TY - CONF A1 - Madia, Mauro T1 - Damage Tolerant Approach in Additively Manufactured Metallic Materials N2 - Damage tolerance counts as one of the most widespread approach to fatigue assessment and surely as one of the most promising in understanding the process-structure-property-performance relationships in additively manufactured metallic materials. Manufacturing defects, surface roughness, microstructural features, short and long crack fatigue propagation, residual stresses and applied loads can be taken into consideration in a fracture mechanics-based fatigue assessment. Many aspects are crucial to the reliable component life prediction. Among those a prominent role is played by an accurate measurement and modelling of the short crack fatigue behavior, and reliable statistical characterization of defects and residual stresses. This work aims at addressing the issues related to both experimental testing, fatigue and fatigue crack propagation, and fracture mechanics-based modelling of fatigue lives. Examples will be provided on an additively manufactured AISI 316 L. T2 - TMS2021 VIRTUAL CY - Online meeting DA - 15.03.2021 KW - AISI 316L KW - Additive Manufacturing KW - Damage Tolerance KW - Microstructure KW - Defects KW - Residual Stress PY - 2021 AN - OPUS4-52293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano-Munoz, Itziar A1 - Kromm, Arne A1 - Haberland, C. A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing N2 - Laser based powder bed fusion additive manufacturing offers the flexibility to incorporate standard and userdefined scan strategies in a layer or in between the layers for the customized fabrication of metallic components. In the present study, four different scan strategies and their impact on the development of microstructure, texture, and residual stresses in laser powder bed fusion additive manufacturing of a nickel-based superalloy Inconel 718 was investigated. Light microscopy, scanning electron microscopy combined with electron backscatter diffraction, and neutron diffraction were used as the characterization tools. Strong textures with epitaxially grown columnar grains were observed along the build direction for the two individual scan strategies. Patterns depicting the respective scan strategies were visible in the build plane, which dictated the microstructure development in the other planes. An alternating strategy combining the individual strategies in the successive layers and a 67◦ rotational strategy weakened the texture by forming finer microstructural features. Von Mises equivalent stress plots revealed lower stress values and gradients, which translates as lower distortions for the alternating and rotational strategies. Overall results confirmed the scope for manipulating the microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing by effectively controlling the scan strategies. KW - Additive manufacturing KW - Laser powder bed fusion KW - Nickel-based superalloys KW - Scan strategies KW - Residual stresses KW - Microstructure and texture PY - 2021 DO - https://doi.org/10.1016/j.addma.2020.101792 VL - 38 SP - 1792 PB - Elsevier B.V. AN - OPUS4-51944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano-Munoz, Itziar A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Kromm, Arne A1 - Madia, Mauro ED - Bruno, Giovanni T1 - A Critical Discussion on the Diffraction-Based Experimental Determination of Residual Stress in AM Parts N2 - As opposed to reviewing results on experimental determination of residual stress by diffraction, this paper discusses the open issues when dealing with residual stress determination in additive manufactured parts, in particular those manufactured with laser powder bed fusion techniques. Three points are addressed in detail: (a) the proper determination of the strain-free reference d0, (b) the problem of the determination of the principal axes, and (c) the use of the correct diffraction elastic constants. It is shown that all methods to determine the strain-free reference d0 suffer from caveats, and care must be taken in evaluating the most suitable for the problem being tackled. In addition, it is shown that, in some systems, the principal axes do correspond to the geometrical axes of the specimen, but this needs to be systematically checked, especially in the case of uni- or bidirectional hatching strategies. Finally, the need to experimentally determine the proper diffraction elastic constants is underlined, especially in the case of strongly textured specimens, which again depends on the deposition strategy. T2 - ASTM ICAM 2020 – ASTM International Conference on Additive Manufacturing CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Diffraction KW - Residual Stress PY - 2020 DO - https://doi.org/10.1520/STP163120190148 VL - STP1631 SP - 122 EP - 138 PB - ASTM International CY - USA AN - OPUS4-51347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Residual stresses in am review and oulook of activities at BAM N2 - Critical discussion of residual stress Analysis in additive manufacturing from examples in literature and an overview of activities at BAM T2 - Workshop on Fatigue of Additive Manufactured Metallic Components CY - BAM, Berlin, Germany DA - 16.05.2019 KW - Diffraction KW - Additive Manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - How Temperature Gradient Influences the Formation of Residual Stresses in Metallic Parts Made by L-PBF N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured (AM) parts and important factors for residual stress formation which have implications on structural integrity. This study examined the influence of heat input on the distribution of residual stresses in two prisms produced by laser powder bed fusion (L-PBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two distinct helix scanning strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. Residual stresses were characterised at one plane perpendicular to the building direction at half of its build height using neutron diffraction. In addition, the defect distribution was analysed via micro X-ray computed tomography (µCT) in a twin specimen. Both scanning strategies reveal residual stress distributions typical for AM: compressive stresses in the bulk and tensile stresses at the surface. However, temperature gradients and maximum stress levels differ due to the different heat input. Regarding the X-ray µCT results, they show an accumulation of defects at the corners where the laser direction turned through 90°. The results demonstrate that neutron diffraction and X-ray µCT can be successfully used as non-destructive methods to analyse through-thickness residual stress and defect distribution in AM parts, and in the presented case, illustrate the influence of scanning strategies. This approach contributes to deeper assessment of structural integrity of AM materials and components. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norwegen DA - 09.09.2019 KW - AGIL KW - Neutron diffraction KW - Thermography KW - Additive manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - Separation of the Formation Mechanisms of Residual Stresses in LPBF 316L N2 - Rapid cooling rates and steep temperature gradients are characteristic of additively manufactured parts and important factors for the residual stress formation. This study examined the influence of heat accumulation on the distribution of residual stress in two prisms produced by Laser Powder Bed Fusion (LPBF) of austenitic stainless steel 316L. The layers of the prisms were exposed using two different border fill scan strategies: one scanned from the centre to the perimeter and the other from the perimeter to the centre. The goal was to reveal the effect of different heat inputs on samples featuring the same solidification shrinkage. Residual stress was characterised in one plane perpendicular to the building direction at the mid height using Neutron and Lab X-ray diffraction. Thermography data obtained during the build process were analysed in order to correlate the cooling rates and apparent surface temperatures with the residual stress results. Optical microscopy and micro computed tomography were used to correlate defect populations with the residual stress distribution. The two scanning strategies led to residual stress distributions that were typical for additively manufactured components: compressive stresses in the bulk and tensile stresses at the surface. However, due to the different heat accumulation, the maximum residual stress levels differed. We concluded that solidification shrinkage plays a major role in determining the shape of the residual stress distribution, while the temperature gradient mechanism appears to determine the magnitude of peak residual stresses. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 08.12.2020 KW - Computed tomography KW - Neutron diffraction KW - X-ray diffraction KW - Additive manufacturing KW - Residual stress KW - Thermography KW - LPBF KW - Laser Powder Bed Fusion PY - 2020 AN - OPUS4-51793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Metal Additive manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) enable the fabrication of complex structures, giving rise to potential improvements in component and manufacturing efficiency. However, the processes are typically characterized by the generation of high magnitude residual stress (RS) which can have detrimental consequences for subsequent applications. Therefore, the characterization of these RS fields and the understanding of their formation and mitigation through optimized processing is crucial for the wider uptake of the technology. Due to the potential complex nature and high value of components manufactured by LPBF, it is important to have suitable characterisation methods which can determine the spatial variations of RS in a non-destructive manner. Neutron diffraction is considered to be the best suited for these requirements. However, the microstructures developed in the complex thermal cycles experience in the production can pose challenges to the ND method for RS analysis. The BAM has conducted significant research over the past years to overcome these obstacles, enabling higher confidence in the RS determined in LPBF materials by neutron diffraction. This contribution will overview some of these advancements made recently at European neutron sources including on Stress-Spec at FRM2/MLZ. T2 - MLZ User Meeting 2021 CY - Online meeting DA - 07.12.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - AGIL KW - Manufact PY - 2021 AN - OPUS4-54044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Residual Stresses in Additive Manufacturing (L-PBF) N2 - Additive manufacturing (AM) technologies are experiencing an exceedingly rapid growth, driven by their potential through layer wise deposition for transformational improvements of engineering design, leading to efficiency and performance improvements. Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) method which permits the fabrication of complex structures that cannot otherwise be produced via conventional subtractive manufacturing methods. Nevertheless, the rapid cooling rates associated with this process results in the formation of significant and complex residual stress (RS) fields. A large body of both experimental and simulation research has been dedicated in recent years to the control and mitigation of RS in AM. In order to validate simulations with the end goal of being able to model the residual stress state in AM components and to devise strategies for their reduction during manufacturing, experimental methods need to be able to accurately determine 3D residual stresses fields in complex geometries. Several destructive and non-destructive methods can be used to analyze the RS state, the choice of which depends on the geometry and the information required. Diffraction-based methods using penetrating neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk residual stresses in complex components and track their changes following applied thermal or mechanical loads. This presentation will overview the success stories of using large scale facilities by the BAM for the characterization of residual stresses in additively manufactured metallic alloys. In particular, the study of the influence of process parameters on the residual stress state and the relaxation of these stresses through heat treatment will be presented. However there remains challenges to overcome particularly of the hypotheses underlying the experimental determination of residual stresses, which will be discussed. T2 - 10th International Conference on Mechanical Stress Evaluation by Neutron and Synchrotron Radiation – MECASENS 2021 CY - Prague, Czech Republic DA - 25.11.2021 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - L-PBF KW - AGIL PY - 2021 AN - OPUS4-54105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yu, C.-H. T1 - Distribution of subsurface residual stress as a function of wall thickness in stainless steel 316L LPBF structures N2 - The subsurface residual stress in laser powder bed fused 316L structures was analyzed using X-ray diffraction (XRD) and layer removal. The influence of varying structure thicknesses was investigated. In this study the importance of combining surface roughness measurements with XRD was shown. Moreover, a clear relation between the structure thickness and the subsurface residual stress profiles was observed. T2 - The 11th International Conference on Residual Stress CY - Nancy, Frankreich DA - 28.03.2022 KW - AGIL KW - Residual Stress KW - X-ray Diffraction KW - Additive Manufacturing PY - 2022 AN - OPUS4-54581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Rhode, Michael A1 - Kannengiesser, Thomas A1 - Kromm, Arne T1 - In-service and repair welding of pressurized hydrogen pipelines–a review on current challenges and strategies N2 - Hydrogen is the energy carrier for a sustainable future without fossil fuels. As this requires a reliable transportation infrastructure, the conversion of existing natural gas (NG) grids is an essential part of the worldwide individual national hydrogen strategies, in addition to newly erected pipelines. In view of the known effect of hydrogen embrittlement, the compatibility of the materials already in use (typically low-alloy steels in a wide range of strengths and thicknesses) must be investigated. Initial comprehensive studies on the hydrogen compatibility of pipeline materials indicate that these materials can be used to a certain extent. Nevertheless, the material compatibility for hydrogen service is currently of great importance. However, pipelines require frequent maintenance and repair work. In some cases, it is necessary to carry out welding work on pipelines while they are under pressure, e.g., the well-known tapping of NG grids. This in-service welding brings additional challenges for hydrogen operations in terms of additional hydrogen absorption during welding and material compatibility. The challenge can be roughly divided into two parts: (1) the possible austenitization of the inner piping material exposed to hydrogen, which can lead to additional hydrogen absorption, and (2) the welding itself causes an increased temperature range. Both lead to a significantly increased hydrogen solubility in the respective materials compared to room temperature. In that connection, the knowledge on hot tapping on hydrogen pipelines is rare so far due to the missing service experiences. Fundamental experimental investigations are required to investigate the possible transferability of the state-of-the-art concepts from NG to hydrogen pipeline grids. This is necessary to ensure that no critical material degradation occurs due to the potentially increased hydrogen uptake. For this reason, the paper introduces the state of the art in pipeline hot tapping, encompassing current research projects and their individual solution strategies for the problems that may arise for future hydrogen service. Methods of material testing, their limitations, and possible solutions will be presented and discussed. KW - In-service KW - Hydrogen KW - Repair welding KW - Pipeline PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638944 DO - https://doi.org/10.1007/s40194-025-02127-x SN - 0043-2288 SP - 1 EP - 24 PB - Springer Science and Business Media LLC AN - OPUS4-63894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kanna, Naveen T1 - Ermittlung von Kitagawa-Takahashi-Diagrammen mittels Gleichstrom-Potentialsondenmessungen N2 - Das Kitagawa-Takahashi Diagramm ist ein wichtiges Werkzeug zur Beschreibung der ausgeprägten Langzeitfestigkeit fehlerbehafteter Bauteile. Insbesondere im technisch relevanten Übergangsbereich unterscheiden sich jedoch die verwendeten Modelle. Daher ist für eine sichere Aussage eine experimentelle Absicherung in diesem Bereich zwingend notwendig. In dieser Arbeit wird eine Methode vorgestellt, die eine einfache und schnelle Absicherung des Verlaufs im Übergangsbereich erlaubt. Hierzu werden in Flachproben mittels eines Gravierlasers scharfe Kerben mit einer definierten Breite und Tiefe eingebracht. Die so präparierten Proben werden mit blockweise steigender Last bis zum Bruch ermüdet. Die Erkennung von Anrissen erfolgt mittels einer Gleichstrom-Potentialsonde mit der auch die Länge des Lastblocks gesteuert wird. T2 - Tagung AK-Bruch 2025 CY - Cologne, Germany DA - 18.02.2025 KW - Ausgeprägte Langzeitfestigkeit KW - Materialdefekte KW - KT-Diagramm KW - Gleichstrom-Potentialsonde PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625992 AN - OPUS4-62599 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Thermal desorption spectroscopy for identification of diffusion and trapping in CoCrFeMnNi high-entropy alloy at 1,000 bar high-pressure hydrogen N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s). The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. Despite the activation energy, the trap occupancy rate must be considered in terms of a pressure-related hydrogen absorption. The derived apparent hydrogen solubility was in the order: 316L < CoCrFeMnNi-HEA for both charging pressures. Especially, the 1,000 bar values lead to noteworthy results with > 70 wt.ppm for the AISI 316L and >130 wt.ppm for the CoCrFeMnNi. In fact, both the hydrogen diffusion and trapping data on gaseous high-pressure hydrogen charged HEAs are rare so far. The results of the present study allow a deeper understanding of hydrogen trapping in the regarded CoCrFeMnNi-system. T2 - 1st Conference on Hydrogen in Materials Science and Engineering (H2-MSE) CY - Freiburg, Germany DA - 11.02.2025 KW - High-entropy alloy KW - Hydrogen diffusion KW - High-pressure charging KW - Thermal desorption analysis PY - 2025 AN - OPUS4-62543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Influence of Microstructure on the Diffraction-Based Residual Stress Determination in Laser Powder Bed Fused Inconel 718 N2 - Additive manufacturing processes such as laser powder bed fusion (PBF-LB) offer the ability to produce parts in a single manufacturing step. On the one hand, this manufacturing technique offers immense geometric freedom in part design due to its layer-by-layer manufacturing strategy. On the other hand, the localized melting and solidification impose the presence of large temperature gradients in the process. From a microstructural perspective, this inevitably results in micro-segregation and a columnar grain structure, often paired with a significant crystallographic texture. Even worse, these large temperature gradients can lead to internal stress-induced deformation or cracking during processing. At the very least, residual stress is retained in the final structures as a footprint of this internal stress. In this context, diffraction-based methods allow the non-destructive characterization of the residual stress field in a non-destructive fashion. However, the accuracy of these methods is directly related to the microstructural characteristics of the material of interest. First, diffraction-based methods access microscopic lattice strains. To relate these lattice strains to a macroscopic stress, so-called diffraction elastic constants must be known. The deformation behavior is directly linked to the microstructure. Therefore, the diffraction elastic constants also depend on the microstructure. Second, the presence of crystallographic texture should be considered in the residual stress determination, as variations in crystal orientations contribute differently to the diffraction signal. Here we present the influence of the microstructure on the determination of residual stress by diffraction-based methods in as-built PBF-LB Inconel 718 parts. We obtained different microstructures by employing two different scanning strategies. In particular, different crystallographic textures were obtained by changing the relative angle of the scan vectors to the geometric axes of the part. The texture-based characterization of the residual stress field was carried out by surface, sub-surface, and bulk residual stress measurements. It was found that the residual stress determination significantly depends on the microstructure for strong crystallographic textures. T2 - Material Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - Additive Manufacturing KW - Electron Backscatter Diffraction KW - Microstructure KW - Residual Stress KW - X-ray Diffraction PY - 2024 AN - OPUS4-61475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhadeliya, Ashok A1 - Rehmer, Birgit A1 - Fedelich, Bernard A1 - Jokisch, T. A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Fatigue and fracture in dual-material specimens of nickel-based alloys fabricated by hybrid additive manufacturing N2 - The integration of additive manufacturing with traditional processes, termed hybrid additive manufacturing, has expanded its application domain, particularly in the repair of gas turbine blade tips. However, process-related defects in additively manufactured materials, interface formation, and material property mismatches in dual-material structures can significantly impact the fatigue performance of components. This investigation examines the low cycle fatigue and fatigue crack growth behaviors in dual-material specimens of nickel-based alloys, specifically the additively manufactured STAL15 and the cast alloy 247DS, at elevated temperatures. Low cycle fatigue experiments were conducted at temperatures of 950 °C and 1000 °C under a range of strain levels (0.3%–0.8%) and fatigue crack growth tests were conducted at 950 °C with stress ratios of 0.1 and −1. Fractographic and microscopic analyses were performed to comprehend fatigue crack initiation and crack growth mechanisms in the dual-material structure. The results consistently indicated crack initiation and fatigue fracture in the additively manufactured STAL15 material. Notably, fatigue crack growth retardation was observed near the interface when the crack extended from the additively manufactured STAL15 material to the perpendicularly positioned interface. This study highlights the importance of considering yield strength mismatch, as well as the potential effects of residual stresses and grain structure differences, in the interpretation of fatigue crack growth behavior at the interface. KW - Hybrid additive manufacturing KW - Dual-material nickel-based alloys KW - High-temperature fatigue crack growth KW - Low cycle fatigue PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609340 DO - https://doi.org/10.1016/j.jmrt.2024.08.211 SN - 2238-7854 VL - 32 SP - 3737 EP - 3749 PB - Elsevier B.V. AN - OPUS4-60934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Experimentelle Ermittlung zyklischer R-Kurven in additiv gefertigtem AISI 316L Stahl N2 - Diese Untersuchung beschäftigt sich mit der Charakterisierung von Kurzrisswachstum in mittels Laser-Pulverbett-Verschmelzen (LPBF - Laser Powder Bed Fusion) hergestelltem rostfreien austenitischen Stahl. Spezifischer wird die Ermittlung zyklischer R-Kurven untersucht. Diese beschreiben den Aufbau des Widerstands gegen Ermüdungsrisswachstum - d.h. des Schwellenwertes - aufgrund von Rissschließeffekten bei physikalisch kurzen Rissen. Mit Hilfe der zyklischen R-Kurven kann die Fähigkeit eines Bauteils, physikalisch kurze Risse zu arretieren, charakterisiert werden. Wir verfügen damit über eine Schnittstelle zwischen klassischer Ermüdung und Bruchmechanik. Das ist gerade auch für additiv gefertigte (AM – Additive Manufacturing) Materialien von Interesse. Diese weisen prozessintrinsische Defekte auf, die als Initiierungsstellen kurzer Ermüdungsrisse agieren. Im Rahmen der experimentellen Untersuchungen wurden zyklische R-Kurven für konventionellen und LPBF AISI-316L-Stahl ermittelt. Insbesondere wurde der Einfluss verschiedener Wärmebehandlungen (WB1: 450°C, WB2: 800°C und WB3: 900°C) auf das Wachstumsverhalten physikalisch kurzer Risse im LPBF-Material untersucht. Aufgrund hoher Eigenspannungen war die Ermittlung des Kurzrisswachstumsverhaltens bei WB1 nicht möglich. Für WB2 und WB3 ergaben sich sehr unterschiedliche zyklische R-Kurven. Untersuchungen der Eigenspannungen, der Bruchfläche (insbesondere der Rauheit) und der Mikrostruktur sollen die Ursachen für das unterschiedliche Verhalten erklären. Die Ergebnisse werden mit den Verhältnissen in konventionellem Material verglichen. T2 - Tagung des Arbeitskreises Bruchmechanik und Bauteilsicherheit CY - Online meeting DA - 18.02.2021 KW - Additive Manufacturing KW - Zyklische R-Kurve KW - Ermüdungsriss KW - L-PBF KW - 316L PY - 2021 AN - OPUS4-52250 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim T1 - Local mechanical properties of TIG dissimilar metal welded high entropy alloy with austenitic steel AISI 304 N2 - High entropy alloys (HEA) are a new class of materials that have been investigated since the early 2000s and offer great potential to replace conventional alloys. However, since they sometimes have significant contents of expensive alloying elements such as Co or Ni, their use is only conceivable in highly stressed areas of components. For this purpose, the weldability with conventional alloys such as high-alloy austenitic steels must be investigated. In addition to the resulting microstructure, the mechanical properties are also fundamental for the usability of HEAs in DMWs. For this purpose, TIG welds of CoCrFeMnNi HEA (cold rolled and recrystallized state) with AISI 304 austenitic steel are investigated. These mechanical properties are analyzed in this work by means of tensile tests and local hardness measurement. The local strain behavior of the welded joints is also characterized by means of Digital Image Correlation (DIC). The results of the local hardness measurement show a clear influence of the initial condition of the HEA on the HAZ. Thus, the HEA in the cold-rolled condition shows a clear softening because of recrystallization processes in the HAZ. On the other hand, there is no influence on the hardness of the weld metal, which is approx. 200 HV0.1 in both cases. The tensile tests show a consistent failure of the weld in the weld metal. However, regardless of the HEA condition, strengths in the range of the recrystallized HEA (RM ~ 550–600 MPa) are achieved, although with significantly reduced fracture elongations. T2 - IIW Intermediate Meeting of Commission II-A CY - Garching, Germany DA - 06.03.2023 KW - High-entropy alloy KW - Welding KW - Dissimilar metal weld (DMW) joint KW - Mechanical properties KW - Digital image correlation PY - 2023 AN - OPUS4-57108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Abreu Faria, G. A1 - Degener, Sebastian A1 - Polatidis, E. A1 - Čapek, J. A1 - Kromm, Arne A1 - Dovzhenko, G. A1 - Bruno, Giovanni T1 - Texture-based residual stress analysis of laser powder bed fused Inconel 718 parts N2 - Although layer-based additive manufacturing methods such as laser powder bed fusion (PBF-LB) offer an immense geometrical freedom in design, they are typically subject to a build-up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar-type grain growth accompanied by crystallographic texture. Although diffraction-based methods are commonly used to determine the RS distribution in PBF-LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF-LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction-dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel-based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub-surface RS distribution. KW - Additive manufacturing KW - Electron backscattered diffraction KW - Principal stress KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578331 DO - https://doi.org/10.1107/S1600576723004855 SN - 1600-5767 VL - 56 IS - Pt 4 SP - 1076 EP - 1090 AN - OPUS4-57833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel T1 - Measurement of Hydrogen Distributions in Metals by Neutron Radiography and Tomography N2 - Neutron imaging is a valuable tool for measuring hydrogen distributions qualitatively and quantitatively in metals. Time-resolved neutron radiography allows to measure hydrogen mass flow inside cm thick steel samples with ~10 s temporal resolution. Hydrogen accumulations around cracks in embrittled iron samples can be visualized three-dimensionally by neutron tomography. This quality of information allows new insights for the analysis of damage mechanisms on a micrometer scale, e.g. of hydrogen blistering. Even the gas pressure of molecular hydrogen in crack cavities has been measured from tomographic reconstructions to be in the range of 5 MPa to 15 MPa for technical iron. Further, this method is non-destructive and provides local information in situ and in all three dimensions with a spatial resolution of 20 - 30 µm. The combination with other methods gives a new quality of information, e.g. of the hydrogen allocation on fractured surfaces. T2 - Symposium on large scale facilities CY - Berlin, Germany DA - 09.03.2020 KW - Hydrogen embrittlement KW - Neutron imaging KW - Hydrogen diffusion KW - Neutron radiography KW - Neutron tomography PY - 2020 AN - OPUS4-50548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-XIII CY - Online meeting DA - 20.04.2023 KW - Additive Manufacturing KW - High strength steel KW - Residual Stress PY - 2023 AN - OPUS4-59308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Diffusion and trapping of gaseous hydrogen charged CoCrFeMnNi-HEA vs. austenitic steel AISI 316L at pressure up to 1000 bar N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s). The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. T2 - MSE 2024: International Materials Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - High-entropy alloy KW - Hydrogen KW - Trapping KW - Diffusion KW - High-pressure charging PY - 2024 AN - OPUS4-61156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Dissimilar metal TIG weld joints of multiple principal element alloys (MPEA) to austenitic steel 304 N2 - Multi-element alloys (MPEA - Multiple Principal Element Alloys) represent a new class of materials consisting of at least three alloying elements, each with 5 to 35 atomic %. This material class includes high-entropy alloys (HEA, with n ≥ 4 elements). The underlying alloying concept differs fundamentally from conventional materials such as the Fe-based steel. For this purpose, the alloying elements are specifically selected, and the microstructures are adjusted in a single-phase and, in some cases, multi-phase manner. The aim is to identify highly innovative MPEA with individually adjustable properties for industrial applications. In the last 20 years, however, the focus has been on pure material synthesis. With the increase in available material quantities, the focus is on processing issues such as joining and welding processes. In that connection, the weldability of MPEAs has received very little attention so far. Experience with dissimilar metal welds (DMWs) is completely lacking but is essential for the application of these materials if joint to conventional materials. This study presents selected experimental results on the weldability of MPEA-DMWs and the resulting microstructures. For this purpose, the equiatomic CoCrFeMnNi (HEA) was investigated in cold-rolled (CR) and heat-treated (HT) condition and joined by tungsten inert gas (TIG) welding to an austenitic stainless steel 304. The DMWs showed defect-free conditions (no lack of fusion, cracks and so on), whereas the cold-rolling increases the microhardness. The global mechanical properties were obtained by instrumented tensile tests of cross-weld samples and showed sufficient yield and tensile strength comparable to that of the individual base materials (BM). The local strain conditions were determined by digital image correlation and showed the highest local strains to occur in the intermixed weld metal. Indeed, the preferred fracture location of the cross-weld tensile samples was in the weld metal. Finally, the experiments proofed the weldability of the MPEAs to conventional 304. This enables targeted further considerations for example as structural materials. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 04.09.2023 KW - Multi-principal element alloys KW - TIG welding KW - Dissimilar metal weld (DMW) joint KW - Microstructure KW - Mechanical properties KW - Digital Image Correlation (DIC) PY - 2023 AN - OPUS4-58222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Richter, Tim A1 - Schröpfer, Dirk T1 - Charakterisierung der WIG und FSW-Mischverbindungen neuartiger Multielement-Legierungen mit einem austenitischen Stahl N2 - Multielement-Legierungen (MPEA - Multiple Principal Element Alloys), gemeinhin und partiell fälschlicherweise auch als Hochentropielegierungen bezeichnet) stellen eine neue Klasse von Werkstoffen dar, die aus mindestens drei Legierungselementen mit jeweils 5 bis 35 Atom-% bestehen. Somit unterscheidet sich dieses Legierungskonzept fundamental von konventionellen Werkstoffen wie Stahl oder Nickellegierungen. Hierzu werden die Legierungselemente gezielt ausgewählt und die Mikrostrukturen ein- und zum Teil auch mehrphasig eingestellt. Das Ziel ist dabei, hochinnovative MPEA mit individuell einstellbaren Eigenschaften für die industrielle Anwendung zu identifizieren. Dabei werden insbesondere Zielkonflikte, wie bspw. der Trade-off zwischen Festigkeit und Duktilität bei konventionellen Stählen, überwunden. Insbesondere die hohe mechanische Festigkeit bei höchster Korrosionsbeständigkeit sind bei bestimmten Legierungssystemen von hohem Interesse. Hier kann u.a. die Substitution klassischer hochlegierter Stähle oder Ni-Basislegierungen perspektivisch erfolgen. In den letzten 20 Jahren lag der Fokus jedoch auf der reinen Materialsynthese. Mit der Zunahme verfügbarer Werkstoffquantitäten, stehen Verarbeitungsfragen, wie werkstoff- und beanspruchungsgerechte Füge- bzw. Schweißverfahren jetzt im Mittelpunkt. Der Schweißeignung von MPEA wurde bisher nur äußert wenig Aufmerksamkeit zuteil. Erfahrungen zu Mischverbindungen (DMWs - Dissimilar Metal Welds) fehlen dabei vollständig, sind jedoch essenziell für die Anwendung dieser Werkstoffe in Verbindung mit konventionellen Werkstoffen. Die vorliegende Studie präsentiert erstmals im deutschen Sprachraum, die umfassenden experimentellen Ergebnisse zur Schweißeignung von MPEA-Mischverbindungen und der resultierenden Mikrostruktur. Dazu wurden zwei äquiatomare MPEAs in Form einer Co20Cr20Fe20Mn20Ni20 (Hochentropie-) und Co33.3Cr33.3Ni33.3 (Mediumentropielegierung) mittels WIG und Rührreibschweißen mit einem konventionellen, korrosionsbeständigem Cr-Ni-Stahl AISI 304 (1.4301 bzw. X5CrNi18-10) gefügt. Die erstmals untersuchten DMWs resultierten dabei in sehr interessanten Mikrostrukturen, mechanisch-technologische Eigenschaften wurden durch instrumentierte Zugversuche gewonnen, die gleichzeitig der Ermittlung der lokalen Verformung im Schweißnahtbereich dienten (durch Verwendung der berührungslosen DIC-Digital Image Correlation-Technik). Dabei zeigt sich für beide Schweißverfahren eine Erweichung in der Wärmeeinflusszone (WEZ) der MPEAs sowie eine geringfügig verminderte Zugfestigkeit, bei einer deutlichen Abnahme der Bruchdehnung. Durch die Experimente konnte der prinzipielle Nachweis der Schweißeignung der MPEAs für DMWs mit konventionellen Werkstoffen erbracht werden, die auch eine dementsprechende mechanische Beanspruchbarkeit ermöglichen. Dies ermöglicht weitere Betrachtungen zur Anwendung dieser innovativen Werkstoffe. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Schweißeignung KW - Mischverbindung KW - Hochentropielegierung KW - Multielement-Legierung KW - FSW KW - WIG PY - 2023 SN - 978-3-96144-230-0 VL - 389 SP - 615 EP - 623 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-58352 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eissel, A. A1 - Engelking, Lorenz T1 - Bericht aus DVS Vorhaben 01.3211: Schweißzusatzmodifikation zur Gefüge und Eigenschaftsoptimierung bei kombinierter additiver und zerspanender Fertigung hochbelasteter Bauteile N2 - Das DVS-Vorhaben 01.3211 „Herstellung beanspruchungsgerechter Oberflächen durch Kombination innovativer additiver und abtragender Fertigungsschritte an hochbelasteten Komponenten“ ist ein Kooperationsprojekt der Bundesanstalt für Materialforschung und -prüfung (BAM) und dem Institut für Schweißtechnik und Trennende Fertigungsverfahren (ISAF) der Technischen Universität Clausthal. Das Übergeordnete Projektziel ist das Erlangen von Erkenntnissen für eine sichere und wirtschaftliche, kombinierte additive und abtragende Fertigung aus kostenintensiven Werkstoffen hochbelasteter Komponenten insbesondere für KMU. Dabei stehe die beiden Werkstoffe CoCr26Ni9Mo5W (2.4681) und FeNi36 (1.3912) im Fokus. Mittels Modifikation der Schweißzusätze sind homogen und isotrop ausgeprägte Werkstoffeigenschaften und eine Erhöhung der Prozessstabilität und Fertigungsfreiheitsgrade bei der additiven Fertigung erzielbar. Darüber hinaus wird der Einfluss nachfolgender abtragender Bearbeitungsschritte des ultraschallunterstützen und des konventionellen Fräsprozesses untersucht. Es wird eine kurze Übersicht über die bisher erzielten Ergebnisse gegeben. Thematisiert wird sowohl die Mikrostruktur und Härte als auch Ergebnisse der Zerspanbarkeit hinsichtlich der resultierenden Zerspankraft, der Temperatur sowie der erzielten Rauheit unterschiedlicher Modifikationen der FeNi36- und der CoCr-Legierung. T2 - NA 092-00-05 GA "Gemeinschaftsarbeitsausschuss NAS/NMP: Zerstörende Prüfung von Schweißverbindungen (DVS AG Q 4/Q 4.1)" CY - Online meeting DA - 10.03.2022 KW - Legierungsmodifikation KW - Ultraschallunterstütztes Fräsen KW - Additive Fertigung PY - 2022 AN - OPUS4-54913 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Wear behavior of innovative niobium carbide cutting tools in ultrasonic-assisted finishing milling N2 - The resources of niobium exceed the ones of tungsten by an order of magnitude. With 92%, Brazil is today the main global producer of niobium. Hence, niobium carbides (NbC) are a sustainable and economic alternative to conventionally used cutting materials, especially tungsten carbides (WC). Moreover, NbC can be used in Ni alloy matrix and thus offer significant advantages by substituting WC in Co matrix as cutting materials in terms of health risks and raw material price and supply risk. Based on recent studies which found an increased performance of NbC compared to WC cutting tools in machining higher strength steels, the composition NbC12Ni4Mo4VC was chosen for finish machining of a high-strength steel S960QL in this study. The experiments were carried out on an ultrasonic-assisted 5-axis milling machine using NbC tools specially made to benchmark them with commercially available coated WC cutting inserts. In addition, the influence of a coating system for the NbC inserts is tested and evaluated for its performance in the cutting process. Tool wear and cutting force analyses are implied to identify optimal parameter combinations as well as tool properties for the novel NbC tool. Together with the oscillation of ultrasonic-assisted milling, the loads on the component surface and the tool can be reduced and the wear behavior of the novel NbC tool can be refined. These milling tests are accompanied by standardized wear tests, i.e., pin-on-disc, between the aforementioned material combinations, and the results are correlated with each other. Finally, the behavior when using hard-to-cut materials such as Ni alloys, or innovative materials such as iron aluminide is also being tested, as these are constantly in the focus of machining optimization. With this strategy, comprehensive knowledge is achievable for future efficient application of NbC for milling tools, which have already been researched for decades using WC. T2 - 24th International Conference on Wear of Materials CY - Banff, Canada DA - 16.04.2023 KW - Cutting tool KW - Niobium carbide KW - Tool wear KW - Ultrasonic-assisted milling PY - 2023 AN - OPUS4-59258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaiser, Sebastian T1 - Herausforderungen beim Schweißen an in Betrieb befindlichen Wasserstoff-Ferngasleitungen N2 - Als Energieträger der Zukunft kommt grünem Wasserstoff große Bedeutung bei der Energiewende und der zukünftigen, nachhaltigen Energieversorgung zu Teil. Zum effizienten und sicheren Transport des Wasser-stoffs ist die Bereitstellung einer Pipeline-Infrastruktur geplant. Die meisten Länder verfolgen hierbei die Stra-tegie der Umwidmung bestehender Erdgastransportleitungen, ergänzt durch Errichtung neuer Pipelines. Die bestehenden Erdgasnetze sind dabei aus unterschiedlichsten Rohrgeometrien und Materialien zusammenge-setzt. Bei der Umwidmung von Erdgaspipelines zum Transport von Wasserstoff müssen daher Fragen der Materialverträglichkeit hinsichtlich des als Wasserstoffversprödung bekannten Phänomens der Beeinträchti-gung der mechanischen Eigenschaften metallischer Werkstoffe durch Wasserstoff betrachtet werden. Bishe-rige Forschungsergebnisse und Feldversuche deuten darauf hin, dass die niedriglegierten, ferritischen Stähle, aus denen die Ferngasleitungen des Erdgasnetzes überwiegend bestehen, für den Transport von Wasserstoff unter normalen Betriebsbedingungen geeignet sind. Eine Frage, die bislang weniger Aufmerksamkeit erhielt, ist die, wie sich das Schweißen im Betrieb an Wasserstoffpipelines auf die Materialkompatibilität auswirkt. Im Erdgasnetz sind etablierte Verfahren wie beispielsweise das „Hot-Tapping“ unumgänglich für die Instandhal-tung und Erweiterung des Netzes. Hierbei werden an eine im Betrieb befindliche Pipeline geteilte T-Stücke aufgeschweißt, über die die Pipeline dann mit geeigneten Bohrvorrichtungen während eines ununterbroche-nen Betriebs angebohrt werden kann. Um zu beurteilen, ob diese Verfahren gefahrlos auf Wasserstoffpipe-lines übertragen werden können, müssen Problemstellungen betrachtet werden, die sich durch den Wärme-eintrag ins Material beim Schweißen ergeben. Wasserstofflöslichkeit und Diffusionsgeschwindigkeit sind tem-peraturabhängig. Erhöhte Temperaturen könnten eine Wasserstoffaufnahme ins Material bewirken, die zu ei-ner kritischen Degradation der mechanischen Eigenschaften des Materials führen könnte. Die Temperaturen, die beim Schweißen erreicht werden, führen lokal zur Überschreitung der Austenitisierungstemperatur. Aus-tenit weist eine deutlich höhere Löslichkeit von Wasserstoff auf, während die Diffusionsgeschwindigkeit des Wasserstoffs in dieser Phase deutlich herabgesetzt ist. Es wird vermutet, dass dies zu einer lokal erhöhten Wasserstoffkonzentration führt. Damit geht ein erhöhtes Risiko einer kritischen Materialdegradation einher. Durch die lange Zeitdauer beim Schweißen von mehrlagigen Rundkehlnähten an großen Pipelines, einschließ-lich einer möglichen Vorwärmprozedur, ist weiterhin zu klären, ob der aus Anwendungsfällen in der Petroche-mie bekannte Hochtemperaturwasserstoffangriff auftritt. Der vorliegende Beitrag liefert einen Überblick über das Schweißen im Betrieb an Gaspipelines, hierbei auftretenden Herausforderungen bei der möglichen An-wendung auf Wasserstoffleitungen. Dabei werden auch aktuelle Forschungsprojekte zum Thema Schweißen an Wasserstoffpipelines im Betrieb eingehend diskutiert. In diesem Zusammenhang werden erste Ergebnisse des gemeinschaftlichen Forschungsprojektes „H2-SuD: Einfluss des Schweißens auf die Wasserstoffauf-nahme und Degradation im Betrieb befindlicher H2-Ferngasleitungen“ des Deutschen Vereins des Gas- und Wasserfaches (DVGW), der Bundesanstalt für Materialforschung und -prüfung (BAM) und deutscher Gasnetz-betreiber (Open Grid Europe, ONTRAS Gastransport, u.v.m.) präsentiert. T2 - 53. Sondertagung - Schweißen im Anlagen-und Behälterbau CY - Munich, Germany DA - 18.03.2025 KW - Pipeline KW - Schweißen KW - Wasserstoff KW - Materialdegradation PY - 2025 AN - OPUS4-62910 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - WAAM process influences on local microstructure and residual stresses in high-strength steels N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. Due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the special microstructure of high-strength steels is sensitive to cold cracking. For this reason, process- and material-related influences, as well as the design effects on residual stress formation, are being investigated in a project funded by the AiF (FOSTA P1380/IGF 21162 BG). This study focuses on determining the interactions between heat control during WAAM process, resulting hardness, microstructure, and residual stresses, analyzed by X-ray diffraction. Welding experiments using geometrically similar AM specimens show that, with regard to the heat input, the energy per unit length in particular leads to significantly affected cooling times and microstructures and causes pronounced localized effects in terms of residual stresses in the upper weld beads. T2 - 46th MPA-Seminar CY - Stuttgart, Germany DA - 12.10.2021 KW - Wire Arc Additive Manufacturing KW - High-strength structural steels KW - Vickers hardness KW - Residual stresses PY - 2021 AN - OPUS4-53567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz T1 - Zum Einfluss der Wärmeführung auf die Eigenschaften und Beanspruchungen bei hybrid-additiver Fertigung hochfester Stähle mittels MSG-Prozessen N2 - Der Einsatz von Stählen mit höheren Streckgrenzen erlaubt die Reduzierung von Wandstärken, Bauteilgewicht und Fertigungskosten. Mittels hybrid-additiver Fertigung auf Basis von MSG-Schweißverfahren (DED-Arc) können hocheffizient Bauteilmodifikationen und -reparaturen an Halbzeugen sowie (primär) additiv gefertigten Strukturen realisiert werden. Der breiten Anwendung, gerade bei KMU, stehen noch wesentliche Fragestellungen entgegen. Neben der fertigungstechnischen Gestaltung, Aufbaustrategie und geometrischen Bauteiladaption für Modifikatio-nen oder Reparaturen betrifft dies die schweißbedingten Beanspruchungen im Zusammenhang mit den mikrostruk-turellen Einflüssen durch die additiven Fertigungsschritte insbesondere im Anbindungsbereich von Substrat und Schweißzusatzwerkstoff. Hierfür werden in einem gemeinsamen Forschungsprojekt (FOSTA-P1660/IGF22628BG) der BAM und der TU Chemnitz systematisch Kenntnisse zur metallurgischen Auswirkung sowie zu den resultieren-den Spannungen und Dehnungen beim hybrid-additiven MSG-Schweißen von hochfesten Stählen speziell im Übergangsbereich zwischen Substrat und additiv gefertigter Struktur erarbeitet. Der vorliegende Beitrag fokussiert die durchgeführten Analysen zur Auswirkung der Wärmeführung der AM-Bauteile auf die Abkühlbedingungen, Gefüge und Eigenspannungen, insbesondere im Anbindungsbereich. Hierfür wurden definierte Probenkörper vollautomatisiert mit einem hochfesten speziell für DED-Arc angepassten Massivdraht (Streckgrenze > 790 MPa) auf Substrat-Körper aus S690QL-Grundwerkstoff geschweißt und die Arbeitstemperatur sowie die Streckenenergie innerhalb eines Design of Experiments variiert. Hinsichtlich der Schweißwärmeführung wurden t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt. Die Ergebnisse zeigen einen deutlichen Einfluss der Wärmeführung auf die lokalen Eigenspannungen insbesonde-re im Anbindungsbereich. Mit den Ergebnissen lassen sich Verarbeitungsempfehlungen erarbeiten, um DED-Arc-Prozesse für beanspruchungsgerechte und risssichere hybrid-additive Fertigung zur Bauteilmodifizierung und -reparatur zu etablieren. Dies ermöglicht gerade KMU eine wirtschaftliche und ressourcenschonende Fertigung hochfester Stahlkomponenten. T2 - 6. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 20.02.2025 KW - DED-Arc KW - Eigenspannung KW - Wärmeführung PY - 2025 AN - OPUS4-62618 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Residual stress analysis on a DED-Arc additive manufactured high-strength steel component using the contour method N2 - Direct Energy Deposition with arc (DED-arc) or wire arc additive manufacturing (WAAM) has significantly transformed the manufacturing paradigm in recent years by the virtue of its capability to fabricate intricate, large scale metallic parts owing to high deposition rates, high efficiency, and cost effectiveness. Subsequent enhancement in efficiency can be achieved through the utilization of the high-strength structural steels. The fabrication of the intricate geometries possesses challenges in regulating the residual stresses (RS), representing a significant concern in the realm of additive manufacturing (AM). High residual stresses contribute to an increased risk of cold cracking particularly in the welding of the high strength steels arising from complex interactions among the material, process conditions and component design. Reliable residual stress evaluation is vital in the structural integrity assessment of the welded components. Therefore, in the present study, the contour method was used to analyse the full field longitudinal residual stresses in an open hollow cuboid specimen fabricated by DED-arc. In this method, the specimen is cut along a desired plane of interest and the deformation caused by the cut surface is measured using the coordinate measuring machine and an industrial non-contact 3D scanner. A different cutting and restraint methodology was adopted and its influence on the residual stresses was analysed. The results indicate that the maximum tensile residual stresses around 600 MPa occurred in the left wall of the DED-arc structure exactly two layers below from the top. Additionally, the stresses at the bottom layer of the base plate demonstrate tensile in longitudinal direction and the corresponding balancing compressive residual stresses occurred at the top layer of the base plate. The contour approach is efficient and precise way for generating a two-dimensional residual stress map. The results obtained from the contour method was further validated using the X-ray Diffraction and both sets of findings demonstrated similarity. T2 - European Conference on Residual Stresses - ECRS11 CY - Prague, Czech Republic DA - 03.06.2024 KW - High strength steels KW - Additive Manufacturing KW - Residual stress KW - Contour methode PY - 2024 AN - OPUS4-61948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Lippold, J. ED - Böllinghaus, Thomas ED - Richardson, I. T1 - Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa are gaining popularity in civil engineering and construction of heavy vehicles. With increasing yield strength, the susceptibility for degradation of the mechanical properties in the presence of diffusible hydrogen, i.e., hydrogen-assisted cracking (HAC), generally increases. HAC is a result of the critical interaction between local microstructure, mechanical load, and hydrogen concentration. In existing standards for welding of HSLA-steels, recommendations including working temperatures and dehydrogenation heat treatment (DHT) are given to Limit the amount of introduced hydrogen during welding. These recommendations are based on investigations into conventional arc welding processes. In the past decade, modern weld technologies were developed to enable welding of narrower weld seams with V-grooves of 30°, e.g., the modified spray arc process. In that connection, a reduced number of weld runs and weld volume are important technical and, economic benefits. In the present study, the hydrogen distribution in S960QL multi-layer welds with thickness of 20 mm was analyzed. The influence of different weld seam opening angles, heat input, working temperature and DHT were investigated. The results show that weldments with narrow grooves contained an increased amount of diffusible hydrogen. Hydrogen concentration has been reduced by decreasing both the heat input and working temperature. Hydrogen-free weldments were only achieved via subsequent DHT after welding. Furthermore, hydrogen distribution was experimentally determined across the weld seam thickness in HSLA gas metal arc welded multi-layer welds for the first time. KW - Hydrogen KW - GMAW KW - High-strength steels KW - Heat control KW - Heat treatment PY - 2019 DO - https://doi.org/10.1007/s40194-018-00682-0 SN - 0043-2288 SN - 1878-6669 VL - 63 IS - 3 SP - 607 EP - 616 PB - Springer CY - Berlin Heidelberg AN - OPUS4-47878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Vermeidung von Kaltrissen beim Mehrlagenschweißen mit modifizierten Sprühlichtbogenprozessen - Welchen Einfluss haben Nahtgeometrie und Wärmeführung? N2 - Das Schweißen hochfester Feinkornbaustähle mit modifizierten Sprühlichtbögen bietet die Möglichkeit, kleinere Nahtöffnungswinkel zu schweißen. Allerdings findet der modifizierte Sprühlichtbogen in den Regelwerken zur schweißtechnischen Verarbeitung hochfester Feinkornbaustähle unter Vermeidung von Kaltrissbildung bisher keine Berücksichtigung. Dieser Beitrag betrachtet die Wechselwirkungen der Haupteinflussgrößen auf die Kaltrissbildung beim Schweißen mit kleineren Nahtöffnungswinkeln am Beispiel des hochfesten Stahls S960QL. KW - Hochfeste Feinkornbaustähle KW - Kaltrisse KW - Wärmeführung KW - Nahtgeometrie KW - Wasserstoff KW - Eigenspannungen PY - 2019 SN - 0554-9965 VL - 71 IS - 7 SP - 342 EP - 347 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-48491 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. T1 - Einfluss der Wärmeführung auf die Eigenschaften und fertigungsbedingten Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Derzeit ist jedoch eine breite industrielle Anwendung insbesondere für KMU aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse untersucht. Im Fokus dieser Analysen steht die Bestimmung der Wechselwirkungen zwischen WAAM-Prozessparametern bzw. der Wärmeführung auf das Gefüge und die Eigenspannungen. Hierfür werden Referenzproben als offene Hohlquader mit definierten Abmessungen vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die gezielte Einstellung der geometrischen Eigenschaften erfolgt durch Schweißparameter und Nahtaufbau bei ca. 4 kg/h mittlerer Abschmelzleistung. Die Wärmeführung wird innerhalb eines statistischen Versuchsplanes mittels Streckenenergie (200 kJ/m bis 650 kJ/m) und Zwischenlagentemperatur (100 °C bis 300 °C) so variiert, dass die t8/5-Abkühlzeiten dem empfohlenen Verarbeitungsbereich entsprechen (ca. 5 s bis 20 s). Ziel ist es bei konstanten geometrisch-konstruktiven Randbedingungen, den Einfluss der Wärmeführung auf Gefüge und resultierende Eigenspannungen zu analysieren. Für die Streckenenergie können neben den Gefügeeinflüssen aufgrund der resultierenden Abkühlzeit deutliche Effekte insbesondere auf die lokalen Eigenspannungen im Bauteil belegt werden. Das Schweißen mit zu hoher Wärmeeinbringung bzw. Abschmelzleistung kann zu ungünstigen Gefüge- und Bauteileigenschaften führen, gleichzeitig jedoch niedrigere Zugeigenspannungsniveaus bewirken. Solche komplexen Wechselwirkungen gilt es letztlich mit diesen Untersuchungen zu klären, um leicht anwendbare Verarbeitungsempfehlungen und Normvorgaben für ein wirtschaftliches, anforderungsgerechtes und risssicheres WAAM von hochfesten Stählen den Anwendern zur Verfügung zu stellen. T2 - DVS Congress 2021 CY - Online meeting DA - 14.09.2021 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Kaltrisssicherheit KW - Hochfester Stahl PY - 2021 AN - OPUS4-56668 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz T1 - Zum Einfluss der Wärmeführung auf die Eigenschaften und Beanspruchungen bei hybrid-additiver Fertigung hochfester Stähle mittels MSG-Prozessen N2 - Der Einsatz von Stählen mit höheren Streckgrenzen erlaubt die Reduzierung von Wandstärken, Bauteilgewicht und Fertigungskosten. Mittels hybrid-additiver Fertigung auf Basis von MSG-Schweißverfahren (DED-Arc) können hocheffizient Bauteilmodifikationen und -reparaturen an Halbzeugen sowie (primär) additiv gefertigten Strukturen realisiert werden. Der breiten Anwendung, gerade bei KMU, stehen noch wesentliche Fragestellungen entgegen. Neben der fertigungstechnischen Gestaltung, Aufbaustrategie und geometrischen Bauteiladaption für Modifikatio-nen oder Reparaturen betrifft dies die schweißbedingten Beanspruchungen im Zusammenhang mit den mikrostruk-turellen Einflüssen durch die additiven Fertigungsschritte insbesondere im Anbindungsbereich von Substrat und Schweißzusatzwerkstoff. Hierfür werden in einem gemeinsamen Forschungsprojekt (FOSTA-P1660/IGF22628BG) der BAM und der TU Chemnitz systematisch Kenntnisse zur metallurgischen Auswirkung sowie zu den resultieren-den Spannungen und Dehnungen beim hybrid-additiven MSG-Schweißen von hochfesten Stählen speziell im Übergangsbereich zwischen Substrat und additiv gefertigter Struktur erarbeitet. Der vorliegende Beitrag fokussiert die durchgeführten Analysen zur Auswirkung der Wärmeführung der AM-Bauteile auf die Abkühlbedingungen, Gefüge und Eigenspannungen, insbesondere im Anbindungsbereich. Hierfür wurden definierte Probenkörper vollautomatisiert mit einem hochfesten speziell für DED-Arc angepassten Massivdraht (Streckgrenze > 790 MPa) auf Substrat-Körper aus S690QL-Grundwerkstoff geschweißt und die Arbeitstemperatur sowie die Streckenenergie innerhalb eines Design of Experiments variiert. Hinsichtlich der Schweißwärmeführung wurden t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt. Die Ergebnisse zeigen einen deutlichen Einfluss der Wärmeführung auf die lokalen Eigenspannungen insbesonde-re im Anbindungsbereich. Mit den Ergebnissen lassen sich Verarbeitungsempfehlungen erarbeiten, um DED-Arc-Prozesse für beanspruchungsgerechte und risssichere hybrid-additive Fertigung zur Bauteilmodifizierung und -reparatur zu etablieren. Dies ermöglicht gerade KMU eine wirtschaftliche und ressourcenschonende Fertigung hochfester Stahlkomponenten. T2 - NA 092-00-05 GA Gemeinschaftsarbeitsausschuss NAS/NMP, Zerstörende Prüfung von Schweißverbindungen CY - Online meeting DA - 20.03.2025 KW - DED-Arc KW - Eigenspannung KW - Wärmeführung PY - 2025 AN - OPUS4-62746 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Dixneit, Jonny A1 - Lausch, Thomas A1 - Hannemann, Andreas A1 - Kannengießer, Thomas T1 - Von der Anwendung ins Prüflabor: Maßstabsgetreues Bewerten von Spannungen in geschweißten Bauteilen N2 - Eigenspannungen sind von zentraler Bedeutung für die Performance geschweißter Bauteile. Die Bewertung schweißbedingter Beanspruchungen im Labormaßstab ist oft nicht zielführend. Reale Bauteilschweißungen weisen geometrisch und konstruktiv bedingt meist divergente Wärmeableitungs- und Einspannbedingungen auf. Dadurch lassen sich häufig nur eingeschränkt Aussagen über Eigenspannungshöhen, -verteilungen und die wesentlichen Einflussfaktoren treffen. Dies führt oftmals zur eher konservativen Konstruktionsauslegung und damit zu einer geringerenRessourcen- und Energieeffizienz. Dieser Beitrag widmet sich den Bestrebungen, reale Randbedingungen beim Bauteilschweißen in das Labor zu übertragen. Es werden die Möglichkeiten eines speziell für diesen Zweck an der BAM entwickelten Prüfsystems mit einer maximalen Tragkraft von 2 MN aufgezeigt. Durch die konstruktive Gestaltung der Anlage lassen sich in Schweißversuchen schweißbedingte Beanspruchungen nachbilden und die komplexen Einflüsse und Wechselwirkungen durch Schweißprozess, Bauteilgeometrie und -konstruktion sowie durch die eingesetzten Grund- und Zusatzwerkstoffe quantifizieren. Darüber hinaus können mittels Röntgenbeugung die resultierenden lokalen Eigenspannungen präzise und mit hoher Ortsauflösung bestimmt werden. Anhand von Beispielen wird die Nachbildung realer Produktionsbedingungen im Labor erörtert und gezeigt, wie die Spannungen beim Schweißen hochfester Baustähle von konstruktiven, werkstoff- und prozessseitigen Randbedingungen abhängen. So wurde geklärt, wie erhöhte Arbeitstemperaturen zum signifikanten Anstieg der Beanspruchungen führen. T2 - DVS Congress 2019 Große Schweißtechnische Tagung CY - Rostock, Germany DA - 16.09.2019 KW - Schweißen KW - Eigenspannungen KW - Bauteilprüfung PY - 2019 SN - 978-3-96144-066-5 VL - 355 SP - 280 EP - 286 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-50279 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schröpfer, Dirk A1 - Becker, Amadeus A1 - Kannengießer, Thomas T1 - Beanspruchungsgerechte Reparatur von Schweißverbindungen bei der Fertigung von Bauteilen aus hochfesten Feinkornbaustählen N2 - Bei der Montage von Stahlkonstruktionen kommt es trotz anforderungsgerechter schweißtechnischer Fertigung vereinzelt zur Detektion von unzulässigen Unregelmäßigkeiten im Schweißbereich. Die Verarbeitungsregelwerke empfehlen das lokale thermische Ausfugen betroffener Bereiche und erneutes Schweißen, geben aber aufgrund fehlender wissenschaftlich fundierter Untersuchungen kaum Informationen zu adäquaten Reparaturkonzepten. Dies betrifft insbesondere die Berücksichtigung und Optimierung resultierender schweißbedingter Beanspruchungen durch hohe Schrumpfbehinderungen der Ausfugenuten sowie der Gefügedegradation angrenzender Bereiche durch das Ausfugen und erneute Schweißen. Gerade bei hochfesten Stahlgüten ergeben sich dadurch häufig reduzierte mechanische Eigenschaften und zusätzliche schweißbedingte Beanspruchungen sowie erneut auftretende Nahtdefekte. Deshalb wurden für das Forschungsvorhaben systematische bauteilrelevante Untersuchungen der schweißbedingten Beanspruchungen und Gefügeveränderungen reparierter Schweißnähte in Abhängigkeit von der Schrumpfbehinderung und Wärmeführung beim Schweißen und Ausfugen sowie von der Reparaturzyklenanzahl durchgeführt. Die Untersuchungsergebnisse zeigen auf, welche Faktoren sich für eine Beanspruchungsreduzierung auch bei hohen Einspannbedingungen eignen und wie eine Degradation des Gefüges und der Eigenschaften der Schweißnaht sowie wiederholte Schweißnahtdefekte in der Reparaturnaht vermieden werden können. Insbesondere können mittels adaptiver Wärmeführung geringere schweißbedingte Beanspruchungen in den Reparaturschweißnähten bewirkt werden. Bauteilversuche sichern zudem die Übertragbarkeit der Schweißexperimente in die Praxis ab. Aufgrund der Erkenntnisse konnten Empfehlungen für beanspruchungs- und werkstoffgerechte Reparaturkonzepte abgeleitet und ausgesprochen werden. Die Analysen wurden an den hochfesten Stahlgüten S500MLO für den Offshore-Bereich und S960QL für den Mobilkranbau realisiert. Damit wird insbesondere der wirtschaftlichen Fertigung hocheffizienter Konstruktionen für Windenergieanlagen und hochfester Strukturen, die für deren Errichtung notwendig sind, Rechnung getragen. So bieten die Forschungsergebnisse eine wesentliche Grundlage für die Weiterentwicklung entsprechender Normen und Regelwerke. Damit können letztlich Schäden und zumeist teure Nacharbeiten verhindert und eine verbesserte Ausnutzung des hohen Festigkeitspotentials hochfester Stähle erreicht werden. Gerade auch KMU können mit Blick auf die Kosten für Fertigung, Schweißarbeit und Material von den Erkenntnissen beim Einsatz hochfester Stähle, die für eine effiziente Realisierung der Energiewende in Deutschland notwendig sind, profitieren. KW - MAG-Schweißen KW - Hochfester Stahl KW - Reparatur KW - Kaltrisssicherheit KW - Reparaturschweißen KW - Wärmeführung KW - Windenergie PY - 2023 UR - https://matplus.shop/produkt/p-1311-beanspruchungsgerechte-reparatur-von-schweissverbindungen-bei-der-fertigung-von-bauteilen-aus-hochfesten-feinkornbaustaehlen SN - 978-3-96780-146-0 N1 - Schlussbericht vom 18.07.2022 zu dem über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen "Otto von Guericke" (AiF) im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Energie (BMWi) aufgrund eines Beschlusses des Deutschen Bundestages geförderten Vorhaben Nr. 20162 N (Berichtszeitraum 01.07.2019 - 28.02.2022) VL - P 1311 SP - 1 EP - 156 PB - Verlag und Vertriebsgesellschaft CY - Düsseldorf AN - OPUS4-59260 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Effect of alloy modification for additive manufactured Ni alloy components on microstructure and subsequent machining properties N2 - Ni alloys are generally classified as difficult-to-cut materials and cost intensive. Additive manufacturing (AM) offers economic advantages. However, machining of these AM components is mandatory to create the final contour or surface. The inhomogeneous and anisotropic microstructure and properties of AM components causes an unstable cutting process. Moreover, undesirable tensile residual stresses are generated due to subsequent machining. In this investigation, the initial alloy 36 is modified with Ti and Nb up to 1.6 wt.-% and build-up welded via gas metal arc welding (GMAW) and plasma-transferred-arc (PTA). Then, finish-milling tests are carried out to investigate the influence of the modification as well as the cutting parameters on the resulting cutting force and the surface integrity. In addition, the conventional milling process (CM) is compared with the ultrasonic-assisted milling process (US), which has a significant influence on the machinability as well as on the surface integrity. T2 - Additive Fertigung – Werkstoffe – Prozesse – Wärmebehandlung 2022 CY - Bremen, Germany DA - 29.06.2022 KW - Additive manufacturing KW - Alloy 36 KW - Alloy modification KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 SP - 57 EP - 67 AN - OPUS4-55430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel T1 - Legierungsmodifikation und Einsatz hybrider Fräsprozesse zur Optimierung der Zerspanungssituation Ni-basierter Verschleißschutzauftragschweißungen mit definierten Oberflächen N2 - Die Ziele zur Verringerung der CO2-Emissionen sind eng verknüpft mit der Entwicklung hocheffizienter und wirtschaftlicher Komponenten aus Stahl in der Anlagen-, Verfahrens- und Kraftwerktechnik, die für hohe kombinierte korrosive, tribologische, thermische und mechanische Beanspruchungen auf Anwendungsfall und Stahlwerkstoff abgestimmte Verschleißschutzschichten erfordern. Neben zunehmenden Forderungen infolge des Preis- und Lieferrisikos konventionelle Kobalt- durch Nickellegierungen zu ersetzen, wächst in der Industrie der Bedarf nach definierten Oberflächen hoher Güte bzw. Funktionsflächen für die Schutzschichten. Eine für Bauteile mit komplexer Geometrie erforderliche Fräsbearbeitung ist insbesondere für KMU aufgrund hohen Werkzeugverschleißes oftmals nicht wirtschaftlich realisierbar, jedoch für viele Einsatzfälle dringend notwendig. In einem Gemeinschaftsvorhaben der BAM und des ISAF der TU Clausthal (Fosta P1550/IGF 21959 N) wird daher untersucht, wie mittels Legierungsmodifikationen der Schweißzusätze für nickelbasierte plasmaauftraggeschweißte Verschleißschutzschichten und durch Einsatz innovativer ultraschallunterstützter Fräsprozesse eine günstigere Zerspanbarkeit erreicht werden kann, ohne das Verschleißschutzpotential zu mindern. Im vorliegenden Beitrag wird der Einfluss der mittels Legierungsmodifikation eingestellten Gefüge- und Ausscheidungsmorphologie auf die Zerspanung untersucht. Dies erfolgt anhand einer typischerweise für Schneckenmaschinen eingesetzte Verschließschutzlegierung zur Substitution entsprechender CoCr-Legierungen (Stellite), einer NiCrMoSiFeB-Legierung (Handelsname: Colmonoy 56 PTA). Durch metallurgische Untersuchungen und In-situ-Messung auftretender Prozesskräfte und Temperaturen an der Werkzeugschneide beim Fräsprozesses sowie der anschließenden Untersuchung von Werkzeugverschleiß und Oberflächenintegrität ist eine detaillierte Analyse und Korrelation zwischen den mikrostrukturellen Eigenschaften und der Zerspanbarkeit möglich. Die Vorgehensweise erlaubt einer Beurteilung des Einflusses der ultraschallunterstützten Fräsbearbeitung auf den Prozess sowie die resultierenden Oberflächenintegrität. Unter systematischer Anwendung dieser Methodik sowie der Berücksichtigung der Anbindung zum Stahlsubstratwerkstoff und der Wirksamkeit des Verschleißschutzes lässt sich letztlich eine gezielte Optimierung der Zerspanungssituation und des Verschleißschutzes erreichen. Die Erkenntnisse erlauben Handlungsanweisungen und Empfehlungen für Normen und Verarbeitungsrichtlinien, die besonders KMU eine sichere und wirtschaftliche Fertigung hochbelasteter Stahlkomponenten mit unkritischen, kostenreduzierten Werkstoffen ermöglichen sollen. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Werkzeugverschleiß KW - Oberflächenintegrität KW - Ultraschallunterstütztes Fräsen KW - Zerspankräfte PY - 2023 AN - OPUS4-59209 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Eigenspannungsanalyse mittels Konturmethode an einem additiv gefertigten Bauteil aus hochfestem Stahl N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Diese ermöglichen erhebliche Einsparungen an Kosten, Zeit und Ressourcen. Kommerzielle hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar, allerdings ist der industrielle Einsatz aufgrund fehlender Richtlinien und quantitativer Kenntnisse über die Schweißbeanspruchungen während der Fertigung und des Betriebs eingeschränkt. Daher sind umfassende Kenntnisse über die Eigenspannungen im Bauteil von entscheidender Bedeutung. In dieser Untersuchung wurde die Konturmethode verwendet, um die longitudinalen Eigenspannungen im Volumen eines additiv gefertigten offenen Hohlquaders zu bestimmen. Dabei wurde die Probe entlang einer definierten Ebene getrennt, wodurch di T2 - Fachausschuss 13 Eigenspannungen CY - Siegen, Germany DA - 16.10.2024 KW - Hochfester Stahl KW - Additive Fertigung KW - Eigenspannungen PY - 2024 AN - OPUS4-61954 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Generative Fertigung und Kaltrisssicherheit N2 - Hochfeste Feinkornbaustähle verfügen über ein großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. In dieser Präsentation werden erste Ergebnisse der Eigenspannungsanalysen von additiv gefertigten Bauteilen aus hochfestem Stahl vorgestellt. T2 - Bachelor-, Master-, Doktoranden-Kolloquium CY - Online meeting DA - 10.06.2021 KW - Additive Fertigung KW - Wärmeführung KW - Hochfester Stahl KW - Eigenspannungen KW - Härteprüfung nach Vickers PY - 2021 AN - OPUS4-53326 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaiser, Sebastian A1 - Rhode, Michael T1 - Repair welding of pressurized in-service hydrogen pipelines: A review on current challenges and strategies N2 - As energy carrier of the future, green hydrogen can make a decisive contribution to a sustainable energy supply. Particularly important is the decarbonization of heavy industry. Therefore, a reliable supply of hydrogen must be guaranteed. A hydrogen pipeline grid can achieve this purpose. In Europe concrete plans for a hydrogen pipeline grid already exist, as the so called “European Hydrogen backbone”. As building a completely new pipeline grid is economically not justifiable, a dual-way strategy of repurposing natural gas (NG) pipelines and newly built pipelines is intended. Long distance pipeline grids require regular maintenance and repairs. For NG pipelines in-service welding is state of the art. Concepts such as hot-tapping (drilling into pressurized pipelines) and “stoppling” (sealing off pipeline sections after installing bypasses or pressure relieves) allow the repair of damaged pipeline sections or the installation of new branches without shutting the pipeline down, which in most cases isn’t possible from an economic standpoint. The EIGA 121/14 guideline already pointed out in 2014 that “A hydrogen hot-tap shall not be considered a rou-tine procedure, […]”. This shows that the determination of the transferability of these repair concepts to hydrogen pipelines is of utmost importance. Due to the degrading effects of hydrogen on mechanical properties, commonly referred to as “hydrogen embrittlement” it is necessary to understand and investigate the occurring effects. In the special case of repair welding on in-service hydrogen pipelines an increased hydrogen uptake due to a large heat input and microstructural changes in the material needs to be considered. Therefore, material degradation must be investigated to determine whether modifications of repair procedures are necessary to ensure a reliable and safe hydrogen transportation via pipelines. For this reason, this paper gives an overview on existing weld repair concepts and its risks and limitations in terms of hydrogen absorption and possible embrittlement effects when transferred to hydrogen pipelines. The complexity lies in a large variety of materials (low alloyed steels), pipeline diameters and corresponding weld-ed joints. The material compatibility of materials in used (repurposed NG-pipelines) and new condition must be investigated. Particularly for repurposed/used pipelines the effect of a pre-matured/corroded inner surface and sometimes insufficient documentation of the material “history” needs to be considered. An overview on ongoing and completed R&D-projects with respect to repair concepts for hydrogen pipelines and hydrogen effects on pipeline materials is given. T2 - 77th IIW Annual Assembly and International Conference, Meeting of Commission II-A "Metallurgy of Weld Metals" CY - Ixia, Rhodes Island, Greece DA - 07.07.2024 KW - Hydrogen KW - Pipeline KW - In-Service Welding PY - 2024 AN - OPUS4-60757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Czeskleba, Denis T1 - Entwicklung von Wärmenachbehandlungskonzepten zur Vermeidung von spannungsrelaxationsrissen N2 - Vorstellung des Projekts Vh_9475 im Rahmen eines Kolloquiums der OVGU Magdeburg. In diesem Projekt wird erforscht, welchen Einfluss die PWHT-Parameter Aufheizrate und Haltetemperatur auf die Rissanfälligkeit von 13CrMoV9-10 haben. Diese Präsentation stellt den aktuellen Projektstand dar, gibt eine Übersicht über die Rissentstehung und wie die Forschungsstelle bei ihren Forschungen zu diesem Projekt vorgeht. Gleichzeitig wurde die Versuchstechnik vorgestellt und insbesondere die neue UP-Schweißanlage präsentiert. T2 - BMDK CY - Online meeting DA - 18.11.2020 KW - Spannungsrelaxationsrisse KW - 13CrMoV9-10 KW - PWHT KW - BMDK KW - Aufheizrate PY - 2020 AN - OPUS4-51583 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Hadick, C. A1 - Schu, K. T1 - Quantification of hydrogen uptake during in-service hydrogen pipeline welding N2 - Hydrogen must be transported on a large scale from producers to consumers to ensure the energy transition. The necessary pipeline grid is achieved by conversion of the natural gas (NG) grid and building new pipelines. Welding during service as part e.g. of “hot-tapping” is unavoidable for maintenance/repair/expansion. Based on existing studies, the basic material compatibility of (low-alloyed) pipeline steels with hydrogen is postulated. However, this cannot be assumed for the case of in-service welding on pipelines in pressurized condition. The reason is the increased temperature e.g. by preheating and (in particular) during welding of the single passes. As a result, the inner pipeline surface undergoes multiple short-term heating but to high temperatures. In particular, the first passes can result in a temperature close to the austenitic transformation of the material for small wall thicknesses. Both increase the hydrogen uptake into the welded joint. If hydrogen embrittlement is likely to occur, depends on the hydrogen uptake, which must be quantified. For this purpose, welding experiments on pressurized demonstrators were conducted. The hydrogen uptake at 100 bar was compared to reference experiments with nitrogen. A new sample extraction routine for the quantification of the weld-zone specific hydrogen uptake was established. Comprehensive experiments with different steels (P235, L360, L485), wall thicknesses (4.1 mm to 7.8 mm) and diameters (DN50 and DN200) were conducted. In addition, the influence of the welding layer sequence on the hydrogen uptake between single- and multi-layer welds was investigated. Analytical approaches were used to approximate the hydrogen uptake in the respective weld zones. The main findings were that the layer sequence and especially the wall thickness have a large influence on the hydrogen uptake. T2 - 20th Pipeline Technology Conference ptc2025 CY - Berlin, Germany DA - 06.05.2025 KW - In-service KW - Hydrogen KW - Pipeline KW - Repair welding KW - component test PY - 2025 SP - 1 EP - 12 AN - OPUS4-63166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lausch, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel N2 - Over the past years economic and environmental considerations have led to a markedly increased demand for efficiency and flexibility in petrochemical plants. The operational temperatures and pressures required today can only be achieved by using new creep-resistant grades of steel. The modified 13CrMoV9-10 vanadium steel shows a good resistance against creep and compressed hydrogen and has been in use for the construction of petrochemical reactors since the mid-1990s. Nevertheless, processing of this type of steel requires extreme care during the welding procedure. This is due to its low toughness and high strength in the welded state when not post weld heat treated combined with increased susceptibility to cracking during stress relaxation. Previous research into crack formation in creep-resistant steels has largely focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the influence of the welding procedure on crack formation during post weld heat treatment considering real-life manufacturing conditions. In this work, the influence of heat control on the mechanical properties has been investigated by simulating the real-life manufacturing conditions prevailing during the construction of petrochemical reactors using a special 3-D testing facility. The stresses resulting from preheating, welding, dehydrogenation heat treatment and the final post weld heat treatment were measured during experiments under varied heat control. In all experiments stress relief cracks formed during post weld heat treatment could be observed. The total crack lengths correlated with the stresses due to welding. The application of a special acoustic emission analysis indicated that the cracks formed during post weld heat treatment in a temperature range between 300 °C and 500 °C. In comparison to small scale samples welded without additional shrinkage restraint, the toughness of the restrained welds was significantly decreased. SEM and TEM analyses of all samples revealed accelerated aging due to early precipitation of special carbides during post weld heat treatment under component relevant restraint. T2 - IIW Intermediate Meeting: Commission II-A CY - Miami, FL, USA DA - 12.03.2019 KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2019 AN - OPUS4-47610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne T1 - Large scale hydrogen assisted cracking test for thick walled SAW joints for offshore applications N2 - Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods or jackets. These components are typically submerged arc welded (SAW) high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicate the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam / layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled more than 20 passes and a seam length of 1,000 mm. Additional welded stiffeners simulated the effect of a high restraint, to stimulate critical HAC conditions. The necessity of a minimum waiting time (MWT) before the NDT can be conducted (to exclude HAC) was critically verified by the application of ultrasonic testing of the welded joint at different time-steps of the NDT of 48 h after welding. The residual stresses were determined by a robot XRD goniometer. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modelling allowed the qualitative estimation of the hydrogen diffusion in the weld. A remarkable HAC occurrence was not identified and proves both, a certain resistance of the weld joint to HAC and the (questionable) duration of the MWT. T2 - IIW Intermediate Meeting of Commission II-A CY - Garching, Germany DA - 06.03.2023 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Offshore wind turbine KW - High-strength steel KW - Component test PY - 2023 AN - OPUS4-57100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Schröder, Nina T1 - Mikrolegierungseinfluss auf Ausscheidungsverhalten und Kerbschlagzähigkeit geschweißter hochfester Konstruktionsstähle N2 - Mikrolegierungselemente, wie Nb und Ti, sind für die signifikante Festigkeitssteigerung von vergüteten, hochfesten Feinkornbaustählen mit einer Nominalstreckgrenze ≥ 690 MPa unerlässlich. Normvorgaben zur chemischen Zusammensetzung geben dabei nur obere Grenzwerte für die Hersteller vor. Weiterhin wirken sich bereits kleine Abweichungen in der Legierungsroute teilweise drastisch auf die mechanischen Eigenschaften aus. Mechanisch-technologische Untersuchungen zur Kerbschlagzähigkeit mittels Kerbschlagbiegeversuchen durchgeführt wurden, bestätigen dabei die Ergebnisse der thermodynamischen Simulation bezüglich des Ausscheidungsverhaltens während der Temperatur-Zeit Schweißzyklen. Daraus lässt sich der Einfluss der Wärmeeinwirkung beim Schweißen auf die Gefügeausbildung in der WEZ und der korrespondierenden mechanischen Eigenschaften qualitativ beschreiben. T2 - 23. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 29.03.2023 KW - Divergente Ausbildung der Wärmeeinflusszone KW - Hochfester Feinkornbaustahl KW - Kerbschlagzähigkeit KW - Mikrolegierungseinfluss PY - 2023 AN - OPUS4-58008 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Lippold, J. ED - Böllinghaus, Thomas ED - Norrish, J. ED - Scotti, A. T1 - Hydrogen-assisted cracking in GMA welding of high-strength structural steels using the modified spray arc process N2 - High-strength structural steels are used in machine, steel, and crane construction with yield strength up to 960 MPa. However, welding of these steels requires profound knowledge of three factors in terms of avoidance of hydrogen-assisted cracking (HAC): the interaction of microstructure, local stress/strain, and local hydrogen concentration. In addition to the three main factors, the used arc process is also important for the performance of the welded joint. In the past, the conventional transitional arc process (Conv. A) was mainly used for welding of high-strength steel grades. In the past decade, the so-called modified spray arc process (Mod. SA) has been increasingly used for welding production. This modified process enables reduced seam opening angles with increased deposition rates compared with the Conv. A. Economic benefits of using this arc type are a reduction of necessary weld beads and required filler material. In the present study, the susceptibility to HAC in the heat-affected zone (HAZ) of the high-strength structural steel S960QL was investigated with the externally loaded implant test. For that purpose, both Conv. A and Mod. SA were used with same heat input at different deposition rates. Both conducted test series showed same embrittlement index “EI” of 0.21 at diffusible hydrogen concentrations of 1.3 to 1.6 ml/100 g of arc weld metal. The fracture occurred in the HAZ or in the weld metal (WM). However, the test series withMod. SA showed a significant extension of the time to failure of several hours compared with tests carried out with Conv. A. KW - High-strength steel KW - GMA welding KW - Diffusible hydrogen KW - Implant test KW - Fractography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515330 DO - https://doi.org/10.1007/s40194-020-00978-0 SN - 1878-6669 SN - 0043-2288 VL - 64 IS - 12 SP - 1997 EP - 2009 PB - Springer CY - Berlin Heidelberg AN - OPUS4-51533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Griesche, Axel T1 - Tungsten inert gas bead-on-plate weld chemical composition analysis by laser-induced breakdown spectroscopy N2 - Chemical compositions of a weld can be varying locally as a result of the welding process. These local variations can be due to the vaporization of individual alloying elements. In this work, tungsten inert gas (TIG) bead-on-plate stainless steel welds of EN grade 1.4404 and 1.4435 were investigated using laser-induced breakdown spectroscopy (LIBS) on the completed welds. This study aims to reveal the welding parameters’ influence on the resulting local chemical compositions of the stainless steel welds. We demonstrated Mn vaporize before Cr due to its lower latent enthalpy of vaporization. Hence, Mn accumulates on the heat-affected zone (HAZ) both sides across the weld bead by being swept away through the circulation flow of the welding plasma. Additionally, increasing the heat input tends to enhance the accumulated Mn content on the HAZ as well as increasing the shielding gas flow rate. The results are in good agreement with the literature and proved that LIBS is an effective method to inspect completed welds. T2 - Symposium on Materials and Joining Technology CY - Magdeburg, Germany DA - 07.09.2020 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511595 DO - https://doi.org/10.1088/1757-899X/882/1/012023 SN - 1757-8981 SN - 1757-899X VL - 882 IS - 012023 SP - 1 EP - 8 PB - IOP Publishing CY - Bristol AN - OPUS4-51159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Schröder, Nina A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Hydrogen-Assisted Cracking in GMA Welding of High-Strength Structural Steel—A New Look into This Issue at Narrow Groove N2 - Modern arc processes, such as the modified spray arc (Mod. SA), have been developed for gas metal arc welding of high-strength structural steels with which even narrow weld seams can be welded. High-strength joints are subjected to increasingly stringent requirements in terms of welding processing and the resulting component performance. In the present work, this challenge is to be met by clarifying the influences on hydrogen-assisted cracking (HAC) in a high-strength structural steel S960QL. Adapted samples analogous to the self-restraint TEKKEN test are used and analyzed with respect to crack formation, microstructure, diffusible hydrogen concentration and residual stresses. The variation of the seam opening angle of the test seams is between 30° and 60°. To prevent HAC, the effectiveness of a dehydrogenation heat treatment (DHT) from the welding heat is investigated. As a result, the weld metals produced at reduced weld opening angle show slightly higher hydrogen concentrations on average. In addition, increased micro- as well as macro-crack formation can be observed on these weld metal samples. On all samples without DHT, cracks in the root notch occur due to HAC, which can be prevented by DHT immediately after welding. KW - High-strength structural steel KW - Gas metal arc welding KW - Diffusible hydrogen KW - Hydrogen-assisted cracking KW - TEKKEN KW - Residual stresses KW - Weld metal cracking PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527260 DO - https://doi.org/10.3390/met11060904 VL - 11 IS - 6 SP - 904 PB - MDPI CY - Basel AN - OPUS4-52726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Rhode, Michael A1 - Wimpory, R. C. A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part III - Assessment of residual stresses from small-scale to real component welds N2 - For higher operational temperatures and pressures required in petrochemical plants, the modified 13CrMoV9-10 steel was developed providing high resistance against creep and compressed hydrogen. Extreme care during the welding procedure is necessary for this steel, attributed to low toughness, high strength in as-welded state, and increased susceptibility to stress relief cracking (SRC) during post-weld heat treatment (PWHT). Previous research of SRC in creep-resistant steels discussed mainly thermal and metallurgical factors. Few previous findings addressed the influences of welding procedure on crack formation during PWHT considering real-life manufacturing conditions. These investigations focus on effects of welding heat control on stresses during welding and subsequent PWHT operations close to realistic restraint and heat dissipation conditions using a special 3D testing facility, which was presented in parts I and II of this contribution. Part III addresses investigations on residual stress evolution affecting crack formation and discusses the transferability of results from large-scale testing to laboratory-scale. Experiments with test set-ups at different scales under diverse rigidity conditions and an assessment of the residual stresses of the weld-specimens using X-ray (surface near) and neutron diffraction analysis (bulk) were performed. This study aims to provide a way of investigating the SRC behaviour considering component-specific residual stresses via small-scale testing concepts instead of expensive weld mock-ups. KW - Welding KW - Creep-resistant steel KW - Residual stresses KW - Post-weld heat treatment KW - Stress relief cracking PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524403 DO - https://doi.org/10.1007/s40194-021-01101-7 SN - 1878-6669 VL - 65 SP - 1671 EP - 1685 PB - Springer CY - Berlin AN - OPUS4-52440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Börner, Andreas A1 - Gustus, R. A1 - Kannengießer, Thomas A1 - Wesling, V. A1 - Maus-Friedrichs, W. T1 - Surface finishing of hard-to-machine cladding alloys for highly stressed components N2 - The supply and processing of materials for highly stressed components are usually cost-intensive. Efforts to achieve cost and resource efficiency lead to more complex structures and contours. Additive manufacturing steps for component repair and production offer significant economic advantages. Machining needs to be coordinated with additive manufacturing steps in a complementary way to produce functional surfaces suitable for the demands. Regarding inhomogeneity and anisotropy of the microstructure and properties as well as production-related stresses, a great deal of knowledge is still required for efficient use by small- and medium-size enterprises, especially for the interactions of subsequent machining of these difficult-to-machine materials. Therefore, investigations on these influences and interactions were carried out using a highly innovative cost-intensive NiCrMo alloy (IN725). These alloys are applied for claddings as well as for additive component manufacturing and repair welding using gas metal arc welding processes. For the welded specimens, the adequate solidification morphology, microstructure and property profile were investigated. The machinability in terms of finishing milling of the welded surfaces and comparative analyses for ultrasonic-assisted milling processes was examined focussing on surface integrity. It was shown that appropriate cutting parameters and superimposed oscillating of the milling tool in the direction of the tool rotation significantly reduce the mechanical loads for tool and workpiece surface. This contributes to ensure a high surface integrity, especially when cutting has to be carried out without cooling lubricants. KW - WAAM KW - IN725 KW - Machining KW - Ultrasonic-assisted milling KW - Residual stresses KW - Cutting forces KW - Surface integrity KW - Microstructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524872 DO - https://doi.org/10.1007/s00170-021-06815-y VL - 114 IS - 5-6 SP - 1427 EP - 1442 PB - Springer AN - OPUS4-52487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Process-related influences and correlations in wire arc additive manufacturing of high-strength steels N2 - High-strength fine-grained structural steels have great potential for weight-optimized, efficient structures in many modern steel applications. Further advances in efficiency can be achieved through additive manufacturing and bionic design. Commercial high-strength filler materials for wire arc additive manufacturing (WAAM) are already provided by the consumable producers. Today, application would be strictly limited due to absence of quantitative findings or any guidelines for the industry regarding welding-related stresses and component safety during manufacturing and service. Hence, process- and material-related influences and design-related restraint conditions associated with formation of residual stresses and cold cracking risk are investigated. The aim is the accessibility of special WAAM self-restraining cold cracking tests and easy applicable processing recommendations, enabling an economical, fit-for-purpose and crack-safe WAAM of high-strength steels. This first study focuses on determination of interactions between WAAM process parameters, resulting layer geometry, microstructure and residual stresses, analyzed via X-ray diffraction. Defined reference specimens are automated welded using a special WAAM solid wire (yield strength >820 MPa). Geometric properties can be specifically adjusted by wire feed and welding speed, but cannot be varied arbitrarily, since a high heat input causes local overheating, inadmissible changes of microstructure and mechanical properties, defects and comparable high tensile residual stresses. T2 - 22. Werkstofftechnischen Kolloquium der TU Chemnitz CY - Online meeting DA - 24.03.2021 KW - Residual stresses KW - Additive Manufacturing KW - High-strength steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533300 DO - https://doi.org/10.1088/1757-899X/1147/1/012002 VL - 1147 SP - 012002 PB - IOP Publishing Ltd AN - OPUS4-53330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Werner, Tiago A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post-laser powder bed fusion stress-relieve treatments of stainless steel 316L N2 - This study reports on the stress relaxation potential of stress-relieving heat treatments for laser powder bed fused 316L. The residual stress is monitored non-destructively using neutron diffraction before and after the heat treatment. Moreover, the evolution of the microstructure is analysed using scanning electron microscopy. The results show, that a strong relaxation of the residual stress is obtained when applying a heat treatment temperature at 900°C. However, the loss of the cellular substructure needs to be considered when applying this heat treatment strategy. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Projekt AGIL - Alterung additiv gefertigter metallischer Materialien und Komponenten PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536045 DO - https://doi.org/10.1007/s11661-021-06472-6 SN - 1543-1940 VL - 52 IS - 12 SP - 5342 EP - 5356 PB - Springer CY - Boston AN - OPUS4-53604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Mente, Tobias A1 - Richter, Tim A1 - Kannengießer, Thomas T1 - Characterization of Hydrogen Diffusion in Offshore Steel S420G2+M Multi-layer Submerged Arc Welded Joint N2 - As onshore installation capacity is limited, the increase in the number of offshore wind turbines (OWT) is a major goal. In that connection, the OWTs continuously increase in size and weight and demand adequate foundations concepts like monopiles or tripods. These components are typically manufactured from welded mild steel plates with thickness up to 200 mm. The predominant welding technique is submerged arc welding (SAW). In accordance with the standards, the occurrence of hydrogen-assisted cracking is anticipated by either a minimum waiting time (MWT, before non-destructive testing of the welded joint is allowed) at ambient or a hydrogen removal heat treatment (HRHT) at elevated temperatures. The effectiveness of both can be estimated by calculation of the diffusion time, i.e., diffusion coefficients. In this study, these coefficients are obtained for the first time for a thick-walled S420G2+M offshore steel grade and its multi-layer SAW joint. The electrochemical permeation technique at ambient temperature is used for the determination of diffusion coefficients for both the base material and the weld metal. The coefficients are within a range of 1025 to 1024 mm2/s (whereas the weld metal had the lowest) and are used for an analytical and numerical calculation of the hydrogen diffusion and the related MWT. The results showed that long MWT can occur, which would be necessary to significantly decrease the hydrogen concentration. Weld metal diffusion coefficients at elevated temperatures were calculated from hydrogen desorption experiments by carrier gas hot extraction. They are within a range of 1023 mm2/s and used for the characterization of a HRHT dwell-time. The analytical calculation shows the same tendency of long necessary times also at elevated temperatures. That means the necessary time is strongly influenced by the considered plate thickness and the estimation of any MWT/HRHT via diffusion coefficients should be critically discussed. T2 - European Congress and Exhibition on Advanced Materials and Process - Euromat 2021 CY - Online meeting DA - 13.09.2021 KW - Thick-walled KW - Hydrogen diffusion KW - Offshore KW - Steel KW - Submerged arc welding PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544127 DO - https://doi.org/10.1007/s11665-022-06679-7 SN - 1059-9495 SP - 1 EP - 13 PB - Springer Nature AN - OPUS4-54412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Thomas, Maximilian A1 - Kannengießer, Thomas A1 - Gibmeier, J. A1 - Vollert, F. T1 - Assessment of the Solidification Cracking Susceptibility of Welding Consumables in the Varestraint Test by Means of an Extended Evaluation Methodology N2 - Various test methods are available for assessing the susceptibility of materials to solidification cracking during welding. In the widely used Varestraint test, the crack length is selected as a criterion as a function of the applied bending strain. Unfortunately, the crack length does not characterize the material behavior alone but depends to varying degrees on the individual test parameters used, which makes the interpretation of the results difficult. In addition, the crack length is not comparable under different test conditions. To overcome these disadvantages, we have developed a novel evaluation methodology that decouples the machine influence from the material behavior. The measured crack length is related to the maximum possible value specified by welding speed and deformation time. This relative crack length is calculated numerically, considering the orientation of the cracks. Experiments on two high-alloy martensitic welding consumables show that, in contrast to the conventional evaluation, a comparison of different welding parameters becomes possible. Furthermore, the strain rate proved to be a suitable crack criterion in agreement with Prokhorov's hot cracking model. KW - Welding KW - Solidification cracking KW - Varestraint test PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545780 DO - https://doi.org/10.1002/adem.202101650 SN - 1438-1656 SP - 2101650 PB - Wiley online library AN - OPUS4-54578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Steppan, Enrico T1 - Zur Analyse der Eigenschaftsdegradation und des Bindungsverhaltens von Wasserstoff in höherfesten Feinkornbaustählen N2 - Der Stahlbedarf in Deutschland wird maßgeblich neben dem Automobilsektor vom Maschinenbau und allgemeinen Bauwesen geprägt. In diesen Segmenten werden qualitativ hochwertige Stähle mit höchsten Ansprüchen an Festigkeit, Verformungsfähigkeit, schweißtechnische Verarbeitung und sicherheitsrelevante Aspekte gestellt. Wichtige Vertreter, welche diesen Ansprüchen gerecht werden, sind die heutigen modernen höherfesten FKB. Aus der Entwicklung dieser Stähle kristallisierten sich in den letzten Jahrzehnten verschiedene Legierungskonzepte und Herstellungsrouten heraus. Dem liegt neben essentiellen Eigenschaften, z.B. Streck- und Zugfestigkeit, noch weitere Anforderungen, bspw. Kaltumformbarkeit, Kerbschlagzähigkeit und Verschleißfestigkeit, zugrunde. Zunehmend werden im genormten Bereich mit Streckgrenzen bis 700 MPa neben den vergüteten Stählen (Q) auch thermomechanische Stähle (M) eingesetzt. Ein immerwährender paralleler Begleiter während der Stahlherstellung und -verarbeitung ist Wasserstoff. Wasserstoff wird in den nächsten Jahren als Schlüsselelement für eine nachhaltige Energiewirtschaft angesehen. Aus heutiger Sicht ist Wasserstoff ein Hoffnungsträger für eine klimafreundliche Energiewirtschaft und zukunftsfähige Industrie. Forschung und Industrie arbeiten intensiv an der Erschließung und Weiterentwicklung des enormen Potentials, um eine höhere Nutzbarkeit zu erreichen. Die Gründe liegen zum einen darin, dass Wasserstoff als Brennstoff unproblematisch (Umweltverträglichkeit und Verfügbarkeit) ist und zum anderen ein hervorragender Energieträger ist. Wasserstoff ist durch seine gebundene Form erst nach dem Lösen aus chemischen Verbindungen zugänglich. Dies geschieht für eine Nutzbarmachung in einer zukunftsfähigen Energiewirtschaft gezielt. Demgegenüber stehen Prozesse, wodurch Wasserstoff aus seiner chemischen Verbindung gelöst wird und aufgrund seiner Größe bzw. geringsten Atommasse von Werkstoffen aufgenommen wird. Damit verbunden interagiert der aufgenommene Wasserstoff mit dem Gefüge und kann zu einer negativen Beeinflussung der Eigenschaften des Werkstoffs führen. Wasserstoff kann Degradationsprozesse in Stählen verursachen, die sich insbesondere auf die mechanischen Eigenschaften auswirken. Diese Mechanismen können wasserstoffunterstützte Risse in höherfesten Stählen während der Herstellung oder im industriellen Einsatz verursachen. Elektrochemisch beladene Zugproben zeigen ein unterschiedliches Degradationsverhalten in ihren Eigenschaften. Die vorliegende Arbeit beschreibt die Wechselwirkungen zwischen Wasserstoff und Gitterdefekten in unterschiedlichen mikrolegierten Systemen und wärmebeeinflussten Zonen in den schweißbaren Feinkornbaustählen. Die Ergebnisse zeigen eine klare Abhängigkeit zwischen Mikrolegierung und Herstellungsprozess dieser Stahlsorten, respektive ihrer simulierten wärmebeeinflussten Bereiche. N2 - In addition to the automotive sector, demand for steel in Germany is dominated by mechanical engineering and general construction. These segments demand high-quality steels with the highest requirements in terms of strength, formability, welding processing and safety aspects. Important representatives that meet these requirements are today's more modern high-strength FKB. In the development of these steels, various alloying concepts and production routes have crystallized in recent decades. In addition to essential properties, e.g. yield and tensile strength, this is also based on other requirements, e.g. cold formability, notched impact strength and wear resistance. Increasingly, thermomechanical steels (M) are being used in addition to quenched and tempered steels (Q) in the standardized range with yield strengths up to 700 MPa. An ever-present parallel companion during steel production and processing is hydrogen. Hydrogen is seen as a key element for a sustainable energy economy in the coming years. From today's perspective, hydrogen is a beacon of hope for a climate-friendly energy economy and sustainable industry. Research and industry are working intensively on tapping and further developing the enormous potential in order to achieve greater usability. The reasons are, on the one hand, that hydrogen is unproblematic as a fuel (environmental compatibility and availability) and, on the other hand, that it is an excellent energy carrier. Due to its bonded form, hydrogen is only accessible after dissolution from chemical compounds. This is done in a targeted manner for utilization in a sustainable energy economy. In contrast, there are processes by which hydrogen is released from its chemical compound and absorbed by materials due to its size or lowest atomic mass. In connection with this, the absorbed hydrogen interacts with the microstructure and can lead to a negative influence on the properties of the material. Hydrogen can cause degradation processes in steels that affect mechanical properties in particular. These mechanisms can cause hydrogen-assisted cracking in higher strength steels during fabrication or in industrial use. Electrochemically loaded tensile specimens show different degradation behavior in their properties. The present work describes the interactions between hydrogen and lattice defects in different microalloyed systems and heat affected zones in the weldable fine grain structural steels. The results show a clear dependence between microalloying and manufacturing process of these steels, respectively their simulated heat affected zones. T3 - BAM Dissertationsreihe - 172 KW - Höherfeste Feinkornbaustähle KW - Wasserstoffdegradation KW - Wasserstoffdiffusion KW - Wasserstoffbindungsverhalten KW - Kaltriss und Schweißen KW - High strength fine grained structural steels KW - Hydrogen degradation KW - Hydrogen diffusion KW - Hydrogen trapping KW - Cold cracking and welding PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579412 SN - 1613-4249 VL - 172 SP - 1 EP - 266 PB - Eigenverlag CY - Berlin AN - OPUS4-57941 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sprengel, Maximilian Franz-Arthur T1 - Study on the determination and the assessment of the residual stress in laser powder bed fused stainless steel structures N2 - Additive manufacturing processes offer extensive advantages for the design freedom of structures through layer-by-layer production. This enables high weight savings as well as the integration of functions such as cooling channels. This technology thus offers great potential to contribute to a sustainable future. The pioneer among these manufacturing processes is the powder bed fusion of metals with laser beams (PBF-LB/M). This process is characterised by high laser scanning speeds and highly localised heat input, which have a strong effect on the microstructure and thus also on the mechanical properties. For example, the austenitic steel 316L exhibits a cellular structure at the subgrain level. This microstructure feature leads to higher yield strengths and comparable ductility to conventionally processed 316L. In addition to the traditional applications of 316L steel in the petrochemical and nuclear industries, this enables new applications such as medical stents or bipolar plates for fuel cells with proton exchange membranes. However, the layer-by-layer production with high scanning speeds and localised heat input induces cooling rates in the order of 106 K.s-1. The large temperature gradients and the shrinkage restraints of each weld bead and layer lead to the development of complex residual stress fields. These reduce the material performance and can even lead to premature failure. Thus, the fatigue properties are severely affected by rapid crack growth or prematurely developing cracks. Furthermore, specimens may warp during PBF-LB/M or immediately when the components are separated from the build plate. Therefore, residual stress is one of the main disadvantages of PBF-LB/M, making it difficult for this technology to be more widely accepted in the industry. Based on the current state of the literature, the procedure for determining residual stress employing diffraction methods, the influence of the component geometry, as well as the inter-layertime (ILT) on residual stress and, lastly, suitable heat treatment strategies for relaxing residual stress in PBF-LB/M/316L, were identified as insufficiently researched areas. Determining residual stress is a major challenge. X-ray and neutron diffraction are particularly suitable for filigree structures, which can preferably be produced using PBF-LB/M. Here, the microscopic strain of the lattice planes is used to calculate the macroscopic residual stress. These methods are nondestructive and allow the spatial resolution of the bi-axial and tri-axial residual stress. In the present work, in-situ neutron diffraction tensile tests were performed to analyse the micromechanical behaviour of PBF-LB/M/316L. The suitability of the lattice planes for calculating the macroscopic residual stress was investigated. The (311) lattice plane was found to be the best option for determining the macroscopic residual stress in PBF-LB/M/316L. Furthermore, it was shown that the Kröner model can be used to calculate the X-ray diffraction constants despite the texture. Currently, both aspects are common practices in the determination of residual stress. The results presented here support the validity of this approach and increase the confidence in the experimentally determined residual stress, which has a positive effect on the assessment of quality concerning the safety of a component manufactured by PBF-LB/M. The geometry of a structure manufactured by PBF-LB/M determines the component stiffness and influences the thermal gradients during manufacture and ultimately the residual stress. The effect of smaller or larger dimensions (larger than 10 mm) on the residual stress is rarely considered. To investigate this aspect, representative test specimens with different thicknesses and lengths were produced. Hence, the influence of the geometry i.e., component stiffness on the residual stress was evaluated. The residual stress was determined using X-ray and neutron diffraction. The analysis of the residual stress showed that an increase in thickness leads to overall higher residual stress. In addition, it was shown that increasing the sample dimension leads to smaller residual stress gradients. Above a threshold value of a few millimetres, no significant change in the residual stress was observed. The ILT is inherent in every PBF-LB/M construction job and influences the thermal gradients during production and thus the residual stress. A change in wall thickness in a geometrically complex structure or a variation in the number of specimens in the construction process leads directly to a change in the ILT. To simulate this, specimens with different ILT were produced. The residual stress was determined by X-ray and neutron diffraction. The use of a short ILT resulted in higher surface residual stress, but lower volume residual stress. Here, the surface residual stress and the residual stress in the volume showed contrary behaviour. This was attributed to the complex heat conduction during the process, as shown by the thermographic measurements. To avoid distortion of the specimens or real components upon separation from the build plate or during post-processing steps, stress relief annealing is usually performed after the PBF-LB/M process. Based on standards for heat treatment of welded austenitic steels, heat treatments were performed at low (450 °C for four hours) and high (800 °C and 900 °C for one hour) temperatures. The results show that the heat treatment at 450 °C relaxed the residual stress by only 5 %. This low relaxation is due to the stability of the cell structures. The high-temperature heat treatment showed that 900 °C is required to dissolve the cell structure and achieve a relaxation of about 85 %. This result is in good agreement with the standards for stress relief annealing of welded austenitic steels. N2 - Additive Fertigungsverfahren bieten durch die schichtweise Herstellung weitreichende Vorteile für die Gestaltungsfreiheit von Strukturen und ermöglichen somit hohe Gewichtseinsparungen. Auch die Integration von Funktionen, beispielsweise Kühlkanäle, können unmittelbar während der Herstellung eingebracht werden. Damit bietet diese Technologie ein hohes Potential zu einer nachhaltigen Zukunft beizutragen. Der Vorreiter unter diesen Fertigungsprozessen ist das Pulverbettbasierte Schmelzen von Metallen mittels Laserstrahlen (PBF-LB/M). Dieser Prozess zeichnet sich durch hohe Laserscangeschwindigkeiten und eine stark lokalisierte Wärmeeinbringung aus, welche sich auf die Mikrostruktur und damit auch auf die mechanischen Eigenschaften auswirken. So weist der austenitische Stahl 316L eine zelluläre Struktur auf Subkornniveau auf, welche zu höheren Streckgrenzen jedoch nicht verringerter Duktilität im Vergleich zu konventionell verarbeitetem 316L führt. Dies ermöglicht, neben den traditionellen Einsatzgebieten des Stahls 316L in der petrochemischen und nuklearen Industrie, neue Anwendungen wie medizinische Stents oder Bipolarplatten für Brennstoffzellen mit Protonenaustauschmembran. Die schichtweise Fertigung mit hohen Scangeschwindigkeiten und lokaler Wärmeeinbringung bedingt jedoch Abkühlraten in der Größenordnung von 106 K.s-1. Die hohen Temperaturgradienten im Zusammenspiel mit den Schrumpfbehinderungen jeder Schweißraupe und Lage sorgen für die Entstehung komplexer Eigenspannungsfelder. Diese verringern die Beanspruchbarkeit des Materials und können sogar zu einem vorläufigen Versagen führen. So sind die Ermüdungseigenschaften durch ein rapides Risswachstum bzw. ein vorzeitig entstehender Riss durch Eigenspannungen stark beeinträchtigt. Des Weiteren kommt es vor, dass sich die Proben während des PBF-LB/M oder unmittelbar bei der Trennung der Bauteile von der Bauplatte verziehen. Daher sind die Eigenspannungen eines der Hauptnachteile des PBF-LB/M, die eine breitere Akzeptanz dieses Verfahrens in der Industrie erschweren. Ausgehend vom aktuellen Literaturstand, wurde die Vorgehensweise bei der Bestimmung der Eigenspannungen mittels Beugungsmethoden, der Einfluss der Bauteilgeometrie bzw. Bauteilsteifigkeit sowie der Zwischenlagenzeit auf die Eigenspannungen und zuletzt geeignete Wärmebehandlungsstrategien zur Relaxation der Eigenspannungen in PBF-LB/M/316L als unzureichend erforschte Bereiche identifiziert. Die Bestimmung der Eigenspannung ist eine große Herausforderung. Insbesondere bei filigranen Strukturen, welche vorzugsweise mittels PBF-LB/M hergestellt werden können, eignen sich die Röntgen- und Neutronenbeugung. Hierbei wird die mikroskopische Dehnung der Gitterebenen zur Berechnung der makroskopischen Eigenspannung verwendet. Diese Methoden sind zerstörungsfrei und ermöglichen die räumliche Auflösung der bi-axialen und tri-axialen Eigenspannungen. In der vorliegenden Arbeit wurden in-situ Neutronenbeugungszugversuche durchgeführt, um das mikromechanische Verhalten des PBF-LB/M/316L zu analysieren. Die Eignung der Gitterebenen zur Berechnung der makroskopischen Eigenspannung wurde untersucht. Die (311) Gitterebene erwies sich als die beste Option für die Bestimmung der makroskopischen Eigenspannung in PBF-LB/M/316L. Darüber hinaus wurde gezeigt, dass das Kröner-Modell trotz Textur zur Berechnung der Röntgenbeugungskonstanten verwendet werden kann. Derzeit werden beide Aspekte in der Bestimmung der Eigenspannungen standardmäßig angewandt. Die hier präsentierten Ergebnisse untermauern die Gültigkeit dieses Vorgehens und erhöhen das Vertrauen in den experimentell bestimmten Eigenspannungen, welches sich positiv auf die Beurteilung der Qualität hinsichtlich der Sicherheit eines durch PBF-LB/M gefertigten Bauteils auswirkt. Die Geometrie einer durch PBF-LB/M hergestellten Struktur bestimmt maßgeblich die Bauteilsteifigkeit und beeinflusst die thermischen Gradienten während der Herstellung und letztendlich die Eigenspannungen. Die Auswirkung kleinerer oder größerer Abmessungen (größer 10 mm) auf die Eigenspannungen wird derzeit oft nicht berücksichtigt. Um diesen Aspekt zu untersuchen, wurden repräsentative Probekörper mit unterschiedlichen Dicken und Längen hergestellt. Damit konnte der Einfluss der Geometrie bzw. Bauteilsteifigkeit auf die Eigenspannungen gezielt bewertet werden. Die Eigenspannungen wurden mittels Röntgen- als auch Neutronenbeugung bestimmt. Die Analyse der Eigenspannungen ergab, dass eine Erhöhung der Dicke zu insgesamt höheren Eigenspannungen führt. Zusätzlich wurde gezeigt, dass eine Vergrößerung der Probenabmessung zu kleineren Eigenspannungsgradienten führt. Oberhalb eines Schwellenwerts von wenigen Millimetern ändern sich die Eigenspannungen nicht mehr signifikant. Die sogenannte Zwischenlagenzeit (ILT) ist jedem PBF-LB/M-Bauauftrag inhärent und beeinflusst die thermischen Gradienten während der Herstellung und damit maßgeblich die Eigenspannungen. Ein Wanddickensprung in einer geometrisch komplexen Struktur bzw. einer Variation der Probenanzahl im Bauprozess führt unmittelbar zu einer Änderung der ILT. Um dies nachzubilden, wurden Proben mit unterschiedlichen ILT hergestellt. Die Eigenspannungen wurden mittels Röntgen- und Neutronenbeugung bestimmt. Die Verwendung einer kurzen ILT hat zu höheren Oberflächeneigenspannungen geführt, jedoch zu geringeren Volumeneigenspannungen. Hierbei zeigten die Oberflächeneigenspannungen und die Eigenspannungen im Volumen ein konträres Verhalten. Dies wurde auf die komplexe Wärmeleitung während des Prozesses zurückgeführt, wie die thermografischen Messungen zeigten. Um den Verzug der hergestellten Probekörper oder realen Bauteile bei der Abtrennung der Bauplatte oder in Nachbearbeitungsschritten zu vermeiden, wird in der Regel ein Spannungsarmglühen nach dem PBF-LB/M Prozess durchgeführt. Basierend auf Standards für die Wärmebehandlung von geschweißten austenitischen Stählen, wurden Wärmebehandlungen bei niedrigen (450 °C für vier Stunden) und hohen (800 °C bzw. 900 °C für eine Stunde) Temperaturen durchgeführt. Die Ergebnisse zeigen, dass die Wärmebehandlung bei 450 °C die Eigenspannungen um lediglich 5 % relaxierte. Diese geringe Relaxation ist auf die Stabilität der Zellstrukturen zurückzuführen. Die Hochtemperatur-Wärmebehandlung zeigte, dass 900 °C erforderlich sind, um die Zellstruktur aufzulösen und eine Relaxation von etwa 85 % zu erreichen. Dieses Ergebnis steht in guter Übereinstimmung mit den Standards für das Spannungsarmglühen geschweißter austenitischer Stähle. T3 - BAM Dissertationsreihe - 173 KW - Residual Stress KW - Powder Bed Fusion of Metals with Laser Beams KW - Austenitic Stainless Steel KW - Diffraction KW - Heat Treatment KW - Eigenspannungen KW - Pulverbettbasiertes Laserstrahlschmelzen KW - Austenitischer Rostfreier Stahl KW - Beugung KW - Wärmbehandlung PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579802 SN - 1613-4249 VL - 173 SP - 1 EP - 256 PB - Eigenverlag CY - Berlin AN - OPUS4-57980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Thomas, Maximilian T1 - Verbesserung der Übertragbarkeit von Erstarrungsrissprüfungen nach dem MVT-Verfahren durch Digitalisierung der Probenauswertung N2 - Zur Prüfung der Erstarrungsrissanfälligkeit von Werkstoffen existiert eine Vielzahl von Prüfverfahren, die jedoch oft nur in ihren Grundzügen standardisiert sind. Ein Beispiel ist der an der Bundesanstalt für Materialforschung und -prüfung entwickelte und angewendete Modifizierte Varestraint-/Transvarestraint-Test (MVT), der eine von vielen Umsetzungen des Varestraint-Verfahrensprinzips darstellt. Hierbei werden durch Biegung während des Schweißens gezielt Erstarrungsrisse erzeugt und anschließend lichtmikroskopisch vermessen. Die Ergebnisse von Varestraint-Prüfungen charakterisieren jedoch nicht allein das Werkstoffverhalten, sondern sind in hohem Maße von der Konstruktion der jeweiligen Prüfmaschine sowie den verwendeten Prüfparametern abhängig. Dies erschwert die Vergleichbarkeit von Ergebnissen, welche nicht unter exakt identischen Bedingungen ermittelt wurden, und kann darüber hinaus zu einer ungenauen oder unvollständigen Bewertung des Werkstoffverhaltens führen. Die vorliegende Arbeit widmet sich zunächst der detaillierten Ausgestaltung der geometrischen Zusammenhänge rund um die Ausbreitung von Erstarrungsrissen während der Varestraint-Prüfung. Mit Blick auf Prokhorovs Technological Strength Theory und die sich daraus ergebenden erstarrungsrisskritischen Temperaturen wird anschließend eruiert, wie aus den Anfangs- und Endkoordinaten der entstandenen Risse auf das charakteristische Erstarrungsrissverhalten geschlossen werden kann. Die daraus entwickelte Bewertung der Rissanfälligkeit ist weitestgehend von den Prüfparametern und weiteren verfahrensspezifischen Einflüssen entkoppelt, wodurch eine deutlich bessere Übertragbarkeit der Ergebnisse gewährleistet ist. Zur Erprobung der neu entwickelten Bewertungsansätze wurden zunächst MVT-Prüfungen an mehreren hochlegierten, martensitischen Schweißzusatzwerkstoffen, sowie am Nickelbasiswerkstoff Alloy 602 CA durchgeführt. So konnten einerseits verschiedene Legierungen hinsichtlich ihres Erstarrungsrissverhaltens charakterisiert und Empfehlungen für die schweißtechnische Fertigung generiert werden. Zum anderen dienten die Proben zur vollständigen Konzipierung, Entwicklung und Validierung einer digitalen Auswertemethodik. Die eigens programmierte Software ermöglicht die schnelle und praxisgerechte Auswertung von MVT-Proben, und implementiert dabei zusätzlich die zuvor entwickelten, prozessunabhängigen Bewertungsansätze. Als Ergebnis konnten kritische Dehnraten identifiziert werden,ab deren Überschreitung die betrachteten Werkstoffe unter den verwendeten Prüfbedingungen gesteigerte Erstarrungsrissanfälligkeiten aufweisen. So ergibt sich ein direkter Zusammenhang zwischen MVT-Prüfergebnissen und der Technological Strength Theory von Prokhorov. Die Bewertung des Werkstoffverhaltens anhand der kritischen Dehnraten erwies sich gegenüber den üblicherweise betrachteten Gesamtrisslängen als deutlich zuverlässiger. Zusammenfassend konnte gezeigt werden, dass die digitale Auswertung eine sinnvolle Verbesserung der analogen Standardauswertung darstellt. N2 - A multitude of testing procedures exist for the assessment of the solidification cracking susceptibilities of metal alloys. Many of these tests are only standardised on a very basic level. This also applies to the Modified Varestraint-/Transvarestraint Test (MVT), which was developed at the Federal Institute for Materials Research and Testing (BAM) and is one of many variants of the original Varestraint test. Its functional principle is the bending of flat specimens during welding. Any solidification cracks formed during the procedure are quantified in a later step using optical light microscopy. However, the test results don’t exclusively characterise the analysed material, but also greatly depend on the design of the testing rig, as well as the applied testing parameters. This complicates the comparison of results obtained under different circumstances, and furthermore can lead to an inaccurate or insufficient assessment of the material characteristics. The present work elaborates the geometrical aspects of solidification crack initiation and propagation during Varestraint testing. Applying Prokhorov’s Technological Strength Theory and the ensuing Brittleness Temperature Range, it is then determined how the start and end points of solidification cracks can be used to characterise the materials solidification cracking susceptibility. Ultimately, these insights are developed into a standard of evaluation which aims to eliminate the influence of testing parameters and characteristics, helping to greatly improve the comparability of Varestraint testing results. To test the newly developed standard of evaluation, MVT tests were carried out on several high-alloyed martensitic steels, as well as on the nickel-based Alloy 602 CA. On the one hand, the obtained results provide detailed characterisations of the solidification cracking susceptibilities of different materials as well as guidelines for their use in welding processes. On the other hand, the specimens were used for conception and validation of a novel, digital examination procedure. The software developed for this purpose allows for fast and practice-oriented examination of MVT specimens. At the same time, the new software implements the previously developed standard of evaluation to eliminate the influence of testing parameters. As a result, critical strain rates could be identified, which indicate the transition towards increased solidification cracking susceptibility under the respective circumstances. In this way, a direct connection between MVT test results and Prokhorov’s Technological Strength Theory can be drawn. Compared to the Total Crack Length, which is usually given as a test result, critical strain rates were found to be a more reliable characteristic. In summary, the newly developed procedures were proven to be a meaningful improvement of the current, analogue standard procedure. T3 - BAM Dissertationsreihe - 171 KW - Heißriss KW - Erstarrungsriss KW - Schweißen KW - Varestraint Test KW - Digitalisierung KW - Hot crack KW - Solidification KW - Welding KW - Varestraint test KW - digitalisation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553800 SN - 1613-4249 VL - 171 SP - 1 EP - 160 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-55380 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen diffusion in thick-walled S690 SAW joints: Part 1 - Experimental determination of microstructure dependent diffusion coefficients N2 - S690 steels are widely used in heavy-duty applications, such as structural components, mobile cranes, and industrial plant construction, owing to their high strength and weldability. However, thick-plate submerged arc welding (SAW) can introduce elevated hydrogen levels and residual stresses that promote time-delayed hydro-gen-assisted cold cracking (HACC). Accurate, microstructure-specific diffusion data are scarce, limiting pre-dictive HACC assessments. This study presents an experimental determination of hydrogen diffusion coeffi-cients (DH) in two S690 variants: thermomechanically rolled (S690MC) and quenched and tempered (S690Q). Multi-layer SAW welds were produced from 30 mm-thick plate material at three heat input levels, and diffusion membranes were extracted from weld metal (WM), heat-affected zone (HAZ), and base material (BM). Hydro-gen permeation tests, conducted in accordance with DIN EN ISO 17081, yielded time-normalized flux curves from which DH was derived using the inflection-point method. At room temperature, DH values ranged from 6 × 10⁻⁵ to 9 × 10⁻⁵ mm²/s across all regions and heat inputs, with no significant difference between S690MC and S690Q. Weld metal exhibited marginally lower DH, attributed to enhanced hydrogen trapping, while base mate-rial measurements showed greater variability. These microstructure-resolved diffusion coefficients fill a critical data gap and provide essential input for the numerical simulations presented in Part 2. The results also support practical guidelines for mitigating HACC risk through the optimization of welding parameters. T2 - 78th IIW Annual Assembly, Meeting of Commission II-C CY - Genoa, Italy DA - 22.06.2025 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - High strength steels KW - Hydrogen Diffusion KW - Electrochemical permeation PY - 2025 AN - OPUS4-63540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Weld heat input effect on microstructure and hydrogen diffusion in thick-walled S690 submerged arc welded joints N2 - High-strength, low-alloy (HLSA) steels such as S690 are an attractive option for heavy industries such as offshore wind turbines and peripheral equipment due to their combination of excellent mechanical properties and weldability. The construction of these thick-walled structures requires highly efficient welding processes such as submerged arc welding (SAW). However, SAW faces challenges related to delayed hydrogen assisted cold cracking (HACC). Despite its importance, the effect of different diffusion coefficients on the cold cracking susceptibility of different microstructures within SAW-welded S690 steels is not fully understood. For this reason, the present study focuses on comparing the cold cracking susceptibility of thermomechanically rolled (TM) or quenched and tempered (QL) variants of S690 steel. Submerged arc welding was performed on both steel grades at different welding heat inputs. From these thick-walled welds, metallic membranes were extracted from the weld metal, the heat-affected zone (HAZ), and the two base metals. The specimens were subjected to electrochemical hydrogen permeation tests (according to ISO 17081) to determine the microstructure-specific hydrogen diffusion coefficients. In general, increased welding heat input and thickness decreased the hydrogen diffusion coefficients, i.e., the time required for hydrogen diffusion increased. In addition, the results showed that the TM grade exhibited slightly accelerated hydrogen diffusion coefficients compared to the QL grade, which is beneficial for hydrogen reduction and increases the HACC resistance. As a result, the microstructure-specific assessment of hydrogen diffusion in the BM, HAZ or WM of the SAW joint was less important for a given set of welding parameters compared to other welding processes such as gas metal arc welding (GMAW). The reason is that in multilayer SAW, the relatively large welding heat input and multiple annealing resulted in similar microstructures, resulting in very close hydrogen diffusion coefficients. From this point of view, it is sufficient to characterize the hydrogen diffusion coefficients of both the weld metal and the base material. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen assisted cracking KW - Submerged arc welding KW - Diffusion KW - Electrochemical permeation KW - Microstructure PY - 2025 AN - OPUS4-63543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Hydrogen diffusion in thick-walled S690 SAW joints: Part 2 - Predictive modeling of welding heat input and microstructure influence N2 - High-strength low-alloy (HSLA) steels such as S690 are widely employed in thick-walled welded structures, where hydrogen-assisted cold cracking (HACC) remains a persistent concern. While microstructure-specific hydrogen diffusion coefficients (DH) for weld metal (WM), heat-affected zone (HAZ), and base material (BM) were experimentally established in Part 1 of this study, their quantitative influence on hydrogen accumulation and effusion has not yet been fully clarified. This work presents a transient, spatially resolved numerical model for simulating hydrogen transport in multi-pass submerged arc welds. The model integrates experimentally determined DH values with realistic thermal cycles and temperature-dependent boundary conditions. Developed in Python, the simulation tool is purpose-built for hydrogen diffusion in welded joints and offers a focused, transparent alternative to general-purpose finite element platforms. Parametric analyses demonstrate that, although the diffusion coefficients vary by up to 50 %, their impact on overall hydrogen retention is minor. In contrast, welding parameters such as plate thickness, bead geometry, cooling time (t₈/₅), and interpass tem-perature exert a dominant influence on hydrogen distribution. Despite clear microstructural differences between the thermomechanically rolled (S690MC) and quenched and tempered (S690Q) variants, including hardness softening versus hardening in the heat-affected zone of the (pen)ultimate weld bead, the simulations confirm that their diffusion behavior and hydrogen solubility are closely aligned. Consequently, differences in diffusivity and solubility exert only a minor influence on hydrogen retention compared to thermal exposure and joint geometry. These findings support the interchangeable use of both steel grades in terms of HACC risk due to hydrogen diffusion kinetics, under comparable welding conditions. T2 - 78th IIW Annual Assembly, Meeting of Commission II-C CY - Genoa, Italy DA - 22.06.2025 KW - Hydrogen assisted cracking KW - Numerical simulation KW - Hydrogen diffusion PY - 2025 AN - OPUS4-63541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Czeskleba, Denis A1 - Fleißner-Rieger, H. A1 - Nietzke, Jonathan A1 - Kannengießer, Thomas T1 - Combined heating rate and restraint condition effect on stress relief cracking during PWHT of thick-walled Cr–Mo-V steel SAW joints N2 - Creep-resistant steels such as 13CrMoV9-10 are utilized in the manufacture of thick-walled pressure vessels and are typically joined by submerged arc welding (SAW). However, these materials are susceptible to stress relief cracking (SRC) if the required post weld heat treatment (PWHT) is not applied correctly. Existing PWHT guidelines, encompassing heating rate and dwell (or holding) time at a given temperature, are derived from a synthesis of empirical knowledge and typically free-shrinkage weld experiments to assess the susceptibility to SRC. Therefore, this study discusses the combined effect of the PWHT heating rate under free-shrinkage compared to restrained shrinkage. Welding experiments were conducted (using plates with a thickness of 25 mm) for both shrinkage conditions for a variety of heating rates and maximum temperatures. In-situ acoustic emission analysis was used to locate propagating SRCs during PWHT. Hardness measurements, mechanical property characterization (Charpy impact strength), and microstructure correlation were used to evaluate the SRC susceptibility. The results suggested that the influence of heating rate could not be directly related to SRC formation and that the initial weld microstructure prior to PWHT was more relevant in terms of very high hardness in the coarse grain heat affected zone, especially that of the last beads in the top layer of the welding sequence. This was seen in the form of random, unexpected SRC occurrence in only one specimen at a heating rate commonly used in welding practice (approximately 100 K/h). In this context, the additional effect of an external shrinkage restraint on SRC must be considered in the form of increasing mechanical loads during welding, which are typically not within the scope of welding practice. To mitigate the probability of SRC during PWHT, it is imperative to reduce the welding heat input and to restrict the structural shrinkage restraint of the weld joint. KW - Component test KW - Stress relief cracking KW - PWHT KW - Creep-resistant steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631439 DO - https://doi.org/10.1007/s40194-025-02062-x SN - 1878-6669 SP - 1 EP - 17 PB - Springer Nature AN - OPUS4-63143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liepold, Philipp A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Investigation of restraint intensity influence on solidification cracking of high-strength filler materials in fillet welds via CTS testing N2 - In addition to chemical composition, metallurgy, and welding parameters, the intensity of restraint is one of the key variables influencing solidification cracking (SC). Due to their high strength-to-density ratio, many modern lightweight steel constructions increasingly rely on high-strength steel. Given the theoretical framework of solidification cracking theory, tests tend to focus on the effects of strain rate. Externally restrained tests have provided valuable insights into solidification crack susceptibility. In practice, most welded structures are self-restrained; therefore, self-restraint tests more accurately reflect real-world applications. By varying the plate thickness in controlled thermal severity (CTS) tests conducted on S1100 QL, it was possible to adjust the intensity of restraint on fillet welds at a high level. Testing was performed using four different filler wires for gas metal arc welding (GMAW), including three solid wires and one metal-cored wire. Additionally, two sets of welding parameters were evaluated. High arc energy (U × I/welding speed) and increased welding speed were found to be more prone to solidification cracking compared to the parameter set with lower arc energy and welding speed. The results indicate a correlation between increasing restraint severity and a higher incidence of solidification cracking. KW - CTS KW - Controlled thermal severity KW - High-strength steel KW - GMAW KW - Restraint PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631315 UR - 1878-6669 DO - https://doi.org/10.1007/s40194-025-02046-x SP - 1 EP - 13 PB - Springer AN - OPUS4-63131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Martin A1 - Dittmann, Florian A1 - Kromm, Arne A1 - Varfolomeev, Igor A1 - Kannengießer, Thomas T1 - Residual stress reduction using a low transformation temperature welding consumable with focus on the weld geometry N2 - Low transformation temperature (LTT) welding consumables represent an innovative approach to realize compressive residual stress in the weld seam and HAZ. LTT welding consumables use the volume-expanding martensitic phase transformation near room temperature to generate compressive residual stress during cooling. This article focuses on the weld geometry and its influence on residual stress reduction using an LTT welding consumable. For this purpose, layers with an LTT welding consumable were additionally applied to the front sides of conventionally welded longitudinal stiffeners. Different weld geometries of the second weld seam could be realized by varying the welding parameters. These samples were analyzed for geometric parameters, chemical composition, and residual stress. While the chemical composition and martensite start temperature (MS) were only slightly influenced by parameter changes, a clear influence with regard to residual stress and weld geometry was observed. Depending on the shape of the second LTT weld seam, residual stress reductions of 200 to 500 MPa were achieved using the same LTT welding consumable. T2 - IIW Annual Assembly and International Conference CY - Rhodes Island, Dodecanisa, Greece DA - 07.07.2024 KW - Low transformation temperature (LTT) KW - Martensite start temperature KW - Dilution KW - Weld geometry KW - Residual stress PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-633707 DO - https://doi.org/10.1007/s40194-025-02094-3 SN - 1878-6669 SP - 1 EP - 11 PB - Springer Nature CY - Berlin ; Heidelberg AN - OPUS4-63370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Scharf-Wildenhain, R. A1 - Schröpfer, Dirk A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Influence of heat input on properties and residual stresses in hybrid addi-tive manufacturing of high strength steels using MSG processes N2 - The application of steels with a higher yield strength allows reductions in wall thickness, component weight and production costs. Hybrid additive manufacturing based on Gas Metal Arc Welding (GMAW) processes (DED-Arc) can be used to realise highly effi-cient component modifications and repairs on semi-finished products and additively manufactured structures. There are still a number of key issues preventing widespread implementation, particularly for SMEs. In addition to the manufacturing design, detailed information about assembly strategy and geometric adaptation of the component for modifications or repairs are missing. These include the welding-related stresses associ-ated with the microstructural influences caused by the additive manufacturing steps, particularly in the transition area of the substrate and filler material interface. The pre-sent research focuses the effect of welding heat control during DED-Arc process on the residual stresses, especially in the transition area. Defined specimens were welded fully automatically with a high-strength solid wire (yield strength > 790 MPa) especially adapted for DED-Arc on S690QL substrate. The working temperature and heat input were systematically varied for a statistical effect analysis on the residual stress state of the hybrid manufactured components. Regarding heat control, t8/5 cooling times within the recommended processing range (approx. 5 s to 20 s) were complied. The investiga-tion revealed a significant influence of the working temperature Ti on the compressive residual stresses in the transition area and the tensile residual stresses at the base of the substrate. High working temperatures result in lower compressive residual stresses, heat input E does not significantly affect the tensile stresses. T2 - 6. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 20.02.2025 KW - DED-Arc KW - Residual stress KW - Heat control PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632188 DO - https://doi.org/10.21268/20250506-3 SP - 110 EP - 122 AN - OPUS4-63218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Diffraction based residual stress analysis for laser powder bed fusion alloys N2 - Laser Powder Bed Fusion (PBF-LB/M) is a layer wise metal additive manufacturing (AM) technology, which enables significant advancements of component design, leading to potential efficiency and performance improvements. However, the thermal cycles inherent to the process comprising large localized thermal gradients and repeated melting and solidification cycles leads to the generation of high magnitude residual stresses. These residual stresses can be detrimental both during manufacturing of components and in subsequent application. Therefore, a deep understanding of the influence of process parameters on the residual stresses are crucial for efficient manufacturing and safe application. The experimental characterization of these residual stresses is therefore crucial and can provide a reliable baseline for simulations of both the process and applications. Diffraction-based methods for residual stress analysis using penetrating neutrons and high energy X-rays enable non-destructive spatially resolved characterization of both surface and bulk residual stresses. However, the unique microstructural features inherent to the process can challenge some of our assumptions when using these methods. These challenges include the determination of a stress-free reference, the use of correct elastic constants (both SCEC and DEC) and the influence of surface roughness, texture, and porosity on residual stresses. This presentation will detail recent insights and recommendations for the characterization of residual stresses in a range of PBF-LB/M metallic alloys (Fe, Ni, Al and Ti) T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2024 AN - OPUS4-60443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Reparaturschweißen zukünftiger, in Betrieb befindlicher Wasserstoffpipelines N2 - Wasserstoff leistet als Energieträger der Zukunft einen entscheidenden Beitrag zur nachhaltigen Energieversorgung, wobei der Transport auf Basis des europäischen Ferngasleitungsnetzes erfolgen wird. Bisherige Untersuchungen zur Werkstoffkompatibilität zeigen, dass die hier verwendeten, niedriglegierten Rohrstähle für Wasserstofftransport unter normalen Betriebsbedingungen (≤ 60 °C, max. 100 bar) grundsätzlich geeignet sind. Die Eignung kann nicht ohne Weiteres übertragen werden, sobald Reparaturschweißungen beispielsweise aufgrund von Wartungsarbeiten an druckführenden, in Betrieb befindlichen, Hochdruckgasleitungen erfolgen. Aus technisch-ökonomischen Gründen werden Schweißarbeiten dabei im Betrieb unter fortwährendem Druck und Gasfluss durchgeführt. Dies soll auch bei Wasserstoffpipelines erfolgen. Dazu im Erdgasnetz angewandte und etablierte Konzepte sind beispielsweise das „Hot-Tapping“ und „Stoppling“. Beim „Hot-Tapping“ wird eine druckführende Pipeline durch Anflanschen eines abgeschlossenen, druckdichten Systems aus Absperrventil und Bohrvorrichtung angebohrt. Dazu müssen sogenannte Überschieber (aus vorgeformten Zylinderhalbschalen) durch Längsnaht verbunden und dann mit Rohrrundnähten am Produktrohr verbunden werden. Für das zum überwiegenden Teil durchgeführte E-Hand-Schweißen sind dabei Vorwärmtemperaturen von ca. 100 °C bzw. 250 °C für die maximale Zwischenlagentemperatur einzuhalten. Besonderer Fokus liegt auf der Betrachtung dünnwandiger Leitungen, da hier beim Schweißen der Rundnähte die Austenitisierungstemperatur an der Innenseite der Pipeline überschritten wird. Dadurch wird eine signifikant höhere Wasserstoffaufnahme in den Leitungsstahl vermutet, mit einer möglichen Degradation der mechanischen Kennwerte bzw. Rissbildung. Durch die langen Schweiß- und Abkühlzeiten wird der Rohrleitungsstahl zudem teilweise stundenlang Temperaturen von bis zu 250 °C ausgesetzt. Neben der klassischen „Versprödung“ muss daher eventuell auch ein sogenannter Hochtemperatur-Wasserstoffangriff betrachtet werden. Diese vorliegende Studie gibt Einblick zur Übertragbarkeit der bekannten Konzepte aus der Erdgastechnik zum Reparaturschweißen. Dazu werden Möglichkeiten und Grenzen momentaner Prüfkonzepte sowie deren Weiterentwicklungen aufgezeigt. Dies umfasst bspw. geeignete Methodiken zur Werkstoffprüfung als auch skalierte Bauteilversuche unter realistischen Druckgas-Betriebsbedingungen einer Pipeline. In diesem Rahmen erfolgt auch die Kurzvorstellung des Kooperationsprojektes von BAM, DVGW und Ferngasnetzbetreibern „H2-SuD“ zum Einfluss der Temperaturführung und Rohrgeometrie auf die Wasserstoffaufnahme. T2 - DVS CONGRESS 2024 CY - Erfurt, Germany DA - 16.09.2024 KW - Reparaturschweißen KW - Pipeline KW - Wasserstoff KW - Im Betrieb PY - 2024 SN - 978-3-96144-269-0 VL - 395 SP - 341 EP - 349 AN - OPUS4-61478 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in additiv gefertigten Bauteilen aus hochfestem Stahl N2 - Additive Fertigungsverfahren wie das Wire Arc Additive Manufacturing (WAAM) ermöglichen die effiziente Fertigung von gewichtsoptimierten endkonturnahen Strukturen in modernen Stahlkonstruktionen. Ihre Effizienz kann weiter durch die Verwendung von hochfesten Stählen gesteigert werden. Dies erlaubt eine signifikante Einsparung von Kosten, Zeit und Ressourcen. Entsprechende Schweißzusatzwerkstoffe für Lichtbogenschweißverfahren sind kommerziell verfügbar. Fehlende Richtlinien und fehlende quantitative Kenntnisse über die schweißtechnische Beanspruchung während der Fertigung und im Betrieb limitieren den industriellen Einsatz stark. Daher werden in einem aktuellen Vorhaben (IGF-Nr. 21162 BG) der BAM und TU Chemnitz die wesentlichen Einflüsse und komplexen Interaktionen durch Werkstoff, Fertigungsprozess, Konstruktion und trennende Fertigungsschritte auf den Beanspruchungszustand untersucht. Der vorliegende Beitrag fokussiert hierfür die Auswirkungen trennender Fertigungsschritte auf Verzug und Eigenspannungen definierter WAAM-Prüfkörper. Die Eigenspannungsanalyse erfolgt mittels Röntgenbeugung. Die große Anzahl an Ergebnissen von zuvor untersuchten Referenzproben, die mit einem speziellen WAAM-Massivdraht (Streckgrenze >820 MPa) bei unterschiedlicher Wärmeführung und Geometrie vollautomatisiert geschweißt wurden, lässt eine Korrelation der Messdaten zu. Hierzu erfolgt die Analyse des Ausgangszustandes und abschließend des Zustandes nach trennender Bearbeitung, welche begleitend mittels digitaler Bildkorrelation hinsichtlich des Verzuges untersucht wurden. So ist zu beobachten, dass die Geometrie deutlichen Einfluss auf Relaxation und Umlagerung der Eigenspannungen hat und damit die Risssicherheit positiv beeinflussen kann. T2 - Werkstofftechnisches Kolloquium 2023 Chemnitz CY - Chemnitz, Germany DA - 29.03.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-57690 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - RS analysis in laser powder bed fused austenitic stainless steel N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - Laser Powder Bed Fusion KW - AGIL KW - 316L PY - 2024 AN - OPUS4-60445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Cieslik, K. A1 - Mory, D. A1 - Griesche, Axel T1 - In situ chemical composition analysis of a tungsten-inert-gas austenitic stainless steel weld measured by laser-induced breakdown spectroscopy N2 - The chemical composition of a weld metal determines the resulting solidification mode of stainless steel and the consequent weld metal quality. In this work tungsten inert gas (TIG) welding of EN grade 1.4435 austenitic stainless steel was monitored using laser-induced breakdown spectroscopy (LIBS) for the in situ measurement of chemical composition changes. This research aims to prototype a real-time chemical composition analysis system for welding applications and prove the feasibility of such quality control loop. LIBS was used to investigate in situ the monitoring of metal vaporization during TIG welding. We found Mn vapor formation above the weld pool and subsequent condensation of Mn on the weld metal surface using LIBS. Post-weld line scans were conducted by LIBS on various welds produced with different welding currents. Local changes of Ni and Mn were observed at higher welding currents. The results are in good agreement with the literature and proved that LIBS can be used in situ to inspect the TIG welding process. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brünn, Czechia DA - 08.09.2019 KW - LIBS KW - Welding KW - Austenitic stainless steel KW - Metal vapor KW - In situ measurement PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105826 SN - 0584-8547 VL - 167 SP - 105826 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-50582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Stresses in repair welding of high-strength steels Part 1: Restraint and Cold cracking risk N2 - The sustainable and resource-efficient production of wind energy plants requires the use of modern high-strength fine-grain structural steels. This applies to both foundation and erection structures, like mobile or ship cranes. During the assembly of steel structures, unacceptable defects can occasionally be found in the weld area. In most cases, the economical solution would be local thermal gouging of the affected areas and re-welding. Due to the high shrinkage restraint of the joint groove in the overall structure, the superposition of global and local welding-induced stresses may lead to crack formation and component failure, particularly in interaction with the degradation of the microstructure and mechanical properties of high-strength steels during the repair process. However, manufacturers hardly have any information about these issues and there is a lack of recommendations and guidelines to take these safety-relevant aspects into account in adequate repair concepts. The aim of this research is to derive recommendations for repair concepts appropriate to the stresses and materials involved providing a basis for standards and guidelines to avoid cold cracking, damage and expensive reworking especially for high-strength steels. Part 1 of this study involves systematic investigations of influences of shrinkage restraint during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures. The quantification of the shrinkage restraint of repair weld joints was achieved by means of experimental and numerical restraint intensity analysis. In welding experiments with self-restrained slot specimens, restraint intensity and introduction of hydrogen via the welding arc using anti spatter spray were varied systematically to analyse the effect on welding result, residual stresses, and cold cracking. It could be shown that increasing restraint intensities result in significantly higher transverse residual stress levels. In the case of hydrogen introduction S500MLO showed no cold cracking independent of the restraint conditions. However, S960QL was found to be considerably cold cracking sensitive if hydrogen is introduced. With increasing restraint intensity length and number of cold cracks increases significantly. Part 2 [1] of this study is focussed on microstructure and residual stresses due to gouging and stress optimization via adequate heat control parameters in repair welding. T2 - IIW Annual Assembly 2023 CY - Singapore DA - 16.07.2023 KW - Repair-welding KW - MAG welding KW - High-strength steels KW - Cold cracking KW - Residual stresses PY - 2023 AN - OPUS4-59253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Lippold, J. C. A1 - Farajian, M. A1 - Kannengießer, Thomas A1 - Scotti, A. A1 - Raufelder, E. T1 - Welding in the world - 2024 update N2 - This is an editorial regarding the performance of the journal "Welding in the World" in the year 2023 (vol. 67). KW - Journal performance KW - Editorial PY - 2024 DO - https://doi.org/10.1007/s40194-024-01686-9 SN - 0043-2288 SN - 1878-6669 VL - 68 SP - 179 EP - 181 PB - Springer CY - Berlin AN - OPUS4-63013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Czeskleba, Denis T1 - Kurzvorstellung des Projektes "H2SuD / Wasserstoff und Schweißen Einfluss des Schweißens auf die Wasserstoffaufnahme und Degradation im Betrieb befindlicher H2 Gasleitungen" N2 - Die Wasserstoffinfrastruktur ist eine zentraler Bestandteil der erfolgreichen Umsetzung der wasserstoffbasierten Energiewende. Dabei bilden Ferngasleitungen quasi das "Rückgrat" der Transportinfrastruktur großer Gasmengen. Dabei müssen unter Umständen Reparaturen an den Pipelines durchgeführt werden. Dabei ist in der Erdgasinfrastruktur das Schweißen an in Betrieb befindlichen (d.h. von Gas durchflossenen) Pipelines Stand der Technik. Es ist jedoch vollkommen offen, inwieweit diese Technik auf die reine Wasserstoffpipelines übertragbar sind. Hierzu leistet das Projekt H2SuD wichtige Beiträge zur Aufklärung des Einfluss eines Reparaturschweißprozesses auf die Wasserstoffaufnahme und Degradation im Betrieb befindlicher H2 Gasleitungen. T2 - Sitzung des FA1 "Schweißmetallurgie" der Forschungsvereinigung Schweißen und verwandte Verfahren des DVS e.V. CY - Aachen, Germany DA - 22.02.2023 KW - Wasserstoff KW - Pipeline KW - Reparatur KW - Schweißen KW - Ferngasleitung PY - 2023 AN - OPUS4-57087 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell T1 - Component test to simulate critical conditions of hydrogen assisted cracking in submerged arc welded offshore steel N2 - Offshore Wind Turbines (OWT) are a key factor in tomorrow's sustainable energy generation. The ever� increasing installation depth and weight of OWTs require suitable foundation concepts such as monopiles or tripods. Typically, mild steels such as S420ML are used with plate thicknesses of up to several hundred mm, resulting in high restraints in the welded joints. The large plate thickness requires high-efficiency welding processes such as submerged arc welding (SAW) with multiple wires. Due to the very high stiffness and plate thickness of the large-scale offshore structure, a susceptibility to time� delayed hydrogen assisted cracking (HAC) may occur. For this reason, a minimum waiting time (MWT) of up to 48 h must be considered before NDT is conducted. The evaluation of the crack susceptibility is complex due to the component size and stiffness of real offshore structures. For this purpose, a near-component test geometry has been developed to transfer the real stiffness conditions to laboratory (i.e. workshop) scale. The 350 kg mock-up consisted of heavy plates (thickness 50 mm, seam length 1,000 m) joined by a 22-pass submerged-arc weld. Additional stiffeners simulated the effect of high restraint or shrinkage restraint of the weld. Extreme scenarios of hydrogen absorption during welding were simulated by using flux in dry (HD < 5 ml/100g Fe) and wet (HD > 15 ml/100g Fe) conditions. Weld residual stresses were determined using a robotic X-ray diffractometer. Areas of critical tensile residual stress (at the yield strength level) were found in the weld metal and in the heat affected zone, suggesting that these weld subzones are the most critical in the case of hydrogen ingress. To identify possible delayed cracking, the welds were inspected by phased array ultrasonic testing (PAUT) after welding, 6 h, 12 h, 24 h, and a maximum of 48 h. Summarized, no significant occurrence of HAC was detected, indicating the high crack resistance of the welded joint, i.e., a suitable combination of base material, welding consumable and parameters. T2 - Materials Week/Steel Innovation CY - Frankfurt am Main, Germany DA - 02.04.2025 KW - Cold cracking KW - Component test KW - Hydrogen KW - Minimum waiting time KW - Offshore steel grade PY - 2025 AN - OPUS4-62873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas T1 - Modified TEKKEN test for studying hydrogen-assisted cracking in high-strength structural steels N2 - In the present work, the complex interactions of the influences of material, welding process and seam configuration and the restraint of shrinkage on the residual stresses and the influence of diffusible hydrogen on hydrogen-assisted cracking (HAC) in the high-strength steel S960QL were investigated. For this purpose, self-restraint specimens were selected using the TEKKEN test with correspondingly adapted seam opening angles and a restraint intensity of approx. RFy = 17 kN/(mm·mm). The variation of the seam opening angle of the test seams was between 30° and 60°. Due to the comparatively high restraint of shrinkage in the transverse direction of the weld, high tensile residual stresses in the weld metal were expected for both weld seam configurations. In addition, a dehydrogenation heat treatment (DHT) for HAC prevention under restraint of shrinkage was verified. In order to keep distortion and heat input as low as possible, the seam geometries were manufactured from the solid material by means of electric discharge machining (EDM). Both, solid wire and metal cored wire were used. In addition, hydrogen was added to the shielding gas in solid wire welding to increase diffusible hydrogen concentration. Moreover, welding residual stresses at the weld seam surface, which were measured by using mobile X-ray diffraction, were taken into account to evaluate the HAC behavior. DHT was carried out at 250 °C for 4 h in an external furnace. T2 - 73rd IIW Annual Assembly: Commission II-A CY - Online meeting DA - 15.07.2020 KW - High-strength steel KW - Gas metal arc welding KW - Hydrogen-assisted cracking KW - TEKKEN test KW - Residual stresses KW - Dehydrogenation heat treatment PY - 2020 AN - OPUS4-51035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaiser, Sebastian A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Herausforderungen beim Schweißen im Betrieb an Wasserstoff-Ferngasleitungen N2 - Als Energieträger der Zukunft kommt grünem Wasserstoff große Bedeutung bei der Energiewende und der zukünftigen, nachhaltigen Energieversorgung zu Teil. Zum effizienten und sicheren Transport des Wasserstoffs ist die Bereitstellung einer Pipeline-Infrastruktur geplant. Die meisten Länder verfolgen hierbei die Strategie der Umwidmung bestehender Erdgastransportleitungen, ergänzt durch Errichtung neuer Pipelines. Die bestehenden Erdgasnetze sind dabei aus unterschiedlichsten Rohrgeometrien und Materialien zusammengesetzt. Bei der Umwidmung von Erdgaspipelines zum Transport von Wasserstoff müssen daher Fragen der Materialverträglichkeit hinsichtlich des als Wasserstoffversprödung bekannten Phänomens der Beeinträchtigung der mechanischen Eigenschaften metallischer Werkstoffe durch Wasserstoff betrachtet werden. Bisherige Forschungsergebnisse und Feldversuche deuten darauf hin, dass die niedriglegierten, ferritischen Stähle, aus denen die Ferngasleitungen des Erdgasnetzes überwiegend bestehen, für den Transport von Wasserstoff unter normalen Betriebsbedingungen geeignet sind. Eine Frage, die bislang weniger Aufmerksamkeit erhielt, ist die, wie sich das Schweißen im Betrieb an Wasserstoffpipelines auf die Materialkompatibilität auswirkt. Im Erdgasnetz sind etablierte Verfahren wie beispielsweise das „Hot-Tapping“ unumgänglich für die Instandhaltung und Erweiterung des Netzes. Hierbei werden an eine im Betrieb befindliche Pipeline geteilte T-Stücke aufgeschweißt, über die die Pipeline dann mit geeigneten Bohrvorrichtungen während eines ununterbrochenen Betriebs angebohrt werden kann. Um zu beurteilen, ob diese Verfahren gefahrlos auf Wasserstoffpipelines übertragen werden können, müssen Problemstellungen betrachtet werden, die sich durch den Wärmeeintrag ins Material beim Schweißen ergeben. Wasserstofflöslichkeit und Diffusionsgeschwindigkeit sind temperaturabhängig. Erhöhte Temperaturen könnten eine Wasserstoffaufnahme ins Material bewirken, die zu einer kritischen Degradation der mechanischen Eigenschaften des Materials führen könnte. Die Temperaturen, die beim Schweißen erreicht werden, führen lokal zur Überschreitung der Austenitisierungstemperatur. Austenit weist eine deutlich höhere Löslichkeit von Wasserstoff auf, während die Diffusionsgeschwindigkeit des Wasserstoffs in dieser Phase deutlich herabgesetzt ist. Es wird vermutet, dass dies zu einer lokal erhöhten Wasserstoffkonzentration führt. Damit geht ein erhöhtes Risiko einer kritischen Materialdegradation einher. Durch die lange Zeitdauer beim Schweißen von mehrlagigen Rundkehlnähten an großen Pipelines, einschließlich einer möglichen Vorwärmprozedur, ist weiterhin zu klären, ob der aus Anwendungsfällen in der Petrochemie bekannte Hochtemperaturwasserstoffangriff auftritt. Der vorliegende Beitrag liefert einen Überblick über das Schweißen im Betrieb an Gaspipelines, hierbei auftretenden Herausforderungen bei der möglichen Anwendung auf Wasserstoffleitungen. Dabei werden auch aktuelle Forschungsprojekte zum Thema Schweißen an Wasserstoffpipelines im Betrieb eingehend diskutiert. In diesem Zusammenhang werden erste Ergebnisse des gemeinschaftlichen Forschungsprojektes „H2-SuD: Einfluss des Schweißens auf die Wasserstoffaufnahme und Degradation im Betrieb befindlicher H2-Ferngasleitungen“ des Deutschen Vereins des Gas- und Wasserfaches (DVGW), der Bundesanstalt für Materialforschung und -prüfung (BAM) und deutscher Gasnetzbetreiber (Open Grid Europe, ONTRAS Gastransport, u.v.m.) präsentiert. T2 - 53. Sondertagung - Schweißen im Anlagen-und Behälterbau 2025 CY - Munich, Germany DA - 18.03.2025 KW - Materialdegradation KW - Pipeline KW - Schweißen KW - Wasserstoff PY - 2025 SN - 978-3-96144-290-4 (Print) SN - 978-3-96144-291-1 (E-Book) VL - 2025 SP - 106 EP - 115 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-62911 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Schweißen im Wasserstoffanlagen- und Behälterbau - Eine Kurzübersicht N2 - Wasserstoff erfüllt die zentrale Rolle für die Umwandlung der bisherigen fossil-basierten Energieerzeugung und -nutzung auf eine dekarbonisierte, nachhaltige Form. Dazu muss der Wasserstoff erzeugt, gespeichert, transportiert werden, bevor er wieder der Nutzung zugeführt wird. Hierzu sind entlang der gesamtem Prozesskette Wasserstofftechnologien notwendig, die einen sicheren Betrieb erfordern. Hierbei kommt dem schweißtechnischen Anlagen- und Behälterbau wesentliche Bedeutung zu, insbesondere (aber nicht ausschließlich) für Speicherung und Transport des Wasserstoffes. Der vorliegende Beitrag gibt einen kurzen Überblick, wo und wie die konventionelle Schweißtechnik hierzu wichtige Beiträge leistet. Die additive Fertigung, also das „Drucken“ von Bauteilen wird dabei zunehmend wichtiger, entlang der gesamtem Prozesskette der Wasserstofftechnologien. Gleichwohl darf nicht unterschätzt werden, dass auch wesentlicher Bedarf an der Erweiterung und teilweiser Neufassung von bestehenden Regel- und Normenwerken besteht. T2 - 51. Sondertagung "Schweißen im Behälter- und Anlagenbau" CY - Munich, Germany DA - 01.03.2023 KW - Wasserstoff KW - Anlagenbau KW - Schweißen KW - Studie KW - Pipeline PY - 2023 SN - 978-3-96144-219-5 VL - 387 SP - 83 EP - 88 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-57075 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. T1 - Herstellung und Charakterisierung von WAAM-Bauteilen aus hochfesten Zusatzwerkstoffe N2 - Hochfeste Feinkornbaustähle verfügen über großes Potenzial für gewichtsoptimierte, effiziente Strukturen in vielen modernen Stahlkonstruktion. Weitere Effizienzsteigerungen können durch additives Fertigen sowie bionische Bauweisen erreicht werden. Hochfeste Zusatzwerkstoffe für additives MSG-Schweißen (engl.: Wire Arc Additive Manufacturing, WAAM) sind bereits von den Schweißzusatzherstellern lieferbar. Eine breite industrielle Anwendung insbesondere für KMU ist aufgrund fehlender quantitativer Erkenntnisse und Richtlinien bezüglich schweißbedingter Beanspruchungen und Bauteilsicherheit während der Herstellung und des Betriebs derzeit stark limitiert. In einem gemeinsamen Forschungsprojekt (FOSTA-P1380/IGF21162BG) der BAM und der TU Chemnitz werden daher die mit Eigenspannungsausbildung und der Gefahr einer Kaltrissbildung verbundenen prozess- und werkstoffbedingten sowie konstruktiven Einflüsse beim WAAM hochfester Stähle untersucht. Der vorliegende Beitrag fokussiert die Analyse der Auswirkungen von Schweißwärmeführung und Design der WAAM-Bauteile auf die Abkühlbedingungen, Gefüge, mechanisch-technologischen Eigenschaften und Eigenspannungen. Hierfür werden geometrisch definierte Probenkörper (Hohlquader) vollautomatisiert mit einem speziellen, hochfesten WAAM-Massivdraht (Streckgrenze >790 MPa) geschweißt. Die Wärmeführung und Probenabmessungen werden innerhalb eines statistischen Versuchsplans variiert. Die Schweißwärmeführung wird dabei so eingestellt, dass die t8/5-Abkühlzeiten im empfohlenen Verarbeitungsbereich (ca. 5 s bis 20 s) sichergestellt sind. Hierzu ließen sich über zusätzliche thermo-physikalische Umformsimulationen mittels Dilatometer die komplexen Wärmezyklen abbilden und die resultierende Zugfestigkeit des Schweißgutes bestimmen. Das WAAM-Schweißen komplexer Geometrien mit variierenden Schweißwärmeführungen und geometrischen Verhältnissen bzw. Wanddicken bedingt neben den Auswirkungen auf die Abkühlbedingungen, Abkühlzeiten und Gefüge deutliche Einflüsse auf die konstruktiven Steifigkeitsverhältnisse beim Schweißen. Es zeigen sich anhand der Schweißexperimente signifikante Auswirkungen durch Probenskalierung und Wärmeeinbringung auf die resultierenden lokalen Eigenspannungen. Die Folge können ungünstige Bauteileigenschaften und risskritische Zugeigenspannungen sein. Im vorliegenden Beitrag werden einige Verarbeitungsempfehlung auf Basis der Ergebnisse für den Arbeitskreis des DVS AG V 12 (Additive Fertigung) abgeleitet. T2 - Sitzung der DVS Arbeitsgruppe (AG) V 12 Additive Fertigung CY - Online meeting DA - 23.11.2022 KW - MAG-Schweißen KW - Additive Fertigung KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit KW - Wärmeführung KW - Windenergie PY - 2022 AN - OPUS4-56721 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. T1 - Einfluss von Wärmeführung und Bauteildesign auf die Beanspruchungen additiv geschweißter hochfester Feinkornbaustähle N2 - Der Vortrag gibt einen Überblick über den Einfluss der Prozessparameter auf die Eigenspannungen sowie die Härte in additiv gefertigten Bauteilen aus hochfestem Stahl. Des Weiteren wird dargestellt, wie sich das Bauteildesign auf die Eigenspannungen der Bauteile auswirken. T2 - 43. Assistentenseminar Füge- und Schweißtechnik 2022 CY - Chemnitz, Germany DA - 27.09.2022 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2022 AN - OPUS4-59537 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Characterization of hydrogen trapping in a CoCrFeMnNi high-entropy alloy charged up to 1000 bar high-pressure hydrogen N2 - First studies on the mechanical behavior of high-entropy alloys (HEAs) in high-pressure hydrogen environment are available. In contrast, the underlying hydrogen absorption, diffusion and trapping in these HEAs like the Cantor-alloy was less in the scientific scope so far. For that reason, the CoCrFeMnNi-HEA was compared to a conventional AISI 316L austenitic steel, by exposing to high-pressure hydrogen charging at 200 bar and very-high pressure at 1,000 bar. Thermal desorption analysis (TDA) was applied with different heating rates (0.125 K/s to 0.500 K/s), see Fig. 1a to d. The underlying TDA spectra were analyzed in terms of a reasonable peak deconvolution to into a defined number of peaks and the calculation of the activation energies for the respective and predominant hydrogen trap sites. Both materials show a comparable hydrogen diffusivity. The obtained activation energies suggest that in case of the CoCrFeMnNi-HEAs an interaction of the austenitic phase as well as the direct atomic bonding of hydrogen to the metal atoms are the dominant traps, since “impurities” such as carbides or inclusions are only present in trace amounts. Available literature suggests that the Cr and Mn-content is here of special interest for the direct hydrogen bonding at solute atoms. In addition, the trap occupancy rate must be considered in terms of a pressure-related hydrogen absorption. The derived apparent hydrogen solubility was in the order: 316L < CoCrFeMnNi-HEA for both charging pressures. Especially, the 1,000 bar values lead to noteworthy results with > 70 wt.ppm for the AISI 316L and >130 wt.ppm for the CoCrFeMnNi. In fact, both the hydrogen diffusion and trapping data on gaseous high-pressure hydrogen charged HEAs are rare so far. The results of the present study allow a deeper understanding of hydrogen trapping in the regarded CoCrFeMnNi-system. T2 - 78th IIW Annual Assembly and International Conference CY - Genoa, Italy DA - 26.06.2025 KW - Hydrogen KW - Thermal desorption analysis KW - High-pressure charging KW - Trapping KW - Diffusion PY - 2025 AN - OPUS4-63542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Wesling, V. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Modification of Co–Cr alloys to optimize additively welded microstructures and subsequent surface finishing N2 - Cobalt chromium alloys are often used in turbine and plant construction. This is based on their high thermal and mechanical stress resistance as well as their high wear resistance to corrosive and abrasive loads. However, cobalt is a cost-intensive material that is difficult to machine. Moreover, increasingly complex structures and the optimisation of resource efficiency also require additive manufacturing steps for the production or repair of components in many sectors. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. As a result of the high stresses on the components and requirements for a high surface quality, a complementary use of additive and machining manufacturing processes is necessary. Thereby, Co–Cr alloys are extremely challenging for machining with geometrically defined cutting edges because of their low thermal conductivity combined with high strength and toughness. An approach to solve this problem is to refine and homogenise the microstructure. This is achieved by modifying the alloy with elements zirconium and hafnium, which are added up to a maximum of 1 wt.-%. A reduction of the process forces and stresses on the tool and work piece surface is also achievable via hybrid milling processes. There are already studies on the combined use of additive and machining manufacturing processes based on laser technology. However, knowledge based on powder and wire-based arc processes is important, as these processes are more widespread. Furthermore, the effects on the surface zone of additively manufactured components by hybrid finish milling have not yet been a subject of research. The results show that the structural morphology could be significantly influenced with the addition of zirconium and hafnium. KW - Alloy modification KW - Ultrasonic-assisted milling KW - Plasma-transferred arc welding KW - Co-Cr-alloy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554182 DO - https://doi.org/10.1007/s40194-022-01334-0 SN - 0043-2288 SN - 1878-6669 SP - 1 EP - 13 PB - Springer CY - Heidelberg AN - OPUS4-55418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Influence of Heat Control on Properties and Residual Stresses of Additive-Welded High-Strength Steel Components N2 - This contributed to the knowledge regarding the safe avoidance of cold cracking. In addition to a thermophysical simulation using a dilatometer of different high-strength steels with subsequent tensile testing, reference WAAM specimens (open hollow cuboids) were welded while utilizing a high-strength filler metal (ultimate tensile strength > 790 MPa). The heat control was varied by means of the heat input and interlayer temperature such that the Dt8/5 cooling times corresponded to the recommended processing range (approx. 5 s to 20 s). For the heat input, significant effects were exhibited, in particular on the local residual stresses in the component. Welding with an excessive heat input or deposition rate may lead to low cooling rates, and hence to unfavorable microstructure and component properties, but at the same time, is intended to result in lower tensile residual stress levels. Such complex interactions must ultimately be clarified to provide users with easily applicable processing recommendations and standard specifications for an economical WAAM of high-strength steels. These investigations demonstrated a major influence of the heat input on both the cooling conditions and the residual stresses of components manufactured withWAAM using high-strength filler materials. A higher heat input led to longer cooling times (Dt8/5) and approx. 200 MPa lower residual stresses in the surface of the top layer. KW - WAAM KW - Additive manufacturing KW - Heat control KW - High-strength filler metals KW - Residual stress PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553982 UR - https://www.mdpi.com/2075-4701/12/6/951 DO - https://doi.org/10.3390/met12060951 VL - 12 IS - 6 SP - 951 PB - MDPI AN - OPUS4-55398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Treutler, K. A1 - Schröpfer, Dirk A1 - Wesling, V. A1 - Kannengießer, Thomas T1 - Investigations on influencing the microstructure of additively manufactured Co‑Cr alloys to improve subsequent machining conditions N2 - Co-Cr alloys are frequently used for highly stressed components, especially in turbine and plant construction, due to their high resistance to thermal and mechanical stress, as well as to corrosive and abrasive loads. Furthermore, they are classified as difficult-to-cut materials because of their high strength and toughness as well as their low thermal conductivity. However, for Co, an increased cost and supply risk can be observed in recent years. Therefore, additive manufacturing (AM) offers significant economic advantages due to higher material efficiency regarding repair, modification, and manufacturing of such components. Concerning inhomogeneity and anisotropy of the microstructure and properties as well as manufacturing-related stresses, a lot of knowledge is still necessary for the economic use of additive welding processes in SMEs. In addition, subsequent machining, particularly contour milling, is essential to generate the required complex contours and surfaces. Hence, additive and machining manufacturing processes need to be coordinated in a complementary way, especially due to additional challenges arising in milling of heterogeneous hard-to-cut microstructures. Recently, it has been shown that modern, hybrid cutting processes, such as ultrasonic-assisted milling (US), can improve the cutting situation. In this investigation, the Co-Cr initial alloy is additionally modified with Ti and Zr up to 1 wt% with the aim to enhance the homogeneity of the microstructure and, thus, the machinability. Hence the investigation includes finish milling tests of the AM components and the comparison of US and conventional machining. Both the modifications and the ultrasonic assistance exhibit a significant effect on the machining situation; for example US causes a higher surface integrity of the finish milled surfaces compared to conventional milling. T2 - International Congress on Welding, Additive Manufacturing and associated non-destructive testing CY - Online meeting DA - 08.06.2022 KW - Cobalt-chromium alloy KW - Additive manufacturing KW - Ultrasonic-assisted milling KW - Surface integrity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560917 DO - https://doi.org/10.1007/s40194-022-01397-z SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-56091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Amadeus A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Determination of residual stress evolution during repair welding of high-strength steel components N2 - During the assembly of steel structures, unacceptable weld defects may be found. An economical solution is local thermal gouging of the affected areas and re-welding. Due to high shrinkage restraints of repair weld and sur- rounding structure, high global and local welding stresses superimpose, and may lead to cracking and component failure, especially in connection with the degraded microstructure and mechanical properties of high-strength steels during the repair process. Component-related investigations of high-strength steels (FOSTA P1311/ IGF20162N) focus on welding residual stress evolution during local thermal gouging and rewelding. In this study, repair welding of S500MLO (EN 10225) is carried out using in-situ digital image correlation (DIC) and ex- situ X-ray diffraction (XRD) to analyse strains and stresses. Self-restrained slit specimen geometries were identified representing defined rigidity conditions of repair welds of real components, which were quantified using the restraint intensity concept. The specimens were rewelded with constant welding heat control and parameters. Weld specimens exhibited significantly increased transverse residual stresses with higher transverse restraint intensities, in the weld metal, and in the heat affected zone. Transverse stresses along the weld seam decrease at the weld seam ends leading to different stress state during gouging and welding. XRD analysis of the longitudinal and transverse local residual stresses after cooling to RT showed a good comparability with global DIC analyses. KW - Repair-welding KW - High-strength steels KW - X-ray diffraction KW - Digital image correlation KW - Residual stresses PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555672 DO - https://doi.org/10.1016/j.finmec.2022.100073 SN - 2666-3597 VL - 6 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-55567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel - Part I N2 - Over the past years economic and environmental considerations have led to a markedly increased demand for efficiency and flexibility in petrochemical plants. The operational temperatures and pressures required today can only be achieved by using new creep-resistant grades of steel. The modified 13CrMoV9-10 vanadium steel shows a good resistance against creep and compressed hydrogen and has been in use for the construction of petrochemical reactors since the mid-1990s. Nevertheless, processing of this type of steel requires extreme care during the welding procedure. This is due to its low toughness and high strength in the welded state when not post weld heat treated combined with increased susceptibility to cracking during stress relaxation. Previous research into crack formation in creep-resistant steels has largely focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the influence of the welding procedure on crack formation during post weld heat treatment considering real-life manufacturing conditions. The influence of heat control on the mechanical properties has been investigated by simulating the welding and subsequent post weld heat treatment operations during the construction of petrochemical reactors using a special 3-D testing facility on the laboratory scale. This work is subdivided in two parts. In part I of this study the stresses resulting from preheating, welding, dehydrogenation heat treatment and the final post weld heat treatment were analyzed during experiments under varied heat control. In all experiments stress relief cracks formed during post weld heat treatment could be observed. The total crack lengths correlated with the welding induced stresses. Part II of this work is dedicated to the characterization of the cracks and the microstructure. The application of a special acoustic emission analysis indicated that the cracks formed in a temperature range between 300 °C and 500 °C during the post weld heat treatment. In comparison to small scale specimens welded without additional shrinkage restraint, the toughness of the restrained welds was significantly decreased. SEM and TEM analyses of all samples revealed accelerated aging due to early precipitation of special carbides during post weld heat treatment under component relevant restraint. T2 - IIW Annual Assembly CY - Bratislava, Slovakia DA - 08.07.2019 KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking KW - Welding PY - 2019 AN - OPUS4-50277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Abschlussbericht Herstellung beanspruchungsgerechter Oberflächen durch Kombination innovativer additiver und abtragender Fertigungsschritte an hochbelasteten Komponenten N2 - Die Beschaffung und Verarbeitung von Werkstoffen für hochbelastete Komponenten sind meist kostenintensiv. Bestrebungen zur Kosten- und Ressourceneffizienz führen zu komplexeren Strukturen bzw. Konturen, sodass additive Fertigungsschritte zur Bauteilreparatur und -fertigung deutliche ökonomische Vorteile bieten. Hierfür sind additive und abtragende Fertigungsschritte komplementär und gezielt aufeinander abzustimmen, um beanspruchungsgerechte Funktionsflächen herzustellen. Hinsichtlich Inhomogenität und Anisotropie der Gefüge und Eigenschaften sowie fertigungsbedingter Beanspruchungen sind für den wirtschaftlichen Einsatz bei KMU, gerade für drahtbasierte Fertigungsverfahren und Wechselwirkungen nachfolgender Zerspanung dieser schwer spanbaren Werkstoffe noch viele Kenntnisse notwendig. Deshalb sind Untersuchungen zu diesen Einflüssen und Wechselwirkungen unter Nutzung innovativer Ansätze durchgeführt worden. Mit typischen kostenintensiven Ni- und Co-Cr-Legierungen wurden additive Bauteile, Auftrag- und Reparaturschweißungen hergestellt und Schweißzusätze für das PTA-Verfahren modifiziert, um die Erstarrungsmorphologie und das Eigenschaftsprofil zu optimieren. Die Übertragung auf MSG-Verfahren sicherte einen breiten industriellen Einsatz für hohe Auftragraten ab. Dies geschah mithilfe von modifizierten Fülldrähten sowie beschichteten Massivdrähten. Die wirtschaftliche spanende Bearbeitbarkeit wurde mit Zerspanbarkeitsanalysen für Schlichtfräsen und vergleichend für ultraschallunterstütze Fräsprozesse sichergestellt. Instrumentierte Experimente und Werkstoffanalytik hinsichtlich der Einflüsse auf Schmelzbad, Gefüge und Ausscheidungen sowie auf Randzoneneigenschaften und Eigenspannungen ermöglichten umfassende Erkenntnisse zur kombinierten additiven und abtragenden Fertigung. Dabei hat sich herausgestellt, dass eine Modifikation der Schweißzusatzwerkstoffe eine Homogenisierung der Mikrostruktur bedingt, welche wiederum den Zerspanprozess stabilisiert und letztendlich zu reduzierten Zerspankräften führt. Ferner wurde festgestellt, dass der ultraschallunterstützte Fräsprozess im Vergleich zum konventionellen Fräsprozess eine signifikante Reduzierung der Zerspankraft sowie eine höhere Oberflächenintegrität bedingt. Insbesondere die Induzierung oberflächennaher Druckeigenspannungen ist dabei hervorzuheben. Durch Bauteilversuche und -prüfungen, erfolgreiche Übertragbarkeitsstudien weiterer innovativer Werkstoffe verbunden mit Handlungsempfehlungen und der Zusammenarbeit mit den jeweiligen Normungsgremien, profitieren KMU von einer hochwirtschaftlichen Herstellung und Reparatur kostenintensiver Komponenten. KW - Legierungsmodifikation KW - Ultraschallunterstütztes Fräsen KW - Additive Fertigung KW - Oberflächenintegrität KW - Metallschutzgasschweißen PY - 2023 SN - 978-3-96870-578-1 VL - 578 SP - 1 EP - 142 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-60796 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaiser, Sebastian A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Schweißen im Betrieb an Wasserstoff-Ferngasleitungen N2 - Wasserstoff gilt als Energieträger für die Erreichung der Klimaziele und einer nachhaltigen zukünftigen Energieversorgung. Für den notwendigen Transport des Wasserstoffs in großem Maßstab und über weite Entfernungen ist eine zuverlässige Pipeline-Infrastruktur erforderlich. Umfassende weltweite Forschungsprojekte deuten auf die allgemeine Kompatibilität der verwendeten überwiegend ferritischen Stähle für die vorgesehenen Betriebsbedingungen von bis zu 60 °C bei 100 bar Wasserstoff hin. Dies ist jedoch nicht direkt übertragbar auf schweißtechnische Reparatur- und Wartungsarbeiten an im Betrieb befindlichen Pipelines. Ein im Erdgasnetz etabliertes Verfahren stellt das „Hot-Tapping“ dar, bei dem eine unter Druck stehende Pipeline im Betrieb angebohrt wird. Hierfür kommt ein an die Rohrleitung geschweißtes Formstück zum Einsatz, das die Montage der Bohr-/Lochschneidemaschine ermöglicht. In den Richtlinien EIGA 121/14 bzw. AIGA 033/14 wird darauf hingewiesen, dass das Anbohren von Wasserstoffleitungen kein Routineverfahren darstellt: “[…] a hydrogen hot-tap shall not be considered a routine procedure […]“. Dieser Aussage liegt unter anderem zugrunde, dass das Anschweißen des Formstücks an das Rohr und alle zu erwartenden Wärmebehandlungen vor und nach dem Schweißen eine lokale Temperaturerhöhung verursachen. Insbesondere auch an der Rohrinnenfläche, die dem Wasserstoff ausgesetzt ist. Diese erhöhten Temperaturen begünstigen die Absorption und Diffusion von Wasserstoff in das Material. Besonders zu beachten ist außerdem die lokal auftretende kurzzeitige Austenitisierung des Materials, die eine lokal stark erhöhte Wasserstoffkonzentration verursachen kann. Aus den genannten Gründen gibt diese Studie einen kurzen Überblick über die derzeit weltweit verfügbaren Forschungsprojekte zum Schweißen von Wasserstoff-Pipelines im Betrieb. Vorgestellt werden unter anderem erste Ergebnisse des Kooperationsforschungsprojektes H2SuD, das derzeit an der BAM bearbeitet wird. T2 - 6. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 20.02.2025 KW - Materialdegradation KW - Pipeline KW - Schweißen KW - Wasserstoff PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632731 SN - 978-3-8440-9961-4 SN - 978-3-8191-0041-3 DO - https://doi.org/10.21268/20250506-12 SN - 2364-0804 SN - 3052-3524 N1 - Serientitel: Fortschrittsberichte der Materialforschung und Werkstofftechnik – Series title: Bulletin of Materials Research and Engineering VL - 15 SP - 381 EP - 390 PB - Shaker Verlag CY - Düren AN - OPUS4-63273 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Parameters and challenges for reliable hydrogen determination in welded joints by carrier gas hot extraction N2 - For the hydrogen-based energy economy of tomorrow, the construction of the necessary infrastructure will play a central role. Most materials used to date, such as welded steels, can be prone to hydrogen embrittlement under certain conditions. This includes the classic delayed cold cracking during welding as well as degradation phenomena during service of components in hydrogen-containing environment. For the evaluation of any hydrogen effect, for example, on the mechanical properties of a welded metallic material, the hydrogen content must be precisely determined. In the case of weld seams, the carrier gas hot extraction (CGHE) according to ISO 3690 is meanwhile state-of-the-art. CGHE is based on accelerated hydrogen degassing due to the thermal activation of hydrogen at elevated temperatures. In addition to the quantification of hydrogen, thermal desorption analysis (TDA) with varying heating rates can be used to determine and evaluate the hydrogen trapping at microstructural defects in the material. For both techniques, experimental and metrological influences must be considered, which have a major effect on the result. For example, ISO 3690 suggests different sample geometries and minimum extraction times for CGHE. This study summarizes the results and experiences of numerous investigations at the Federal Institute for Materials Research and Testing (BAM) with different sample temperatures and geometries (ISO 3690 type B and cylindrical TDA samples) regarding the influence of the sample surface (polished/welded), measurement accuracy depending on the sample volume and the insufficient monitoring of the effect of PI control on the extraction temperature. A deviating extraction temperature from the target temperature can significantly falsify the measurement results. Based on the results, methods are shown which allow the desired extraction temperature to be reached quickly without physically interfering with the measuring equipment. This serves to significantly improve the reliability of the hydrogen measurement through increased signal stability and accelerated hydrogen desorption. In general, an independent temperature measurement with dummy samples is recommended for the heating procedure of choice to exclude possible undesired temperature influences before the measurement. The methods described can be transferred directly to industrial applications KW - Welding KW - Hydrogen measurement KW - ISO 3690 KW - Carrier gas hot extraction PY - 2024 DO - https://doi.org/10.37434/tpwj2024.04.01 SN - 0957-798X VL - 4 SP - 3 EP - 10 PB - International Association Welding AN - OPUS4-60071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Eissel, A. A1 - Treutler, K. A1 - Wesling, V. T1 - Alloy modification for additive manufactured Ni alloy components Part II: Effect on subsequent machining properties N2 - Alloy 36 (1.3912) is an alloy with 36% nickel and 64% iron and is generally classified as a difficult-to-cut material. Increasingly complex structures and the optimization of resource efficiency are making additive manufacturing (AM) more and more attractive for the manufacture or repair of components. Subsequent machining of AM components is unavoidable for its final contour. By using modern, hybrid machining processes, e.g., ultrasonic-assisted milling (US), it is possible to improve the cutting situation regarding the resulting surface integrity as well as the cutting force. Part I deals with the influence of the alloying elements Ti, Zr, and Hf on the microstructure and the hardness of the initial alloy 36. Part II focusses on the effect of the alloy modifications and the ultrasonic assistance on machinability as well as on the surface integrity after finish-milling. The results show a highly significant influence of the ultrasonic assistance. The cutting force during the US is reduced by over 50% and the roughness of approx. 50% compared to conventional milling (CM) for all materials investigated. Moreover, the US causes a defect-free surface and induces near-surface compressive residual stresses. CM leads to a near-surface stress state of approx. 0 MPa. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy 36 KW - Ultrasonic-assisted milling KW - Surface integrity KW - Modification of structural morphology PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566609 DO - https://doi.org/10.1007/s40194-022-01438-7 SP - 1 EP - 8 PB - Springer CY - Heidelberg AN - OPUS4-56660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Fügetechnik in Wasserstofftechnologien: Prozesse und Perspektiven N2 - Die Wasserstofftechnologien der näheren Zukunft erfordern sichere Komponenten. Die Füge- und Schweißtechnik ist hier von zentraler Bedeutung, insbesondere für die Transportinfrastruktur (wie Pipelines). Der vorliegende Vortrag gibt hierzu einen umfassenden Überblick, beginnend bei der Erzeugung, Speicherung über Transport und Nutzung. Zusätzlich wird die zunehmende Bedeutung der additiven Fertigung beleuchtet und ein kurzer Ausblick auf die aktuelle Normungsroadmap der Wasserstofftechnologien gegeben. T2 - Weiterbildung für Schweißaufsichtspersonen (a.d. SLV Halle) CY - Halle (a.d. Saale), Germany DA - 30.11.2023 KW - Wasserstofftechnologien KW - Fügetechnik KW - Studie KW - Pipelines KW - Forschung PY - 2023 AN - OPUS4-59005 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Nina A1 - Kromm, Arne A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Innovatives Instandsetzungsschweißen von Altstahl: Materialverhalten und Herausforderungen N2 - Aus Gründen der Nachhaltigkeit und Wirtschaftlichkeit gibt es in der stahlverarbeiten-den Industrie einen Trend zum Bauen im Bestand, um kostenintensive Sperrungen oder Rückbau zu vermeiden. Schweißen wird dabei als wirtschaftliches Fügeverfahren im Zusammenhang mit Altstählen kaum genutzt, obwohl Nieten- und Schraubenverbindungen oft unwirtschaftlich sind. Für die Instandsetzung ist häufig beschädigtes Bestands-material durch neue Stähle zu ersetzen bzw. Alt-Neu-Stahl-Mischverbindungen herzu-stellen. Aufgrund der verschiedenen Herstellungsprozesse von Altstählen ist nicht jeder Stahl aus dem 20. Jahrhundert schweißgeeignet. Daher ist zunächst eine Schweißeignungsprüfung erforderlich. In den vorliegenden Untersuchungen wurden verschiedene Altstähle hinsichtlich ihres Schweißverhaltens mittels Dilatometrie analysiert. Ziel war es, eine Datenbasis aus Schweiß-Zustands-Zeit-Diagrammen und Simulationen der Wärmeeinflusszone zu erstellen, um praxisrelevante Schweißuntersuchungen ableiten zu können. Diese geben wesentlichen Aufschluss hinsichtlich ihres schweißmetallurgischen Verhaltens und ihrer Schweißeignung. Solche Grundlagen sind zur Entwicklung innovativer schweißtechnischer Konzepte zur beanspruchungsgerechten Instandsetzung bestehender Altstahl-Infrastruktur in Deutschland notwendig. T2 - 6. Symposium Materialtechnik, 20. bis 21. Februar 2025 CY - Clausthal-Zellerfeld, Germany DA - 20.02.2025 KW - Altstahl KW - Schweiß-ZTU Diagramme KW - Instandsetzungsschweißen KW - Schweißeignungsprüfung KW - Dilatometrie PY - 2025 SN - 978-3-8440-9961-4 DO - https://doi.org/10.21268/20250505-1 VL - 15 SP - 370 EP - 380 PB - Shaker Verlag GmbH CY - Düren AN - OPUS4-63377 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Reparaturschweißen von zukünftigen in Betrieb befindlichen Wasserstoff-Pipelines N2 - Wasserstoff leistet als Energieträger der Zukunft einen entscheidenden Beitrag zur nachhaltigen Energieversorgung. Der Transport wird vorwiegend durch das europäische Ferngasleitungsnetz erfolgen. Bisherige Untersuchungen zeigen, dass bisher verwendete Rohrstähle grundsätzlich für den Wasserstofftransport geeignet sind. Diese Eignung ist nicht direkt auf Reparaturfragestellungen im Betrieb übertragbar, da Schweißungen aus technisch-ökonomischen Gründen oft unter fortwährendem Gasfluss durchgeführt werden. Ein im Erdgasnetz angewandtes Konzept ist das Anbohren druckführender Pipelines („Hot Tapping“). Dazu werden Zylinderhalbschalen zuerst durch Längs- und dann per Rohrrundnähten an die Pipeline geschweißt. Essenziell ist dabei die maßgeschneiderte Wärmeeinbringung, um das „Durchbrennen“ in die Pipeline zu vermeiden. Für zukünftige Wasserstoffpipelines liegt der Fokus u.a. auf dünnwandigen Leitungen. Im Gegensatz zu Erdgas, führen die beim Schweißen erreichten hohen Temperaturen an der Innenseite der Pipeline zu einer zusätzlichen Wasserstoffaufnahme in den Rohrstahl mit möglicher Materialdegradation. Zur praktischen Lösung der Fragestellung, sind internationale Aktivitäten im Gang. Diese umfassen bspw. die Möglichkeiten und Weiterentwicklung von realistischen Prüfkonzepten (u.a. durch maßstäbliche Bauteilversuche). Dazu untersucht die Bundesanstalt für Materialforschung und -prüfung (BAM) in einem DVGW-geförderten Kooperationsprojekt mit Gasnetzbetreibern, die Frage der Übertragbarkeit der Schweißkonzepte der Erdgastechnik auf zukünftiger Wasserstoffpipelines. T2 - DVS BV-Berlin / BAM Gemeinschaftsveranstaltung: Know-How-Transfer in der Fügetechnik: Forschung - Bildung - Fertigung CY - Berlin, Germany DA - 08.11.2024 KW - Schweißen KW - Wasserstoff KW - Pipelines KW - Hot-tapping KW - Bauteilversuch PY - 2024 AN - OPUS4-61589 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Czeskleba, Denis A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Vermeidung von Kaltrissen in UP-Dickblechschweißungen aus hochfesten Stählen N2 - Der Einsatz hochfester Stähle wie S690 erlaubt durch geringeren Materialeinsatz nicht nur eine immer wichtiger werdende Verringerung von CO₂-Emissionen, sondern auch eine effektive Kosten- und Gewichtsreduktion dickwandiger Bauteile. Insbesondere bei Wandstärken von bis zu 200 mm ist das Unterpulver- (UP-)Mehrdrahtschweißen aufgrund seiner hohen Effizienz eine gängige Praxis. Allerdings steigt bei hochfesten Stählen, hier vorliegend S690, die Gefahr wasserstoffunterstützter Kaltrisse (HAC), aufgrund ihrer Mikrolegierungskonzepte im Zusammenspiel mit hohen Eigenspannungen aus dem Schweißprozess und resultierend aus hohen Bauteilsteifigkeiten. Zusätzlich kann die erhebliche Aufmischung von Grund- und Zusatzwerkstoff beim UP-Schweißen zu risskritischen Gefügen führen, in denen der diffusible Wasserstoff besonders schädlich wirkt. Für Gefüge UP-geschweißter Bauteile liegen keine gesicherten Daten bezüglich Wasserstoffdiffusionskoeffizienten bzw. HAC-Rissanfälligkeit vor. Insbesondere die mikrostrukturabhängige Diffusion von durch den UP-Schweißprozess eingebrachtem Wasserstoff war nicht hinreichend gesichert. Ziel des Forschungsvorhabens war es daher, einen Beitrag zur kaltrisssicheren UP-Schweißverarbeitung hochfester Dickbleche zu leisten. Hierzu wurden systematisch unterschiedliche GW (S690 TM/QL) untersucht, die sich insbesondere in ihren Mikrostrukturen unterscheiden. Diese zeigten in Voruntersuchungen stark divergente Härteverteilungen im Besonderen in der letzten Lage der Schweißung, sodass ein ebenfalls stark divergentes Diffusionsverhalten postuliert wurde. Zunächst wurde der Wasserstoffeintrag über die Draht-Pulver-Kombination gemäß ISO 3690 ermittelt. Anschließend erfolgten mehrlagige Schweißungen sowohl unter freiem Schrumpfen als auch unter äußerer Zwängung. Eine detaillierte Gefügecharakterisierung und mechanisch-technologische Prüfungen, sowie Eigenspannungsmessungen ermöglichten die Bewertung der Rissanfälligkeit bei variierter Wärmeführung (schweißgeschwindigkeitsgesteuert). Zur quantitativen Beschreibung der Wasserstoffdiffusion wurden das Schweißgut (SG), die Wärmeeinflusszone (WEZ) und die Grundwerkstoffe (GW) mittels elektrochemischer Beladung und Trägergasheißextraktion (TGHE), sowie Permeationsversuchen untersucht. Basierend auf den ermittelten Diffusionskoeffizienten wurden numerische Modelle erstellt, um den Einfluss verschiedener Diffusionskoeffizienten auf die Wasserstoffverteilung in der Schweißnaht zu evaluieren. Entgegen dem Postulat wurden keine signifikanten Unterschiede in der Wasserstoff-Diffusionsgeschwindigkeit gemessen. Beide GW-Klassen (QL vs. TM) als auch das SG und die WEZ wiesen für diesen Werkstofftyp charakteristische Diffusionskoeffizienten mit nur geringen Unterschieden auf. Dies zusammen mit den nur sehr geringen Unterschieden in der Ausprägung der Eigenspannungen und mechanisch-technologischen Eigenschaften der Nähte, weisen auf eine hohe Kaltrisssicherheit hin. Die in allen Untersuchungen geringen Unterschiede zwischen QL und TM sprechen, hinsichtlich des HAC-Risikos aufgrund einer differenten Wasserstoffdiffusion, für die Austauschbarkeit der beiden Werkstoffe in der Produktion. KW - Wasserstoffrisse KW - Unterpulverschweißen KW - Wasserstoffdiffusion PY - 2025 SP - 1 EP - 150 AN - OPUS4-63127 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rhode, Michael A1 - Mente, Tobias A1 - Kannengießer, Thomas A1 - Czeskleba, Denis T1 - Simulation of hydrogen distribution in submerged arc welded heavy plates as tool for evaluating cold cracking sensitivity for offshore structures N2 - Foundation structures for offshore wind turbines are typically made of heavy plate struc-tural steels, such as S420ML, welded by submerged arc welding. Due to the welding process conditions, higher amounts of hydrogen can be introduced. In this context, large plate thicknesses result in long diffusion paths and a prolonged diffusion time for hydrogen at ambient temperature and possible delayed hydrogen-assisted cold cracking. As a result, hydrogen can accumulate in areas of high mechanical stress and strain. Due to the delayed diffusion, a minimum waiting time of up to 48 h must be observed before non-destructive testing can be performed. In addition, the assessment of possible cold crack locations is very complex. For this reason, a numerical model of a component-like weld test was developed to simulate the temperature field during welding and subsequent cooling. A hydrogen diffusion model based on the temporal-local temperature distribution was established. It was applied to simulate the change of hydrogen distribution as a function of temperature cycle during multi-layer welding and further for the entire waiting time interval ≤ 48 h. As a result, crack critical areas could be evaluated in terms of accu-mulated hydrogen. An advantage of the diffusion model is the simulation of a normalized concentration, i.e. between "0" (no hydrogen) and "1" (max. concentration), which can be scaled to experimentally determined hydrogen concentrations. Finally, selected results for increased real hydrogen ingress are presented, which confirm the relatively high crack resistance of the S420 submerged arc welded joint. KW - Hydrogen assisted cracking KW - Diffusion KW - Numerical simulation KW - Offshore steel PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-632416 DO - https://doi.org/10.21268/20250507-6 SP - 1 EP - 12 PB - Technische Universität Clausthal CY - Clausthal-Zellerfeld, Deutschland AN - OPUS4-63241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Hadick, C. A1 - Schu, K. T1 - Component test concept for evaluation of in-service welding on pressurized hydrogen pipelines N2 - Hydrogen is set as the energy carrier of tomorrow and most countries will achieve large-scale hydrogen transport through the conversion of the natural gas (NG) grid and the construction of new pipelines. The interaction between hydrogen and the pipeline materials differs fundamentally from that of NG, as hydrogen is readily absorbed into the material. Considering the possible hydrogen embrittlement (HE), the compatibility of the pipeline materials (low-alloyed steels with a wide strength/thickness range) must be investigated. However, pipelines require intervention for maintenance, repair, or grid expansion with welding on/onto the pipelines while in service, i.e. the well-known "hot tapping" and "plugging" or “stoppling”. The challenges compared to NG can be broadly divided into the possible austenitization of the inner pipe material exposed to hydrogen and the welding itself. Both result in a significant increase in hydrogen solubility and could potentially pose challenges in terms of HE. Emphasis is placed on the word "could" because knowledge of "hot tapping" on hydrogen pipelines is scarce due a lack of service experience. To this end, this study proposes a concept for a component-like demonstrator with the objectives: (1) safe feasibility of "hot tapping" on pressurized model hydrogen pipeline sections, (2) facilitate ex-post sample extraction for the purpose of quantifying the absorbed hydrogen concentrations, and (3) ensure in-situ temperature measurement during welding to monitor the pipeline surface temperature. For safety reasons in the event of an unintentional "burn-through", a solid cylinder was inserted in the demonstrator to restrict the hydrogen gas volume to a small, pressurized layer. Reference pipeline surface temperature measurements were ensured on comparable, unpressurized geometries. The investigated range of welding conditions was investigated for representative material/thickness combinations (DN50 to DN200), suggesting the feasibility of the demonstrator for the determination of reliable in-service welding conditions for both installed and new pipelines for hydrogen service. T2 - 20th Pipeline Technology Conference ptc2025 CY - Berlin, Germany DA - 06.05.2025 KW - In-service KW - Hydrogen KW - Pipeline KW - Repair welding KW - component test PY - 2025 SP - 1 EP - 11 AN - OPUS4-63168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell T1 - Component test concept for evaluation of in-service welding on pressurized hydrogen pipelines N2 - Hydrogen is set as the energy carrier of tomorrow and most countries will achieve large-scale hydrogen transport through the conversion of the natural gas (NG) grid and the construction of new pipelines. The interaction between hydrogen and the pipeline materials differs fundamentally from that of NG, as hydrogen is readily absorbed into the material. Considering the possible hydrogen embrittlement (HE), the compatibility of the pipeline materials (low-alloyed steels with a wide strength/thickness range) must be investigated. However, pipelines require intervention for maintenance, repair, or grid expansion with welding on/onto the pipelines while in service, i.e. the well-known "hot tapping" and "plugging" or “stoppling”. The challenges compared to NG can be broadly divided into the possible austenitization of the inner pipe material exposed to hydrogen and the welding itself. Both result in a significant increase in hydrogen solubility and could potentially pose challenges in terms of HE. Emphasis is placed on the word "could" because knowledge of "hot tapping" on hydrogen pipelines is scarce due a lack of service experience. To this end, this study proposes a concept for a component-like demonstrator with the objectives: (1) safe feasibility of "hot tapping" on pressurized model hydrogen pipeline sections, (2) facilitate ex-post sample extraction for the purpose of quantifying the absorbed hydrogen concentrations, and (3) ensure in-situ temperature measurement during welding to monitor the pipeline surface temperature. For safety reasons in the event of an unintentional "burn-through", a solid cylinder was inserted in the demonstrator to restrict the hydrogen gas volume to a small, pressurized layer. Reference pipeline surface temperature measurements were ensured on comparable, unpressurized geometries. The investigated range of welding conditions was investigated for representative material/thickness combinations (DN50 to DN200), suggesting the feasibility of the demonstrator for the determination of reliable in-service welding conditions for both installed and new pipelines for hydrogen service. T2 - 20th Pipeline Technology Conference ptc2025 CY - Berlin, Germany DA - 06.05.2025 KW - In-service KW - Hydrogen KW - Pipeline KW - Repair welding KW - Component test PY - 2025 AN - OPUS4-63170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Mikrostrukturspezifische Wasserstoffdiffusion in UP-Schweißverbindungen hochfester Stahlgrobbleche N2 - Hochfeste Baustähle sind für den sogenannten, modernen Stahlleichtbau im Gebäude-, Anlagen- oder Mobilkranbau nicht mehr wegzudenken. Durch den Einsatz dieser Stähle mit Streckgrenzen ≥ 690 MPa können durch die Reduzierung der Wanddicke kann eine erhebliche konstruktive Gewichtsreduzierung erreicht werden. Dies führt zudem zu weiteren sekundären Vorteilen, wie geringeren Schweißverarbeitungskosten, da u.a. die zu füllenden Nahtquerschnitte kleiner sind. Für hochfeste Grobbleche kommt dabei insbesondere das Unterpulverschweißen (UP) zum Einsatz, das durch seine hohe Abschmelzleistung gekennzeichnet ist. Allerdings haben hochfeste Stahlgrobbleche aufgrund ihrer Mikrostruktur eine von vornherein begrenzte Duktilität ggü. niederfesten Stählen und sind per se anfälliger für verzögerte, wasserstoffunterstützte Kaltrissbildung Zudem führt die große Bleckdicke einerseits zu hoher konstruktiver Steifigkeit der Komponenten (mit der Folge erhöhter Eigenspannungen) und andererseits durch die dicken Schweißlagen zu langen Diffusionswege für den Wasserstoff, welcher bspw. durch feuchtes Schweißpulver in die Naht gelangen kann. Hieraus ergeben sich zwei Schwierigkeiten: (1) bis zu welcher Zeit mit einer verzögerten Rissbildung bei Raumtemperatur zu rechnen, wenn keine weitere Wärmebehandlung zur Reduktion des Wasserstoffes erfolgt bzw. (2) wenn diese notwendig ist, bei welche Temperatur dies erfolgen sollte. Dazu sind abgesicherte Diffusionskoeffizienten für den Wasserstoff in UP-Schweißungen notwendig, u.a. für numerische Simulationen. Diese Koeffizienten sind bisher nur äußert lückenhaft verfügbar. Aus diesem Grund wurden mikrostrukturspezifische, elektrochemische Permeationsversuche (nach ISO 17081) und Warmauslagerungsversuche mit TGHE an UP-Schweißverbindungen durchgeführt. Dazu wurden ein thermomechanisch (TM) gewalzter bzw. vergüteter (QT) Grundwerkstoff betrachtet, sowie das Schweißgut und die Wärmeeinflusszone (WEZ). Interessanterweise (und im Gegensatz zu Effekten des Wärmebehandlungszustandes auf die Diffusion in MSG-Schweißverbindungen) zeigten die UP-Schweißmikrostrukturen kaum signifikante Unter-schiede im Diffusionsverhalten von WEZ und Schweißgut. Dies ist auf den positiven Ef-fekt des mehrfachen Anlassens der Mikrostruktur durch die Mehrlagenschweißung zu-rückzuführen. Aus praktischer Anwendersicht können daher dickwandige UP-Verbindungen ausschließlich anhand der einfach ermittelbaren Diffusionskoeffizienten für den Grundwerkstoff beurteilt werden. Zudem zeigte sich, dass der Walzzustand (QT vs. TM) in Grobblechen gegenüber Dünnblechen eine untergeordnete Rolle für die Wasserstoffdiffusion bildet. Ergänzende numerische Simulationen zeitabhängigen Wasserstoffdiffusion bestätigten das Verhalten. T2 - DGM Arbeitskreis Wasserstoff CY - Neu-Isenburg, Germany DA - 26.05.2025 KW - Wasserstoff KW - Kaltrissbildung KW - Diffusion KW - Numerische Simulation KW - Permeation PY - 2025 AN - OPUS4-63235 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell T1 - Quantification of hydrogen uptake during in-service hydrogen pipeline welding N2 - Hydrogen must be transported on a large scale from producers to consumers to ensure the energy transition. The necessary pipeline grid is achieved by conversion of the natural gas (NG) grid and building new pipelines. Welding during service as part e.g. of “hot-tapping” is unavoidable for maintenance/repair/expansion. Based on existing studies, the basic material compatibility of (low-alloyed) pipeline steels with hydrogen is postulated. However, this cannot be assumed for the case of in-service welding on pipelines in pressurized condition. The reason is the increased temperature e.g. by preheating and (in particular) during welding of the single passes. As a result, the inner pipeline surface undergoes multiple short-term heating but to high temperatures. In particular, the first passes can result in a temperature close to the austenitic transformation of the material for small wall thicknesses. Both increase the hydrogen uptake into the welded joint. If hydrogen embrittlement is likely to occur, depends on the hydrogen uptake, which must be quantified. For this purpose, welding experiments on pressurized demonstrators were conducted. The hydrogen uptake at 100 bar was compared to reference experiments with nitrogen. A new sample extraction routine for the quantification of the weld-zone specific hydrogen uptake was established. Comprehensive experiments with different steels (P235, L360, L485), wall thicknesses (4.1 mm to 7.8 mm) and diameters (DN50 and DN200) were conducted. In addition, the influence of the welding layer sequence on the hydrogen uptake between single- and multi-layer welds was investigated. Analytical approaches were used to approximate the hydrogen uptake in the respective weld zones. The main findings were that the layer sequence and especially the wall thickness have a large influence on the hydrogen uptake. T2 - 20th Pipeline Technology Conference ptc2025 CY - Berlin, Germany DA - 06.05.2025 KW - In-service KW - Hydrogen KW - Pipeline KW - Repair welding KW - Component test PY - 2025 AN - OPUS4-63165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Ernst, W. A1 - Spindler, H. A1 - Kannengießer, Thomas T1 - Hydrogen-assisted cracking of GMA welded 960 MPa grade high-strength steels N2 - High-strength steels with yield strength of 960 MPa are susceptible to hydrogen-assisted cracking (HAC) during welding processing. In the present paper, the implant test is used to study HAC in a quenched and tempered steel S960QL and a high-strength steel produced by thermo-mechanical controlled process S960MC. Welding is performed using the gas metal arc welding process. Furthermore, diffusible hydrogen concentration (HD) in arc weld metal is determined. Based on the implant test results, lower critical stress (LCS) for complete fracture, critical implant stress for crack initiation, and embrittlement index (EI) are determined. At HD of 1.66 ml/100 g, LCS is 605 MPa and 817 MPa for S960QL and S960MC, respectively. EI is 0.30 and 0.46 for S960QL and S960MC, respectively. Fracture surfaces of S960QL show higher degradation with reduced deformation. Both, higher EI of S960MC and fractography show better resistance to HAC in the HAZ of S960MC compared to S960QL. KW - High-strength steel KW - Welding KW - Diffusible hydrogen KW - Hydrogen-assisted cracking KW - Heat-affected zone KW - Implant test PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510307 DO - https://doi.org/10.1016/j.ijhydene.2020.05.077 SN - 0360-3199 VL - 45 IS - 38 SP - 20080 EP - 20093 PB - Elsevier Ltd CY - Amsterdam, NL AN - OPUS4-51030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thomas, Maximilian A1 - Vollert, F. A1 - Weidemann, Jens A1 - Gibmeier, J. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Surface- and volume-based investigation on influences of different Varestraint testing parameters and chemical compositions on solidification cracking in LTT filler metals N2 - The subject of this study is how, and to what extent, Varestraint/Transvarestraint test results are influenced by both testing parameters and characteristics of evaluation methods. Several different high-alloyed martensitic LTT (low Transformation temperature) filler materials, CrNi and CrMn type, were selected for examination due to their rather distinctive solidification cracking behaviour, which aroused interest after previous studies. First, the effects of different process parameter sets on the solidification cracking response were measured using standard approaches. Subsequently, microfocus X-ray computer tomography (μCT) scans were performed on the specimens. The results consistently show sub-surface cracking to significant yet varying extents. Different primary solidification types were found using wavelength dispersive X-ray (WDX) analysis conducted on filler metals with varying Cr/Ni equivalent ratios. This aspect is regarded as the main difference between the CrNiand CrMn-type materials in matters of cracking characteristics. Results show that when it comes to testing of modern highperformance alloys, one set of standard Varestraint testing parameters might not be equally suitable for all materials. Also, to properly accommodate different solidification types, sub-surface cracking has to be taken into account. KW - Solidification cracking KW - Varestraint testing KW - MVT KW - LTT filler metal KW - Microfocus X-ray computer tomography (μCT) PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506039 DO - https://doi.org/10.1007/s40194-020-00895-2 VL - 64 SP - 913 EP - 923 PB - Springer Nature CY - Heidelberg, New York AN - OPUS4-50603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part II - Mechanisms of stress relief cracking during post weld heat treatment N2 - Welding of 13CrMoV9-10 vanadium steel requires care due to an increased susceptibility to stress relief cracking during post weld heat treatment. Previous research into the crack formation in creep-resistant steels has focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the crack formation during post weld heat treatment considering real-life restraint conditions. This work is subdivided in two parts. Part I showed that an increasing heat input during submerged arc welding under restraint led to an increasing stress level in the joint prior to the post weld heat treatment. The magnitude of stress relief cracking observed in the heat-affected zone after the post weld heat treatment is affected by the heat input. In Part II of this work, the cracks and the associated microstructure which occurred under restraint were studied. The application of a Special acoustic emission analysis indicated that the cracks formed in a temperature range between 300 and 500 °C during the post weld heat treatment. The toughness in the heat-affected zone of the restrained welds was affected by the welding heat input. Microstructural analyses of all specimens revealed accelerated aging due to precipitation of carbides during post weld heat treatment under restraint. KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506283 DO - https://doi.org/10.1007/s40194-020-00881-8 SN - 1878-6669 VL - 64 SP - 819 EP - 829 PB - Springer CY - Berlin AN - OPUS4-50628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relief cracking during heat treatment of a creep-resistant 13CrMoV steel: Part I - Effect of heat control on welding stresses and stress relief cracking N2 - The avoidance of failures during the fabrication or operation of petrochemical reactors made of creep-resistant, low-alloy steels as 13CrMoV9-10 requires still research despite over 60 years of international investigations in the field of stress relief cracking. The quality of modern base materials and filler metals leads to the fact that previously known crack causes, such as impurities of S or P, recede into the background. Rather, the causes are increasingly to be found in the fabrication process. Investigations on the influence of heat control on the stresses in welded components and thus on the stress relief cracking sensitivity under realistic manufacturing conditions are not yet available. This work is subdivided in two parts. Part 1 of this study focused on the effect of heat control during submerged arc welding on the stresses. For this purpose, a testing facility was applied, which allows to observe the forces and moments accumulating during welding or heat treatment in a component-like specimen under shrinkage restraint. The stress acting in the specimen increases with higher preheat/interpass temperatures and higher heat input. During the heat treatment, the stresses are relieved. Nevertheless, cracks are formed already during heating. The total crack length correlates with the heat input. KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506271 DO - https://doi.org/10.1007/s40194-020-00875-6 SN - 1878-6669 VL - 64 IS - 5 SP - 807 EP - 817 PB - Springer CY - Berlin AN - OPUS4-50627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -