TY - JOUR A1 - Asna Ashari, Parsa A1 - Blind, Knut T1 - The effects of hydrogen research and innovation on international hydrogen trade JF - Energy Policy N2 - Climate change and the pressure to decarbonize, as well as energy security concerns, have drawn the attention of policymakers and the industry to hydrogen energy. To ad-vance the hydrogen economy at a global scale, research and innovation progress is of significant importance, among others. However, previous studies have provided only lim-ited quantitative evidence of the effects of research and innovation on the formation of a global hydrogen market. Instead, they postulate rather than empirically support this rela-tionship. Therefore, this study analyzes the effects of research and innovation measured by scientific publications, patents, and standards on bilateral hydrogen trade flows for 32 countries between 1995 and 2019 in a gravity model of trade, using regression analyses and Poisson Pseudo Maximum Likelihood (PPML) estimation. The main results of the PPML estimation show that research and innovation progress is indeed associated with increased trade, especially with patenting and (international) standardization enhancing hydrogen export volumes. As policy implications, we derive that increased public R&D funding can help increase the competitiveness of hydrogen energy and boost market growth, along with infrastructure support and harmonized standards and regulations. KW - Hydrogen supply KW - Global hydrogen market KW - Research and innovation KW - Push and pull effects KW - Hydrogen policies PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594875 DO - https://doi.org/10.1016/j.enpol.2023.113974 SN - 0301-4215 VL - 186 SP - 1 EP - 15 PB - Elsevier B.V. AN - OPUS4-59487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Asna Ashari, Parsa T1 - Exploring the Technological Innovation System for Hydrogen Technologies - Four Essays on the Roles of Research, Innovation, and Safety N2 - Presentation of the doctoral thesis held at the PhD Colloquium of the Chair of Innovation Management, Freie Universität Berlin. Hydrogen has recently come into political and industrial focus due to its potential to advance the transition to a net-zero economy. Despite this recognized potential, the market ramp-up of hydrogen technologies has not yet been realized at large. Therefore, this thesis attempts to investigate how advances in hydrogen research, innovation, and safety link up to market formation using the Technological Innovation Systems (TIS) and Quality Infrastructure (QI) frameworks. Thereupon, the thesis formulates several recommendations for transitioning to a hydrogen economy. T2 - PhD Colloquium of the Chair of Innovation Management (Freie Universität Berlin) CY - Berlin, Germany DA - 09.01.2024 KW - Hydrogen KW - Research and innovation KW - Innovation system KW - Safety PY - 2024 AN - OPUS4-59400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -