of these products. A possible reason could be a lack of sufficient consultation or of a methodology which is sufficiently tailored for this topic. The established strategies and tools, used by policymakers, such as the Methodology for the Ecodesign of Energy-related Products (MEErP), do not seem to deal with these aspects appropriately. Draft requirements need to be very well developed before being discussed with member states and other related stakeholders, because including resource efficiency parameters could lead to additional, very wide-ranging effects on society. This topic cannot be covered well with legislative tools developed primarily for energy aspects. In this paper, a method is presented which can be used to combine products’ properties with crucial resource efficiency indicators. The method can be used to develop a set of draft legislative requirements and to pre-evaluate these requirements by target groups which would be affected by additional legal requirements. These include: market surveillance authorities, standardization organizations, manufacturers and their associations, environmental organizations and research facilities. The method incorporates stakeholders’ feedback to identify potential resource efficiency measures for materials and/or products, their impact on the European ecology, economy and society. Based on this it would help to develop legislative requirements which are feasible and desirable. The results can then be fed into the formal legislative process, probably speeding it up. T2 - ECEEE 2019 Summer Study on Energy Efficiency CY - Belambra Presqu'île de Giens, France DA - 03.06.2019 KW - Resources KW - Circular economy KW - Ecodesign KW - Energy policy PY - 2019 UR - https://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies/2019/ SN - 978-91-983878-5-8 SN - 2001-7960 VL - 2019 SP - 1553 EP - 1562 AN - OPUS4-48341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -