TY - CONF A1 - Rhode, Michael T1 - Wasserstoffabhängige mechanische Eigenschaften der Schweißnahtgefüge niedriglegierter Stähle für Ferngasleitungen N2 - Der Vortrag stellt aktuelle Ergebnisse des Fosta-Forschungsprojektes P1668 vor. Ziel ist hier, die Wasserstoffresistenz geschweißter Mikrostrukturen gängiger und neuer Pipeline-Stählen zu untersuchen. Im Fokus stehen hierbei durch physikalische Simulation nachgebildete, schweißnahtähnliche Mikrostrukturen in Form von (1) Wärmeeinflusszonen mit unterschiedlicher Abkühlgeschwindigkeit und (2) angelassene Zonen zur Simulation der typischen Mehrlagenschweißungen. Aus diesen repräsentativen Mikrostrukturen werden Zugproben extrahiert welche elektrochemisch oder mit Druckwasserstoff beladen werden. Aus diesen wird dann eine Datenbasis der spezifischen mechanische Eigenschaften unter Wasserstoff bereitgestellt. Die so entwickelte, praxisorientierte Prüfstrategie ermöglicht die schnelle und zuverlässige Bewertung sowohl in Betrieb befindlicher als auch neuer Rohrleitungswerkstoffe. T2 - Herbstsitzung des DGM Arbeitskreises "Materialprüfung unter Wasserstoff" CY - Dortmund, Germany DA - 19.11.2024 KW - Wasserstoff KW - Pipeline KW - Mechanische Kennwerte KW - Schweißen KW - Prüfung PY - 2024 AN - OPUS4-61750 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Unter Druck gesetzt: Die unterschätzte Bedeutung des In-Service-Schweißen für die Wasserstoffinfrastruktur der Zukunft N2 - Wasserstoff leistet als Energieträger der Zukunft einen entscheidenden Beitrag zur nachhaltigen Energieversorgung. Der Transport wird vorwiegend durch das europäische Ferngasleitungsnetz erfolgen. Bisherige Untersuchungen zeigen, dass bisher verwendete Rohrstähle grundsätzlich für den Wasserstofftransport geeignet sind. Diese Eignung ist nicht direkt auf Reparaturfragestellungen im Betrieb übertragbar, da Schweißungen aus technisch-ökonomischen Gründen oft unter fortwährendem Gasfluss durchgeführt werden. Ein im Erdgasnetz angewandtes Konzept ist das Anbohren druckführender Pipelines („Hot Tapping“). Dazu werden Zylinderhalbschalen zuerst durch Längs- und dann per Rohrrundnähten an die Pipeline geschweißt. Essenziell ist dabei die maßgeschneiderte Wärmeeinbringung, um das „Durchbrennen“ in die Pipeline zu vermeiden. Für zukünftige Wasserstoffpipelines liegt der Fokus u.a. auf dünnwandigen Leitungen. Im Gegensatz zu Erdgas, führen die beim Schweißen erreichten hohen Temperaturen an der Innenseite der Pipeline zu einer zusätzlichen Wasserstoffaufnahme in den Rohrstahl mit möglicher Materialdegradation. Zur praktischen Lösung der Fragestellung, sind internationale Aktivitäten im Gang. Diese umfassen bspw. die Möglichkeiten und Weiterentwicklung von realistischen Prüfkonzepten (u.a. durch maßstäbliche Bauteilversuche). Dazu untersucht die Bundesanstalt für Materialforschung und -prüfung (BAM) in einem DVGW-geförderten Kooperationsprojekt zusammen mit den grossen Gasnetzbetreibern, die Frage der Übertragbarkeit der Schweißkonzepte der Erdgastechnik auf zukünftiger Wasserstoffpipelines. T2 - Herbstsitzung des DGM Arbeitskreises "Materialprüfung unter Wasserstoff" CY - Dortmund, Germany DA - 19.11.2024 KW - Wasserstoff KW - Pipeline KW - Reparaturschweißen KW - Komponententest PY - 2024 AN - OPUS4-61723 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Schaupp, Thomas ED - Brockmann, S. ED - Krupp, U. T1 - Wasserstoffunterstützte Kaltrissbildung in Schweißnähten hochfester Stahlgüten - Anforderungen an die Prüfung N2 - Wasserstoff kann eine Rissbildung u.U. auch noch nach Tagen in der Schweißnaht bewirken. Dabei stellen höherfeste Stähle etablierte Kaltrissprüftests vor Herausforderungen. Generell nimmt die zur Rissvermeidung tolerierbare Wasserstoffkonzentration mit zunehmender Festigkeit der Werkstoffe ab. Zudem verändern weiterentwickelte Schweißverfahren die Nahtgeometrie und Wärmeeinbringung und die Ausbildung risskritischer Mikrostrukturen (z.B. Wärmeeinflusszone). Am Beispiel des Implant- und Tekken-Tests werden die Einsatz- u. Anwendungsgrenzen bewertet. Zu berücksichtigen ist, dass beim Schweißen eine äußere mechan. Beanspruchung durch bauteilspezifische Steifigkeitsverhältnisse wirksam ist. Zusätzlich werden weiterführende Prüfverfahren zur Bestimmung der Wasserstoffkonzentration und -diffusion in Schweißnähten vorgestellt, wie die Trägergasheißextraktion (TGHE) für die Ermittlung der Wasserstoffkonzentration (ISO 3690) oder Hochtemperaturdiffusionskoeffizienten. Diese Werte sind für die schweißtechnische Praxis von großer Bedeutung, um Haltezeiten z.B. für das Wasserstoffarmglühen abzuleiten. T2 - Tagung Werkstoffprüfung 2021 CY - Online meeting DA - 02.12.2021 KW - Wasserstoff KW - Kaltrissprüfung KW - Schweißen KW - Stahl KW - Hochfest PY - 2021 SN - 978-3-941269-98-9 SP - 15 EP - 20 PB - Stahlinstitut VDEh CY - Düsseldorf AN - OPUS4-53900 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas T1 - Zur Bewertung der Kaltrissempfindlichkeit moderner hochfester Feinkornbaustähle mit dem Implant-Test N2 - Der Implant-Test nach ISO 17642-3 gehört zur Gruppe der fremdbeanspruchten Kaltrisstests, bei dem eine äußere Beanspruchung auf einen zylindrischen Stab (Implant-Probe) definiert aufgebracht wird. Mit dieser Kaltrissprüfung wurden vergleichende Analysen zur Kaltrissempfindlichkeit der modernen hochfesten Feinkornbaustähle S960MC und S960QL durchgeführt. Zudem kamen sowohl Massiv- als auch Metallpulverfülldraht zur Variation der Wasserstoffkonzentration zum Einsatz. Der Einsatz des modernen modifizierten Sprühlichtbogens ermöglichte außerdem die Untersuchung des Einbrandprofils auf die Kaltrissbildung. T2 - Sitzung des NA 092-00-05 GA „Gemeinschaftsarbeitsausschuss NAS/NMP: Zerstörende Prüfung von Schweißverbindungen (DVS AG Q 4/Q 4.1)“ CY - Hamm, Germany DA - 04.03.2020 KW - Hochfester Feinkornbaustahl KW - MAG-Schweißen KW - Wasserstoff KW - Kaltriss KW - Implant-Test PY - 2020 AN - OPUS4-50506 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell T1 - Prüfkonzept für die Wasserstoffaufnahme beim Schweißen im Betrieb an Wasserstoffpipelines N2 - Für eine effektive Nutzung von Wasserstoff ist zukünftig ein nationales, sowie europäisches Wasserstoffnetz aus Pipelines geplant. Schweißen an zukünftigen Wasserstoffpipelines im Betrieb (unter Gasfluss und Druck) ist dabei unumgänglich. Für Erdgaspipelines bestehen etablierte Reparaturkonzepte, wie z.B. das "Hot-tapping". Beim Schweißen an Wasserstoffpipelines muss jedoch eine erhöhte Wasserstoffaufnahme in das Pipelinematerial hinlänglich untersucht werden, um mögliche wasserstoffinduzierte Schädigungen auszuschließen. Im Rahmen des Projekts H2-SuD "Schweißen an in Betrieb befindlichen Wasserstoffpipelines" wurde ein Prüfkonzept für die Wasserstoffaufnahme beim Schweißen im Betrieb entwickelt, getestet und angewandt. Dabei wurden realitätsnahe Schweißexperimente an unter Druck stehenden Demonstratoren durchgeführt. Anschließend wurde eine kryogene Probenentnahmeprozedur etabliert und der diffusible Wasserstoffgehalt in den Proben via Trägergasheißextraktion (TGHE) ermittelt. Vielfältige Schweißexperimente an unter 50 bar bis 100 bar Druckwasserstoff stehenden Demonstratoren verschiedener Durchmesser (DN50, DN200) und Wandstärken (4,1 mm bis 7,8 mm) wurden mit unterschiedlichen Schweißparametern durchgeführt. Dabei wurde ein signifikanter Einfluss von Wandstärke, Streckenenergie, Schweißnahtgeometrie und Abkühlbedingung auf die Wasserstoffaufnahme nachgewiesen. Die Durchführbarkeit und Eignung des Prüfkonzepts wurde aufgezeigt. T2 - Bacheloranden-, Masteranden-, Doktoranden Kolloquium (BMDK) OvGU Magdeburg CY - Magdeburg, Germany DA - 22.01.2025 KW - Reparaturschweißen KW - Pipeline KW - Wasserstoff KW - Ferngasleitung PY - 2025 AN - OPUS4-62502 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Wasserstoffunterstützte Kaltrissbildung in Schweißnähten hochfester Stahlgüten - Anforderungen an die Prüfung N2 - Die Vortrag gibt einen Überblick, warum Kaltrissprüfung von geschweißten Stählen ständig weiterentwickelt werden muss. Am Beispiel des Implant- und Tekken-Tests werden die Einsatz- u. Anwendungsgrenzen bewertet. Zu berücksichtigen ist, dass beim Schweißen eine äußere mechan. Beanspruchung durch bauteilspezifische Steifigkeitsverhältnisse wirksam ist. Zusätzlich werden weiterführende Prüfverfahren zur Bestimmung der Wasserstoffkonzentration und -diffusion in Schweißnähten vorgestellt, wie die Trägergasheißextraktion (TGHE) für die Ermittlung der Wasserstoffkonzentration (ISO 3690) oder Hochtemperaturdiffusionskoeffizienten. Diese Werte sind für die schweißtechnische Praxis von großer Bedeutung, um Haltezeiten z.B. für das Wasserstoffarmglühen abzuleiten. T2 - Tagung Werkstoffprüfung 2021 CY - Online meeting DA - 02.12.2021 KW - Wasserstoff KW - Kaltrissprüfung KW - Schweißen KW - Stahl KW - Hochfest PY - 2021 AN - OPUS4-53902 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell T1 - Reparaturschweißen zukünftiger, in Betrieb befindlicher Wasserstoffpipelines N2 - Wasserstoff leistet als Energieträger der Zukunft einen entscheidenden Beitrag zur nachhaltigen Energieversorgung. Der Transport wird vorwiegend durch das europäische Ferngasleitungsnetz erfolgen. Bisherige Untersuchungen zeigen, dass bisher verwendete Rohrstähle grundsätzlich für den Wasserstofftransport geeignet sind. Diese Eignung ist nicht direkt auf Reparaturfragestellungen im Betrieb übertragbar, da Schweißungen aus technisch-ökonomischen Gründen oft unter fortwährendem Gasfluss durchgeführt werden. Ein im Erdgasnetz angewandtes Konzept ist das Anbohren druckführender Pipelines („Hot Tapping“). Dazu werden Zylinderhalbschalen zuerst durch Längs- und dann per Rohrrundnähten an die Pipeline geschweißt. Essenziell ist dabei die maßgeschneiderte Wärmeeinbringung, um das „Durchbrennen“ in die Pipeline zu vermeiden. Für zukünftige Wasserstoffpipelines liegt der Fokus u.a. auf dünnwandigen Leitungen. Im Gegensatz zu Erdgas, führen die beim Schweißen erreichten hohen Temperaturen an der Innenseite der Pipeline zu einer zusätzlichen Wasserstoffaufnahme in den Rohrstahl mit möglicher Materialdegradation. Zur praktischen Lösung der Fragestellung, sind internationale Aktivitäten im Gang. Diese umfassen bspw. die Möglichkeiten und Weiterentwicklung von realistischen Prüfkonzepten (u.a. durch maßstäbliche Bauteilversuche). Dazu untersucht die Bundesanstalt für Materialforschung und -prüfung (BAM) in einem DVGW-geförderten Kooperationsprojekt mit Gasnetzbetreibern, die Frage der Übertragbarkeit der Schweißkonzepte der Erdgastechnik auf zukünftiger Wasserstoffpipelines. T2 - DVS CONGRESS 2024 CY - Erfurt, Germany DA - 16.09.2024 KW - Schweißen KW - Reparatur KW - Wasserstoff KW - Pipeline PY - 2024 AN - OPUS4-61076 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erxleben, Kjell T1 - Reparaturschweißen zukünftiger, in Betrieb befindlicher Wasserstoffpipelines N2 - Es existieren konkrete nationale und europäische Pläne für eine Wasserstoffpipeline Netz. Dieses soll in Zukunft eine Nachhaltige Energieversorgung von Industrie mit hohem energiebedarf sicherstellen. Dabei müssen zukünftige Wasserstoffpipelines aus wirtschaftlich und technischen Gründen im Betrieb gewartet, repariert oder erweitert werden. Die Übertragbarkeit von etablierten Reparaturkonzepten von Ergaspipelines, wie das "Hot-tapping", muss für Wasserstoffpipelines hinlänglich untersucht werden. Das Schweißen im Betrieb ist dabei unumgänglich. Durch eine erhöhte thermische Belastungen bei der Schweißprozedur muss die Wassestoffaufnahme in den Pipelinestahl ausgehend von der Innenwand der Pipeline und eine mögliche Materialdegradation (hydrogen embrittlement, HE) eingehend untersucht werden. Dazu wurden im Rahmen des Projekts "H2-SuD" zwei Prüfkonzepte entiwckelt. Ein Demonstrator Konzept (1) zur Bestimmung der Wasserstoffaufnahme durch realistische Reparaturschweißversuche an druckbeaufschlagten Demonstratoren und ein Prüfkonzept (2) mit vereinfachter Geometrie zur Messung von Wärmefeldern, die beim Reparaturschweißen entstehen. Erste Ergebnisse zur Wasserstoffaufnahme (1) und Temperaturmessungen (2) werden präsentiert und bewertet. Beide Prüfkonzepte bieten die experimentelle Grundlage zur Validierung von geplanten Temperatur- und Diffusionssimulationen von Reparaturschweißungen an Wasserstoffpipelines. T2 - 1. Weiterbildungsveranstaltung 2025 des DVS BV Potsdam CY - Götz, Germany DA - 19.02.2025 KW - Reparaturschweißen KW - Wasserstoff KW - Pipeline PY - 2025 AN - OPUS4-62606 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Zuverlässige Wasserstoffbestimmung in Metallen und ihren Schweißverbindungen: Parameter, Einflüsse, Grenzen N2 - Im Zuge der wasserstoffbasierten Energiewirtschaft von morgen, kommt der Errichtung der dementsprechenden Infrastruktur die zentrale Rolle zu. Der überwiegende Teil bisher eingesetzter und meist geschweißter Werkstoffe, wie Stähle, kann unter bestimmten Bedingungen zur Wasserstoffversprödung neigen. Dies umfasst die klassische verzögerte Kaltrissbildung während der Schweißverarbeitung als auch Versprödungsphänomene während des Betriebs. Für die Bewertung eines jeden Wasserstoffeffektes auf bspw. die mechanischen Eigenschaften eines geschweißten metallischen Werkstoffes, muss der Wasserstoffgehalt präzise bestimmt werden, Im Fall von Schweißnähten ist die beispielsweise nach der ISO 3690, die klassische isotherme Trägergas-Heißextraktion (TGHE). Die TGHE basiert dabei auf der beschleunigten Wasserstoffentgasung aufgrund der thermischen Aktivierung des Wasserstoffs bei erhöhten Temperaturen. Neben der reinen Quantifizierung des Wasserstoffs, kann über die thermische Desorptionsanalyse (TDA) mit variierten Heizraten, der Bindungszustand an mikrostrukturellen Defekten im Material festgestellt und bewertet werden. Für beide Techniken sind experimentelle und messtechnische Einflüsse zu beachten, die großen Effekt auf das Ergebnis haben. Für die TGHE schlägt die ISO 3690 schlägt beispielswiese verschiedene Probengeometrien sowie Mindestextraktionszeiten vor. Die vorliegende Studie fasst Ergebnisse und Erfahrungen zahlreicher Untersuchungen an der Bundesanstalt für Materialforschung und -prüfung (BAM) mit unterschiedlichen Probentemperaturen und Geometrien (ISO 3690 Typ B und zylindrische TDA-Proben) zusammen hinsichtlich: Einfluss der Probenoberfläche (poliert/geschweißt), Messgenauigkeiten in Abhängigkeit des Probenvolumens sowie die unzureichende Überwachung des Effektes des PI-Reglers auf die Extraktionstemperatur. Insbesondere eine abweichende Extraktionstemperatur zur eingestellten Temperatur, kann die Messergebnisse wesentlich verfälschen. Basierend auf den Ergebnissen werden Methoden aufgezeigt, um schnell die gewünschte Extraktionstemperatur zu erreichen, ohne physisch in das Messequipment eingreifen zu müssen. Dies dient der wesentlichen Verbesserung der Zuverlässigkeit der Wasserstoffmessung durch erhöhte Signalstabilität und beschleunigte Wasserstoffdesorption. Im Allgemeinen ist eine unabhängige Temperaturmessung mit Dummy-Proben für die gewählte Heizprozedur angeraten, um mögliche unerwünschte Temperatureinflüsse bereits vor der Messung auszuschließen. Die beschriebenen Methoden können ohne großen Aufwand direkt in die industrielle Anwendung überführt werden. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Wasserstoff KW - Messung KW - Trägergasheißextraktion KW - ISO 3690 KW - Schweißverbindung PY - 2023 AN - OPUS4-58307 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaiser, Sebastian T1 - Herausforderungen beim Schweißen an in Betrieb befindlichen Wasserstoff-Ferngasleitungen N2 - Als Energieträger der Zukunft kommt grünem Wasserstoff große Bedeutung bei der Energiewende und der zukünftigen, nachhaltigen Energieversorgung zu Teil. Zum effizienten und sicheren Transport des Wasser-stoffs ist die Bereitstellung einer Pipeline-Infrastruktur geplant. Die meisten Länder verfolgen hierbei die Stra-tegie der Umwidmung bestehender Erdgastransportleitungen, ergänzt durch Errichtung neuer Pipelines. Die bestehenden Erdgasnetze sind dabei aus unterschiedlichsten Rohrgeometrien und Materialien zusammenge-setzt. Bei der Umwidmung von Erdgaspipelines zum Transport von Wasserstoff müssen daher Fragen der Materialverträglichkeit hinsichtlich des als Wasserstoffversprödung bekannten Phänomens der Beeinträchti-gung der mechanischen Eigenschaften metallischer Werkstoffe durch Wasserstoff betrachtet werden. Bishe-rige Forschungsergebnisse und Feldversuche deuten darauf hin, dass die niedriglegierten, ferritischen Stähle, aus denen die Ferngasleitungen des Erdgasnetzes überwiegend bestehen, für den Transport von Wasserstoff unter normalen Betriebsbedingungen geeignet sind. Eine Frage, die bislang weniger Aufmerksamkeit erhielt, ist die, wie sich das Schweißen im Betrieb an Wasserstoffpipelines auf die Materialkompatibilität auswirkt. Im Erdgasnetz sind etablierte Verfahren wie beispielsweise das „Hot-Tapping“ unumgänglich für die Instandhal-tung und Erweiterung des Netzes. Hierbei werden an eine im Betrieb befindliche Pipeline geteilte T-Stücke aufgeschweißt, über die die Pipeline dann mit geeigneten Bohrvorrichtungen während eines ununterbroche-nen Betriebs angebohrt werden kann. Um zu beurteilen, ob diese Verfahren gefahrlos auf Wasserstoffpipe-lines übertragen werden können, müssen Problemstellungen betrachtet werden, die sich durch den Wärme-eintrag ins Material beim Schweißen ergeben. Wasserstofflöslichkeit und Diffusionsgeschwindigkeit sind tem-peraturabhängig. Erhöhte Temperaturen könnten eine Wasserstoffaufnahme ins Material bewirken, die zu ei-ner kritischen Degradation der mechanischen Eigenschaften des Materials führen könnte. Die Temperaturen, die beim Schweißen erreicht werden, führen lokal zur Überschreitung der Austenitisierungstemperatur. Aus-tenit weist eine deutlich höhere Löslichkeit von Wasserstoff auf, während die Diffusionsgeschwindigkeit des Wasserstoffs in dieser Phase deutlich herabgesetzt ist. Es wird vermutet, dass dies zu einer lokal erhöhten Wasserstoffkonzentration führt. Damit geht ein erhöhtes Risiko einer kritischen Materialdegradation einher. Durch die lange Zeitdauer beim Schweißen von mehrlagigen Rundkehlnähten an großen Pipelines, einschließ-lich einer möglichen Vorwärmprozedur, ist weiterhin zu klären, ob der aus Anwendungsfällen in der Petroche-mie bekannte Hochtemperaturwasserstoffangriff auftritt. Der vorliegende Beitrag liefert einen Überblick über das Schweißen im Betrieb an Gaspipelines, hierbei auftretenden Herausforderungen bei der möglichen An-wendung auf Wasserstoffleitungen. Dabei werden auch aktuelle Forschungsprojekte zum Thema Schweißen an Wasserstoffpipelines im Betrieb eingehend diskutiert. In diesem Zusammenhang werden erste Ergebnisse des gemeinschaftlichen Forschungsprojektes „H2-SuD: Einfluss des Schweißens auf die Wasserstoffauf-nahme und Degradation im Betrieb befindlicher H2-Ferngasleitungen“ des Deutschen Vereins des Gas- und Wasserfaches (DVGW), der Bundesanstalt für Materialforschung und -prüfung (BAM) und deutscher Gasnetz-betreiber (Open Grid Europe, ONTRAS Gastransport, u.v.m.) präsentiert. T2 - 53. Sondertagung - Schweißen im Anlagen-und Behälterbau CY - Munich, Germany DA - 18.03.2025 KW - Pipeline KW - Schweißen KW - Wasserstoff KW - Materialdegradation PY - 2025 AN - OPUS4-62910 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -