TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao A1 - Richter, Silke A1 - Benner, Philipp A1 - Recknagel, Sebastian T1 - The use of reference materials to improve the calibration strategy in glow discharge optical emission spectroscopy with machine learning N2 - Glow discharge optical emission spectroscopy (GD-OES) is a technique for the analysis of solids such as metals, semiconductors, and ceramics. A low-pressure glow discharge plasma is applied in this system, which ‘sputters’ and promotes the sample atoms to a higher energy state. When the atoms return to their ground state, they emit light with characteristic wavelengths, which a spectrometer can detect. Thus, GD-OES combines the advantages of ICP-OES with solid sampling techniques, which enables it to determine the bulk elemental composition and depth profiles. However, direct solid sampling methods such as glow-discharge spectroscopy require reference materials for calibration due to the strong matrix effect. Reference materials are essential when the accuracy and reliability of measurement results need to be guaranteed to generate confidence in the analysis. These materials are frequently used to determine measurement uncertainty, validate methods, suitability testing, and quality assurance. In addition, they guarantee that measurement results can be compared to recognized reference values. Unfortunately, the availability of certified reference materials suited to calibrate all elements in different matrix materials is limited. Therefore various calibration strategies and the preparation of traceable matrix-matched calibration standards will be discussed. Machine learning is an essential component of the growing field of data science. Through statistical methods, algorithms are trained to make classifications or predictions, uncovering key insights within data mining projects. Therefore, it was tried in our work to combine GD-OES with machine learning strategies to establish a new and robust calibration model, which can be used to identify the elemental composition and concentration of metals from a single spectrum. For this purpose, copper reference materials from different manufacturers, which contain various impurity elements, were investigated using GD-OES. The obtained spectra information are evaluated with different algorithms (e.g., gradient boosting and artificial neural networks), and the results are compared and discussed in detail. T2 - Winter Conference on Plasma Chemistry 2022 CY - Tucson, AZ, USA DA - 17.01.2022 KW - GDOES KW - Machine learning KW - Reference materials KW - Calibration KW - Cooper PY - 2022 AN - OPUS4-56497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Winckelmann, Alexander A1 - Hoffmann, Volker A1 - You, Zengchao A1 - Richter, Silke A1 - Recknagel, Sebastian T1 - What does GD-OES reveal about the aging and manufacturing processes of lithium-ion batteries? N2 - Glow-Discharge Optical Emission Spectroscopy (GD-OES), a powerful analytical technique, sheds light on the two critical aspects of lithium-ion batteries (LIBs): manufacturing and aging 1, 2. We optimized cell production in manufacturing by adjusting parameters, including cathode doping, electrolyte concentration, and pressing force. GD-OES provided in-depth elemental composition and homogeneity analysis, which is crucial for identifying optimal manufacturing conditions. These findings were validated by electrochemical impedance spectroscopy, confirming the quality of the manufactured batteries. Shifting the focus to aging, we use GD-OES for fluorine depth profiling, a key element in understanding polymer and electrolyte degradation. However, fluorine presents analytical challenges. We addressed this by substituting argon with a neon:argon mixture, which significantly enhanced fluorine detection sensitivity. This advancement not only improves accuracy but also holds the potential to guide sustainable and cost-efficient manufacturing strategies. Through its versatility, GD-OES has proven to be a powerful tool for not only optimizing LIB manufacturing processes but also gaining deeper insights into their aging mechanisms. This research extends beyond academic interest, offering tangible benefits for the industry by translating into improved battery quality, extended lifespan, and overall performance. T2 - The 6th International Glow Discharge Spectroscopy Symposium CY - Liverpool, United Kingdom DA - 21.04.2024 KW - GD-OES KW - Depth profiles KW - Lithium KW - Battery KW - Fluorine KW - Aging KW - Manufacturing KW - Glow-discharge PY - 2024 AN - OPUS4-59945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Vogl, Jochen A1 - Riedel, Jens A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Applications of atomic absorption spectrometry for lithium isotope analysis N2 - An alternative method for lithium isotope analysis by using high-resolution atomic absorption spectrometry (HR-CS-AAS) is proposed herein. This method is based on monitoring the isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by state-of-the-art HR-CS-AAS. Isotope analysis can be used for (i) the traceable determination of Li concentration and (ii) isotope amount ratio analysis based on a combination of HR-CS-AAS and spectral data analysis by machine learning (ML). In the first case, the Li spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Precision was further improved by using lanthanum as internal spectral standard. The procedure has been validated using human serum-certified reference materials. The results are metrologically comparable and compatible with the certified values. In the second case, for isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol mol−1. The training ML model was validated with certified reference materials. The procedure was applied to the isotope amount ratio determination of a set of stock chemicals and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. These determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9‰ to 6.2‰. This precision was sufficient to resolve naturally occurring variations. The NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification to assess its suitability for technical applications. The results obtained were metrologically compatible with each other. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium KW - HR-CS-AAS KW - Chemometrics KW - Atomic spectrometry PY - 2022 AN - OPUS4-56498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Neues Energielabel N2 - Warum gibt es ein neues Label und welche Änderungen ergeben sich daraus? Kurzvortrag anlässlich der VZBV-Veranstaltung "Mehr Transparenz für Verbraucher durch Energielabel und Energieausweis" im Rahmen der Berliner Energietage 2018 T2 - Berliner Energietage 2018 CY - Berlin, Germany DA - 07.05.2018 KW - Energieverbrauchskennzeichnung KW - Verbraucherschutz KW - Energieeffizienz PY - 2018 AN - OPUS4-44869 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Ökodesign und Energielabel: Entwicklung, geltendes Recht und Ausblick N2 - Der Vortrag gibt einen Überblick über die Entwicklung der Anforderungen, die geltenden und kommenden Regeln für Produkte unter den beiden Rechtsinstrumenten und berührt die Frage, was in Zukunft den Schwerpunkt der Rechtssetzung darstellen wird T2 - Jahrestagung 2020 FA Haushaltstechnik der dgh CY - Nuremberg, Germany DA - 06.02.2020 KW - Ökodesign KW - Energieverbrauchskennzeichnung KW - Energieeffizienz KW - Ressourceneffizienz KW - EU-Recht PY - 2020 AN - OPUS4-50355 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Die Ökodesign-Richtlinie - geltendes Recht und neue Entwicklungen N2 - Überblick zur Ökodesignrichtlinie und zur Energieverbrauchskennzeichnung mit den Schwerpunkten Elektromotoren und Ressourceneffizienzanforderungen. T2 - Umwelt-Workshop der IHK Reutlingen CY - Reutlingen, Baden-Wuerttemberg, Germany DA - 09.09.2019 KW - Ökodesign KW - Energieeffizienz KW - Ressourceneffizienz PY - 2019 AN - OPUS4-48904 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris A1 - Schlegel, Moritz-Caspar T1 - One step back, two steps forward - resource efficiency requirements within ecodesign N2 - Resource efficiency is a much discussed topic in terms of improving the sustainability of energy related and energy non-related products. Resource efficiency aspects such as the availability of spare parts, the ability to dismantle, etc. have been included in draft working documents in the revision of several already existing Ecodesign regulations as a first step. However, often these aspects are not consistent with the current technology and design of these products. A possible reason could be a lack of sufficient consultation or of a methodology which is sufficiently tailored for this topic. The established strategies and tools, used by policymakers, such as the Methodology for the Ecodesign of Energy-related Products (MEErP), do not seem to deal with these aspects appropriately. Draft requirements need to be very well developed before being discussed with member states and other related stakeholders, because including resource efficiency parameters could lead to additional, very wide-ranging effects on society. This topic cannot be covered well with legislative tools developed primarily for energy aspects. In this paper, a method is presented which can be used to combine products’ properties with crucial resource efficiency indicators. The method can be used to develop a set of draft legislative requirements and to pre-evaluate these requirements by target groups which would be affected by additional legal requirements. These include: market surveillance authorities, standardization organizations, manufacturers and their associations, environmental organizations and research facilities. The method incorporates stakeholders’ feedback to identify potential resource efficiency measures for materials and/or products, their impact on the European ecology, economy and society. Based on this it would help to develop legislative requirements which are feasible and desirable. The results can then be fed into the formal legislative process, probably speeding it up. T2 - ECEEE 2019 Summer Study on Energy Efficiency CY - Belambra Presqu'île de Giens, France DA - 03.06.2019 KW - Circular economy KW - Ecodesign KW - Energy policy KW - Resources PY - 2019 AN - OPUS4-48427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Ökodesign und EnvK - Entwicklung, geltendes Recht und Ausblick - Schwerpunkt Haushaltsgeräte N2 - Folien zum Vortrag beim HEA-Fachausschuss effiziente Haushaltsgeräte zu den Themen Ökodesign und EnVK T2 - Sitzung des Fachausschusses effiziente Haushaltsgeräte der HEA CY - Berlin, Germany DA - 16.10.2019 KW - Energieverbrauchskennzeichnung KW - Energieeffizeinz KW - Ökodesign KW - Ressourceneffizienz PY - 2019 AN - OPUS4-49370 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Ökodesign und EnvK - Entwicklung, geltendes Recht und Ausblick - Schwerpunkt Gebäudetechnik N2 - Folien zum Vortrag beim HEA-Fachausschuss FA Effiziente Gebäudeenergieversorgung, HEA T2 - Sitzung des Fachausschusses effiziente Gebäudeenergieversorgung, HEA CY - Berlin, Germany DA - 16.10.2019 KW - Energieverbrauchskennzeichnung KW - Energieeffizeinz KW - Ökodesign KW - Ressourceneffizienz PY - 2019 AN - OPUS4-49373 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akkerman, Floris T1 - Aktuelles zur Ökodesign-Verordnung - Entwicklung und Einschätzung zum Inverkehrbringen N2 - Vorstellung der Rechtsinstrumente Ökodesign, Darstellung der Entwicklung und Einschätzung zu Szenarien zum Inverkehrbringen am Beispiel Kühlmöbel T2 - Handel-Hersteller-Dialog der FG Kühlmöbel des VDMA CY - Online meeting DA - 07.12.2020 KW - Ökodesign KW - Energieverbrauchskennzeichnung KW - Energieeffizienz KW - Kühlmöbel KW - Supermarktkälte PY - 2020 AN - OPUS4-51817 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -