TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Applications of atomic absorption spectrometry for lithium isotope analysis N2 - An alternative method for lithium isotope analysis by using high-resolution atomic absorption spectrometry (HR-CS-AAS) is proposed herein. This method is based on monitoring the isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by state-of-the-art HR-CS-AAS. Isotope analysis can be used for (i) the traceable determination of Li concentration and (ii) isotope amount ratio analysis based on a combination of HR-CS-AAS and spectral data analysis by machine learning (ML). In the first case, the Li spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Precision was further improved by using lanthanum as internal spectral standard. The procedure has been validated using human serum-certified reference materials. The results are metrologically comparable and compatible with the certified values. In the second case, for isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol mol−1. The training ML model was validated with certified reference materials. The procedure was applied to the isotope amount ratio determination of a set of stock chemicals and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. These determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9‰ to 6.2‰. This precision was sufficient to resolve naturally occurring variations. The NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification to assess its suitability for technical applications. The results obtained were metrologically compatible with each other. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium KW - HR-CS-AAS KW - Chemometrics KW - Atomic spectrometry PY - 2022 AN - OPUS4-56498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - The use of reference materials to improve the calibration strategy in glow discharge optical emission spectroscopy with machine learning N2 - Glow discharge optical emission spectroscopy (GD-OES) is a technique for the analysis of solids such as metals, semiconductors, and ceramics. A low-pressure glow discharge plasma is applied in this system, which ‘sputters’ and promotes the sample atoms to a higher energy state. When the atoms return to their ground state, they emit light with characteristic wavelengths, which a spectrometer can detect. Thus, GD-OES combines the advantages of ICP-OES with solid sampling techniques, which enables it to determine the bulk elemental composition and depth profiles. However, direct solid sampling methods such as glow-discharge spectroscopy require reference materials for calibration due to the strong matrix effect. Reference materials are essential when the accuracy and reliability of measurement results need to be guaranteed to generate confidence in the analysis. These materials are frequently used to determine measurement uncertainty, validate methods, suitability testing, and quality assurance. In addition, they guarantee that measurement results can be compared to recognized reference values. Unfortunately, the availability of certified reference materials suited to calibrate all elements in different matrix materials is limited. Therefore various calibration strategies and the preparation of traceable matrix-matched calibration standards will be discussed. Machine learning is an essential component of the growing field of data science. Through statistical methods, algorithms are trained to make classifications or predictions, uncovering key insights within data mining projects. Therefore, it was tried in our work to combine GD-OES with machine learning strategies to establish a new and robust calibration model, which can be used to identify the elemental composition and concentration of metals from a single spectrum. For this purpose, copper reference materials from different manufacturers, which contain various impurity elements, were investigated using GD-OES. The obtained spectra information are evaluated with different algorithms (e.g., gradient boosting and artificial neural networks), and the results are compared and discussed in detail. T2 - Winter Conference on Plasma Chemistry 2022 CY - Tucson, AZ, USA DA - 17.01.2022 KW - GDOES KW - Machine learning KW - Reference materials KW - Calibration KW - Cooper PY - 2022 AN - OPUS4-56497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - What does GD-OES reveal about the aging and manufacturing processes of lithium-ion batteries? N2 - Glow-Discharge Optical Emission Spectroscopy (GD-OES), a powerful analytical technique, sheds light on the two critical aspects of lithium-ion batteries (LIBs): manufacturing and aging 1, 2. We optimized cell production in manufacturing by adjusting parameters, including cathode doping, electrolyte concentration, and pressing force. GD-OES provided in-depth elemental composition and homogeneity analysis, which is crucial for identifying optimal manufacturing conditions. These findings were validated by electrochemical impedance spectroscopy, confirming the quality of the manufactured batteries. Shifting the focus to aging, we use GD-OES for fluorine depth profiling, a key element in understanding polymer and electrolyte degradation. However, fluorine presents analytical challenges. We addressed this by substituting argon with a neon:argon mixture, which significantly enhanced fluorine detection sensitivity. This advancement not only improves accuracy but also holds the potential to guide sustainable and cost-efficient manufacturing strategies. Through its versatility, GD-OES has proven to be a powerful tool for not only optimizing LIB manufacturing processes but also gaining deeper insights into their aging mechanisms. This research extends beyond academic interest, offering tangible benefits for the industry by translating into improved battery quality, extended lifespan, and overall performance. T2 - The 6th International Glow Discharge Spectroscopy Symposium CY - Liverpool, United Kingdom DA - 21.04.2024 KW - GD-OES KW - Depth profiles KW - Lithium KW - Battery KW - Fluorine KW - Aging KW - Manufacturing KW - Glow-discharge PY - 2024 AN - OPUS4-59945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Improvement of manufacturing processes of Li-ion batteries by Glow Discharge Optical Emission Spectroscopy N2 - Manufacturing lithium-ion coin cells (LIBs) for scientific research demands reproducibility, precision, and thorough metrology to ensure consistent quality and performance. Glow-discharge optical emission spectroscopy (GD-OES) emerges as a crucial analytical technique in this context, providing detailed insights into elemental composition and material homogeneity [1,2]. This study focuses on using GD-OES to optimize and standardize the manufacturing processes of LIBs, emphasizing metrology and traceability to develop reproducible and high-quality batteries for research purposes. We refined cell production by adjusting key parameters such as cathode doping, electrolyte concentration, and calendar pressing. GD-OES facilitated depth analysis of elemental composition and distribution, which is essential for identifying and maintaining optimal manufacturing conditions. Validation was achieved through electrochemical impedance spectroscopy (EIS), ensuring the quality and consistency of the manufactured batteries. GD-OES analysis revealed critical insights into elemental uniformity and impurities, guiding adjustments significantly improving cell performance and reproducibility. The method proved fast and effective in detecting and correcting variations in the manufacturing process, leading to enhanced battery quality. To understand the aging mechanisms, GD-OES was employed for fluorine depth profiling, which is crucial for studying polymer and electrolyte degradation. We significantly enhanced fluorine detection sensitivity by substituting the argon plasma with a neon/argon mixture, providing a more accurate aging analysis. By demonstrating the versatility and efficacy of GD-OES in optimizing LIB manufacturing processes and gaining deeper insights into aging mechanisms, this research has significant practical implications. It not only advances lab research but also offers tangible industrial benefits, including improved battery quality, extended lifespan, and enhanced performance. By ensuring metrology and traceability, GD-OES contributes to developing a robust method for the reproducible manufacturing of Li-ion coin cells, boosting innovation and sustainability in battery technology. T2 - SciX 2025 CY - Covington, KY, USA DA - 05.10.2025 KW - GD-OES KW - Battery analysis KW - Depth profile KW - Lithium-ion battery PY - 2025 AN - OPUS4-64878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Tracking Lithium-Ion Battery Ageing via Lithium Isotope Fractionation N2 - Lithium-ion batteries power portable devices, electric vehicles, and stationary power grids, yet hidden aging reactions still shorten their service life and raise concerns about cost and safety. An analytical proxy is needed to report these reactions and accelerate product development, quality control, and recycling. Here, we demonstrate that subtle shifts in the natural 7Li/6Li ratio accurately record the two decisive stages of cell aging, solid-electrolyte interphase (SEI) formation and field-driven aging, which can be detected using multi-collector ICP-MS. Because Li is easily stripped from digested electrodes or electrolyte in a one-step cation-exchange column, high-purity solutions reach the spectrometer in minutes. A streamlined MC-ICP-MS run yields a δ7LiLSVEC precision of 0.4 ‰, enabling dozens of battery fractions to be analyzed per day. Applying the workflow to LiCoO2 coin cells as models, sampled from pristine to 700 cycles, reveals a clear isotopic narrative. During the first ≈45 cycles, 7Li leaves the LiCoO2 lattice, dissolves into the electrolyte, and is locked in the SEI on graphite, driving cathode δ7Li from +8 to –10 ‰ and raising the anode to +13 ‰ while capacity drops by 10 %. After the interphase matures, the electric field takes over: the lighter 6Li migrates faster to the anode, 7Li accumulates in the contracting Li1-xCoO2 lattice, and the bulk separation factor rises to α≈1.045 by 700 cycles. The δ7Li curve flattens roughly 70 cycles before capacity falls to 80%, providing an early warning of end-of-life. Isotopic gradients scale linearly with impedance growth, SEI thickness, and crack density confirmed by LA-ICP-MS mapping, FIB-SEM, XANES, and EXAFS. Although each data point requires one cell, lithium-isotope fractionation provides direct, element-specific, and structural fatigue insight unavailable from non-destructive tests. The straightforward chemistry and fast MC-ICP-MS routine make the approach practical for targeted aging studies, additive screening, and forensic autopsies, complementing high-throughput electrochemical methods and supporting the design of longer-lived batteries. T2 - SciX 2025 CY - Covington, KY, USA DA - 05.10.2025 KW - Isotope KW - Lithium KW - MC-ICP-MS KW - MICAP-MS KW - Isotope fractionation KW - Battery PY - 2025 AN - OPUS4-64879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Ökodesign und Energielabel: Entwicklung, geltendes Recht und Ausblick N2 - Der Vortrag gibt einen Überblick über die Entwicklung der Anforderungen, die geltenden und kommenden Regeln für Produkte unter den beiden Rechtsinstrumenten und berührt die Frage, was in Zukunft den Schwerpunkt der Rechtssetzung darstellen wird T2 - Jahrestagung 2020 FA Haushaltstechnik der dgh CY - Nuremberg, Germany DA - 06.02.2020 KW - Ökodesign KW - Energieverbrauchskennzeichnung KW - Energieeffizienz KW - Ressourceneffizienz KW - EU-Recht PY - 2020 AN - OPUS4-50355 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Aktuelles zur Ökodesign-Verordnung - Entwicklung und Einschätzung zum Inverkehrbringen N2 - Vorstellung der Rechtsinstrumente Ökodesign, Darstellung der Entwicklung und Einschätzung zu Szenarien zum Inverkehrbringen am Beispiel Kühlmöbel T2 - Handel-Hersteller-Dialog der FG Kühlmöbel des VDMA CY - Online meeting DA - 07.12.2020 KW - Ökodesign KW - Energieverbrauchskennzeichnung KW - Energieeffizienz KW - Kühlmöbel KW - Supermarktkälte PY - 2020 AN - OPUS4-51817 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Die neue Ökodesignverordnung - Von der Richtlinie zur Verordnung / Der digitale Produktpass N2 - Der Vortrag stellt den Vorschlag der EU-Kommission für eine neue Verordnung zum Ökodesign nachhaltiger Produkte vor. Der digitale Produktpass ist einer der Schwerpunkte. T2 - Jahrestagung der VEREV CY - Berlin, Germany DA - 8.11.2022 KW - Ökodesign KW - Nachhaltigheit KW - Effizienz KW - EU-Recht PY - 2022 AN - OPUS4-56826 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alić, Jasna A1 - Schlegel, Moritz-Caspar A1 - Emmerling, Franziska A1 - Stolar, Tomislav T1 - Meeting the UN Sustainable Development Goals with Mechanochemistry N2 - Chemistry traditionally relies on reactions in solution, but this method is increasingly problematic due to the scale of chemical processes and their economic and environmental impact. Handling residual chemical waste, including solvents, incurs significant costs and environmental pressure. Conversely, novel chemical approaches are needed to address pressing societal issues such as climate change, energy scarcity, food insecurity, and waste pollution. Mechanochemistry, a sustainable chemistry discipline that uses mechanical action to induce chemical reactivity without bulk solvents, is a hot topic in academic research on sustainable and green chemistry. Given its fundamentally different working principles from solution chemistry, mechanochemistry offers more efficient chemical processes and the opportunity to design new chemical reactions. Mechanochemistry has a profound impact on many urgent issues facing our society and it is now necessary to use mechanochemistry to address them. This Minireview aims to provide a guide for using mechanochemistry to meet the United Nations (UN) Sustainable Development Goals (SDGs), thereby contributing to a prosperous society. Detailed analysis shows that mechanochemistry connects with most UN SDGs and offers more cost‐efficiency than other approaches together with a superior environmental performance. KW - Mechanochemistry KW - SDGs PY - 2024 DO - https://doi.org/10.1002/anie.202414745 SP - 1 EP - 3 PB - Wiley AN - OPUS4-61108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa T1 - An Analysis of the Three Knowledge and Technology Transfer Channels: Publications, Patents, Standards – The Case of Hydrogen Technology N2 - Climate change and the need to reduce greenhouse gas emissions pose tremendous challenges to policymakers, the economy, and society. In this context, the development of clean, low-emission technologies plays a crucial role in mitigating the negative impact of fossil fuels on the climate. Hydrogen is a promising energy carrier and fuel that, thanks to its versatility, can be used in many applications. However, the adoption of hydrogen technology requires sufficient trust in its safety. To proxy the development of hydrogen safety innovations, we provide an analysis along the three knowledge and technology transfer channels of publications, patents, and standards. Our results show that research on hydrogen safety has increased significantly in the last decades, with hydrogen safety patents experiencing a general upward trend between 1980 and 2020, just recently decreasing. However, an analysis of almost 100 international hydrogen and fuel cell standards shows only a small number of references to scientific publications. This apparently limited transfer of knowledge from publications points to the need to optimize the coordination of the three knowledge and technology transfer channels for the future development of hydrogen technology. Based on the exploration of this gap, we recommend that research on the three channels for hydrogen be intensified and that the impact of hydrogen safety technology research and development on their diffusion be investigated. T2 - 25th EURAS Annual Standardisation Conference – Standardisation and Innovation CY - Online meeting DA - 06.09.2021 KW - Hydrogen Standards KW - Fuel Cells KW - Knowledge and Technology Transfer KW - Publications KW - Patents KW - Standards KW - Safety PY - 2021 AN - OPUS4-53215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa T1 - Knowledge and Technology Transfer via Publications, Patents, and Standards - The Case of Hydrogen Technology N2 - Climate change and the need to reduce greenhouse gas emissions pose tremendous challenges to policymakers, the economy, and society. In this context, the development of clean, low-emission technologies plays a crucial role in mitigating the negative impact of fossil fuels on the climate. Hydrogen is a promising energy carrier and fuel that, thanks to its versatility, can be used in many applications. However, the adoption of hydrogen technology requires sufficient trust in its safety. To proxy the development of hydrogen safety innovations, we provide an analysis along the three knowledge and technology transfer channels of publications, patents, and standards. Our results show that research on hydrogen safety has increased significantly in the last decades, with hydrogen safety patents experiencing a general upward trend between 1980 and 2020, just recently decreasing. However, an analysis of almost 100 international hydrogen and fuel cell standards shows only a small number of references to scientific publications. This apparently limited transfer of knowledge from publications points to the need to optimize the coordination of the three knowledge and technology transfer channels for the future development of hydrogen technology. Based on the exploration of this gap, we recommend that research on the three channels for hydrogen be intensified and that the impact of hydrogen safety technology research and development on their diffusion be investigated. T2 - European Policy for Intellectual Property 2021 Conference - IP and the Future of Innovation CY - Online meeting DA - 08.09.2021 KW - Hydrogen and fuel cell technology KW - Hydrogen safety KW - Knowledge and technology transfer KW - Publications KW - Patents KW - Standards PY - 2021 AN - OPUS4-53239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa T1 - The Impact of Publications, Patents, and Standards on International Trade - The Case of Hydrogen N2 - Hydrogen as a clean energy carrier has received increased attention due to climate change and the need to introduce new, low-emissions technologies to the market. However, the drivers of increased hydrogen use have been barely explored. Therefore, this research paper investigates the impacts of publications, patents, and standards on international hydrogen trade, an established technology diffusion channel. In a fixed-effects (FE) regression model covering 37 countries between 1995 and 2020, we demonstrate that publications, patents, and standards are associated with increased levels of hydrogen exports and imports. Furthermore, we test the technology gap theory and explore the meaning of our empirical results for the hydrogen technological innovation system (TIS). Among others, we show that publications, patents, and standards can contribute to a more developed hydrogen TIS. T2 - 26th EURAS Annual Standardisation Conference – Standards for Digital Transformation: Blockchain and Innovation CY - Glasgow, United Kingdom DA - 08.06.2022 KW - Hydrogen Trade KW - Publications KW - Patents KW - Standards KW - Technological Innovation System KW - Technology Gap Theory PY - 2022 AN - OPUS4-55062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa T1 - Fuel-cell Vehicles in Relation to Electric and Internal Combustion Engine Vehicles – An Analysis of Technology Relations based on Publications, Patents, Standards N2 - This presentation was held at the EURAS 2023 Conference in Aachen. Against the backdrop of the sustainability transition of economies worldwide, decarbonizing road traffic is high on the agenda. This has focused the interest of policymakers and automobile manufacturers on sustainable, zero-emission powertrain technologies. Among these technologies, hydrogen fuel cell (FC) vehicles have a positive climate impact, given that their hydrogen is produced from renewable energy. However, FC vehicles have not yet gained significant market shares. Therefore, based on the technological innovation systems (TIS) approach, this study analyzes how FC vehicles are influenced by EVs and internal combustion engine (ICE) vehicles as their context structures. To operationalize the technology relations between our focal FC-TIS and its context structures, we use the sum of international publications, patents filed at the European Patent Office, and international ISO and IEC standards as indicators for each technology. Our results show that the FC-TIS is dominated by its context structures, especially regarding commercially relevant patents and international standards. Therefore, we conclude that the FC-TIS is in its formative life-cycle phase and identify the need for intensified patenting and standardization in relation to the competing EVs and ICE vehicles. T2 - 27th EURAS Annual Standardisation Conference - (Responsible) Standardisation for Smart Systems CY - Aachen, Germany DA - 28.06.2023 KW - Technological innovation system (TIS) KW - Technology interaction KW - Fuel cell vehicles KW - Publications KW - Patents KW - Standards PY - 2023 AN - OPUS4-57841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa T1 - Exploring the Technological Innovation System for Hydrogen Technologies - Four Essays on the Roles of Research, Innovation, and Safety N2 - Presentation of the doctoral thesis held at the PhD Colloquium of the Chair of Innovation Management, Freie Universität Berlin. Hydrogen has recently come into political and industrial focus due to its potential to advance the transition to a net-zero economy. Despite this recognized potential, the market ramp-up of hydrogen technologies has not yet been realized at large. Therefore, this thesis attempts to investigate how advances in hydrogen research, innovation, and safety link up to market formation using the Technological Innovation Systems (TIS) and Quality Infrastructure (QI) frameworks. Thereupon, the thesis formulates several recommendations for transitioning to a hydrogen economy. T2 - PhD Colloquium of the Chair of Innovation Management (Freie Universität Berlin) CY - Berlin, Germany DA - 09.01.2024 KW - Hydrogen KW - Research and innovation KW - Innovation system KW - Safety PY - 2024 AN - OPUS4-59400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa T1 - Drivers and Barriers to the Adoption of Hydrogen Technologies in Germany and the Republic of Korea - A Multidimensional Stakeholder Analysis N2 - This presentation was held at the Eu-SPRI 2023 Conference and provides a comparative analysis of the hydrogen economies in Germany and the Republic of Korea, highlighting similarities and differences. Thereupon, the presentation delves into the requirements for the development of a hydrogen economy, including recommendations for policymaking. T2 - The Eu-SPRI Annual Conference 2023 CY - Brighton, UK DA - 14.06.2023 KW - Country comparison KW - Hydrogen economy KW - Technological innovation system KW - Multidimensional hydrogen technology adoption PY - 2023 AN - OPUS4-57716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa T1 - Drivers and Barriers to the Adoption of Hydrogen Technologies in Germany and the Republic of Korea - A Multidimensional Stakeholder Analysis N2 - The presentation provides a comparative analysis of the hydrogen economies in Germany and the Republic of Korea, highlighting similarities and differences. Thereupon, the presentation delves into the requirements for the development of a hydrogen economy, including the political and regulatory framework. T2 - Colloquium of the Research Institute for Sustainability (RIFS) Helmholtz Centre Potsdam - Research Group "Geopolitics of Transitions in Energy and Industry" CY - Online meeting DA - 05.06.2023 KW - Hydrogen economy KW - Technological innovation system KW - Country comparison PY - 2023 AN - OPUS4-57606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa A1 - Blind, K. ED - Jakobs, K. T1 - An Analysis of the Three Knowledge and Technology Transfer Channels: Publications, Patents, Standards – The Case of Hydrogen Technology N2 - Climate change and the need to reduce greenhouse gas emissions pose tremendous challenges to policymakers, the economy, and society. In this context, the development of clean, low-emission technologies plays a crucial role in mitigating the negative impact of fossil fuels on the climate. Hydrogen is a promising energy carrier and fuel that, thanks to its versatility, can be used in many applications. However, the adoption of hydrogen technology requires sufficient trust in its safety. To proxy the development of hydrogen safety innovations, we provide an analysis along the three knowledge and technology transfer channels of publications, patents, and standards. Our results show that research on hydrogen safety has increased significantly in the last decades, with hydrogen safety patents experiencing a general upward trend between 1980 and 2020, just recently decreasing. However, an analysis of almost 100 international hydrogen and fuel cell standards shows only a small number of references to scientific publications. This apparently limited transfer of knowledge from publications points to the need to optimize the coordination of the three knowledge and technology transfer channels for the future development of hydrogen technology. Based on the exploration of this gap, we recommend that research on the three channels for hydrogen be intensified and that the impact of hydrogen safety technology research and development on their diffusion be investigated. T2 - 25th EURAS Annual Standardisation Conference – Standardisation and Innovation CY - Aachen, Germany DA - 05.09.2021 KW - Hydrogen KW - Fuel Cells KW - Knowledge and Technology Transfer KW - Publications KW - Patents KW - Standards KW - Safety PY - 2021 SN - 978-3-95886-421-4 SP - 1 EP - 20 CY - Mainz AN - OPUS4-53912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa A1 - Blind, K. ED - Jakobs, K. ED - Kim, D.-h. T1 - The Impact of Publications, Patents, and Standards on International Trade - The Case of Hydrogen N2 - Hydrogen as a clean energy carrier has received increased attention due to climate change and the need to introduce new, low-emissions technologies to the market. However, the drivers of increased hydrogen use have been barely explored. Therefore, this research paper investigates the impacts of publications, patents, and standards on international hydrogen trade, an established technology diffusion channel. In a fixed-effects (FE) regression model covering 37 countries between 1995 and 2020, we demonstrate that publications, patents, and standards are associated with increased levels of hydrogen exports and imports. Furthermore, we test the technology gap theory and explore the meaning of our empirical results for the hydrogen technological innovation system (TIS). Among others, we show that publications, patents, and standards can contribute to a more developed hydrogen TIS. T2 - 26th EURAS Annual Standardisation Conference – Standards for Digital Transformation: Blockchain and Innovation CY - Glasgow, Great Britain DA - 08.06.2022 KW - Hydrogen Trade KW - Publications KW - Patents KW - Standards KW - Technological Innovation System KW - Technology Gap Theory PY - 2022 SN - 978-3-95886-446-7 SP - 25 EP - 44 PB - Verlag Mainz CY - Mainz AN - OPUS4-55061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asna Ashari, Parsa A1 - Blind, K. A1 - Koch, Claudia T1 - Knowledge and technology transfer via publications, patents, standards: Exploring the hydrogen technological innovation system N2 - Clean technologies play a crucial role in reducing greenhouse gas emissions and protecting the climate. Hydrogen is a promising energy carrier and fuel that can be used in many applications. We explore the global hydrogen technological innovation system (TIS) by analyzing the three knowledge and technology transfer channels of publications, patents, and standards. Since the adoption of hydrogen technologies requires trust in their safety,this study specifically also focuses on hydrogen safety. Our results show that general and hydrogen safety research has increased significantly while patenting experienced stagnation. An analysis of the non-patent literature in safety patents shows little recognition of scientific publications. Similarly, publications are underrepresented in the analyzed 75 international hydrogen and fuel cell standards. This limited transfer of knowledge from published research to standards points to the necessity for greater involvement of researchers in standardization. We further derive implications for the hydrogen TIS and recommendations for a better and more impactful alignment of the three transfer channels. KW - Technological innovation system KW - Hydrogen safety KW - Knowledge and technology transfer KW - Publications KW - Patents KW - Standards PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564250 DO - https://doi.org/10.1016/j.techfore.2022.122201 SN - 0040-1625 VL - 187 SP - 1 EP - 14 PB - Elsevier Inc. AN - OPUS4-56425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Asna Ashari, Parsa A1 - Blind, Knut T1 - The effects of hydrogen research and innovation on international hydrogen trade N2 - Climate change and the pressure to decarbonize, as well as energy security concerns, have drawn the attention of policymakers and the industry to hydrogen energy. To ad-vance the hydrogen economy at a global scale, research and innovation progress is of significant importance, among others. However, previous studies have provided only lim-ited quantitative evidence of the effects of research and innovation on the formation of a global hydrogen market. Instead, they postulate rather than empirically support this rela-tionship. Therefore, this study analyzes the effects of research and innovation measured by scientific publications, patents, and standards on bilateral hydrogen trade flows for 32 countries between 1995 and 2019 in a gravity model of trade, using regression analyses and Poisson Pseudo Maximum Likelihood (PPML) estimation. The main results of the PPML estimation show that research and innovation progress is indeed associated with increased trade, especially with patenting and (international) standardization enhancing hydrogen export volumes. As policy implications, we derive that increased public R&D funding can help increase the competitiveness of hydrogen energy and boost market growth, along with infrastructure support and harmonized standards and regulations. KW - Hydrogen supply KW - Global hydrogen market KW - Research and innovation KW - Push and pull effects KW - Hydrogen policies PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594875 DO - https://doi.org/10.1016/j.enpol.2023.113974 SN - 0301-4215 VL - 186 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-59487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -