TY - CONF A1 - Straße, Anne A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Schmidt, M. ED - Vollertsen, F. ED - Govekar, E. T1 - LMD coatings as filler material for laser beam welded 30 mm thick plates N2 - The development of high energy laser sources enables single-pass welds of thick plates up to 30 mm, but often additional materials are needed to influence the properties of the weld seams. However, the homogenous distribution of filler materials in form of e.g. electrodes is only possible up to 7 mm while the elements are only traceable up to a depth of 14 mm. To overcome this problem a two-step process is used where first the edges of the weld partners are coated with the filler material by laser metal deposition (LMD) and afterwards are welded by laser beam. Single-pass welds with electromagnetic weld pool support of 30 mm thick S355 J2+N-plates with austenitic AISI 316L-coatings were investigated as well as the influence of the coatings to the penetration depth of the laser beam without electromagnetic weld pool support in double-sided joints. The weld seams were tested by X-ray inspection and cross sections. T2 - 11th CIRP Conference on Photonic Technologies [LANE 2020] CY - Online meeting DA - 07.09.2020 KW - Penetration depth KW - Laser metal deposition (LMD) KW - Laser beam welding KW - Filler material distribution PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512790 DO - https://doi.org/10.1016/j.procir.2020.09.055 SN - 2212-8271 VL - 94 SP - 293 EP - 297 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-51279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Krieger, S. A1 - Gumenyuk, Andrey A1 - El-Batahgy, A. M. A1 - Rethmeier, Michael T1 - Notch impact toughness of laser beam welded thick sheets of cryogenic nickel alloyed steel X8Ni9 N2 - The paper deals with the investigations of the impact toughness of laser beam welded 14.5 mm thick sheets made of cryogenic steel X8Ni9 as a function of preheating. This 9% nickel alloyed steel is widely used in the liquefied natural gas (LNG) industry. An application of highly efficient welding processes such as high-power laser beam welding (LBW) in LNG sector requires an understanding of the interactions between the LBW process parameters and weld properties, in particular the impact toughness. The results show that the original fine-grained martensitic microstructure of the base metal (BM) is significantly changed by melting and crystallization during the LBW, what can lead to a decrease in the impact toughness of the weld metal (WM) below the required level. An optimal preheating temperature range leads to the favorable thermal welding cycle and is of remarkable importance for maintaining the notch impact toughness of laser beam welded joints of these thick steel sheets. A parameter window was identified in which V-notch impact toughness comparable to that of the BM at -196 °C was achieved. KW - Cryogenic steel KW - Laser beam welding KW - Preheating KW - Welding thermal cycle KW - Microstructure KW - Hardness KW - V-notch impact toughness PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513250 DO - https://doi.org/10.1016/j.procir.2020.09.095 VL - 94 SP - 627 EP - 631 PB - Elsevier B.V. AN - OPUS4-51325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study of additional element transport in wire feed laser beam welding N2 - The transport phenomena in the wire feed laser beam welding are investigated numerically. A three-dimensional transient heat transfer and fluid flow model coupled with free surface tracing and element transport is developed. A ray-tracing method with local grid refinement algorithm is used to calculate the multiple reflections and Fresnel absorption on the keyhole wall. The filler material flows backward along the lateral side of the weld pool, and subsequently flows forward along the longitudinal plane. The occurrence of the bulging phenomenon may further prevent the downward transfer of the additional elements to the root of the weld pool. KW - Laser beam welding KW - Element transport KW - Filler wire KW - Numerical modelling PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513271 DO - https://doi.org/10.1016/j.procir.2020.09.129 VL - 94 SP - 722 EP - 725 PB - Elsevier B.V. AN - OPUS4-51327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A theoretical study of influence o f electromagnetic stirring on transport phenomena in wire feed laser beam welding N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly non-linear and multi-coupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modelling. A 3D transient multi-physical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph and the element distribution from the energy dispersive X-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. T2 - ICALEO 2019 - 38th International congress on applications of lasers & electro-optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2019 SN - 978-1-940168-1-42 SP - Paper # Macro 403 AN - OPUS4-49664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Development of a novel optical measurement technique to investigate the hot cracking susceptibility during laser beam welding N2 - Using a novel optical measurement technique together with the optical flow algorithm, a two-dimensional deformation analysis during welding was conducted. The presented technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Additionally, the described procedure of the optical measurement allows the real material-dependent values of critical strain and strain rate characterizing the transition to hot cracking during laser welding processes to be determined. Furthermore, the above-mentioned technique is independet on the welding process, which means, it can be also used for arc welding processes. Dependency between the external strain rate and the critical local strain and strain rate has been observed. That is to say, the critical local strain and strain rate is increased with an increase of the strain rate.Moreover, this technique allows automatic identification of the cases that can be critical for the solidification crack formation by monitoring the state of strain on the crack-sensitive region within the mushy zone. KW - Optical measurment technique KW - Hot crack KW - Critical strain KW - Laser beam welding PY - 2019 DO - https://doi.org/10.1007/s40194-018-0665-8 SN - 0043-2288 VL - 63 IS - 2 SP - 435 EP - 441 PB - Springer Berlin Heidelberg CY - Berlin AN - OPUS4-47761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Avoidance of end crater imperfections at high-power laser beam welding of closed circumferential welds N2 - The present work deals with the development of a strategy for the prevention of end crater defects in high-power laser welding of thick-walled circumferential welds. A series of experiments were performed to understand the influence of the welding Parameters on the formation of end crater defects such as pores, cracks, root excess weld metal and shrinkage cavities in the overlap area. An abrupt switch-off of the laser power while closing the circumferential weld leads to a formation of a hole which passes through the whole welded material thickness. A laser power ramp-down causes solidification cracks which are initiated on the transition from full-penetration mode to partial penetration. Defocusing the laser beam led to promising results in terms of avoiding end crater defects. Cracks and pores in the overlap area could be effectively avoided by using defocusing techniques. A strategy for avoiding of end crater imperfections was tested on flat specimens of steel grade S355J2 with a wall thickness of between 8 mm and 10 mm and then transferred on the 10 mm thick pipe sections made of high-strength pipeline steel API5L-X100Q. KW - Laser beam welding KW - Circumferential weld KW - End crater PY - 2019 DO - https://doi.org/10.1007/s40194-019-00841-x SP - 1 PB - Springer AN - OPUS4-50270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Javaheri, E. A1 - Lubritz, J. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Mechanical Properties Characterization of Welded Automotive Steels N2 - Among the various welding technologies, resistance spot welding (RSW) and laser beam welding (LBW) play a significant role as joining methods for the automobile industry. The application of RSW and LBW for the automotive body alters the microstructure in the welded areas. It is necessary to identify the mechanical properties of the welded material to be able to make a reliable statement about the material behavior and the strength of welded components. This study develops a method by which to determine the mechanical properties for the weldment of RSW and LBW for two dual phase (DP) steels, DP600 and DP1000, which are commonly used for the automotive bodies. The mechanical properties of the resistance spot weldment were obtained by performing tensile tests on the notched tensile specimen to cause an elongation of the notched and welded area in order to investigate its properties. In order to determine the mechanical properties of the laser beam weldment, indentation tests were performed on the welded material to calculate its force-penetration depth-curve. Inverse numerical simulation was used to simulate the indentation tests to determine and verify the parameters of a nonlinear isotropic material model for the weldment of LBW. Furthermore, using this method, the parameters for the material model of RSW were verified. The material parameters and microstructure of the weldment of RSW and LBW are compared and discussed. The results show that the novel method introduced in this work is a valid approach to determine the mechanical properties of welded high-strength steel structures. In addition, it can be seen that LBW and RSW lead to a reduction in ductility and an increase in the amount of yield and tensile strength of both DP600 and DP1000. KW - Mechanical property KW - Laser beam welding KW - Dual phase steel KW - Resistance spot welding PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502269 DO - https://doi.org/10.3390/met10010001 VL - 10 IS - 1 SP - 1 EP - 20 PB - MDPI AN - OPUS4-50226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical and experimental investigation of thermo-fluid flow and element transport in electromagnetic stirring enhanced wire feed laser beam welding N2 - The introduction of electromagnetic stirring to laser beam welding can bring several beneficial effects e.g. element homogenization and grain refinement. However, the underlying physics has not been fully explored due to the absence of quantitative data of heat and mass transfer in the molten pool. In this paper, the influence of electromagnetic stirring on the thermo-fluid flow and element transport in the wire feed laser beam welding is studied numerically and experimentally. A three-dimensional transient heat transfer and fluid flow model coupled with dynamic keyhole, magnetic induction and element Transport is developed for the first time. The results suggest that the Lorentz force produced by an oscillating magnetic field and its induced eddy current shows an important influence on the thermo-fluid flow and the keyhole stability. The melt flow velocity is increased by the electromagnetic stirring at the rear and lower regions of molten pool. The keyhole collapses more frequently at the upper part. The additional Elements from the filler wire are significantly homogenized because of the enhanced forward and downward flow. The model is well verified by fusion line shape, high-speed images of molten pool and measured element distribution. This work provides a deeper understanding of the transport phenomena in the laser beam welding with magnetic field. KW - Thermo-fluid flow KW - Element transport KW - Laser beam welding KW - MHD KW - Numerical analysis PY - 2019 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2019.118663 VL - 144 SP - 118663 PB - Elsevier Ltd. AN - OPUS4-49299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly non-linear and multi-coupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modelling. A 3D transient multi-physical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph and the element distribution from the energy dispersive X-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. T2 - ICALEO 2019 CY - Orlando, US DA - 07.10.2019 KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2019 AN - OPUS4-49300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - Experimental and numerical assessment of weld pool behavior and final microstructure in wire feed laser beam welding with electromagnetic stirring N2 - Advantages such as element homogenization and grain refinement can be realized by introducing electromagnetic stirring into laser beam welding. However, the involved weld pool behavior and its direct role on determining the final microstructure have not been revealed quantitatively. In this paper, a 3D transient heat transfer and fluid flow model coupled with element transport and magnetic induction is developed for wire feed laser beam welding with electromagnetic stirring. The magnetohydrodynamics, temperature profile, velocity field, keyhole evolution and element distribution are calculated and analyzed. The model is well tested against the experimental results. It is suggested that a significant electromagnetic stirring can be produced in the weld pool by the induced Lorentz force under suitable electromagnetic parameters, and it shows important influences on the thermal fluid flow and the solidification parameter. The forward and downward flow along the longitudinal plane of the weld pool is enhanced, which can bring the additional filler wire material to the root of the weld pool. The integrated thermal and mechanical impacts of electromagnetic stirring on grain refinement which is confirmed experimentally by electron backscatter diffraction analysis are decoupled using the calculated solidification parameters and a criterion of dendrite fragmentation. KW - Magnetohydrodynamics KW - Weld pool behavior KW - Grain structure KW - Laser beam welding KW - Numerical simulation PY - 2019 DO - https://doi.org/10.1016/j.jmapro.2019.07.021 SN - 1526-6125 VL - 45 SP - 408 EP - 418 PB - Elsevier AN - OPUS4-48611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Gook, S. A1 - Üstündag, Ö. A1 - Gumenyuk, Andrey T1 - Avoidance of end crater imperfections at high-power laser beam welding of closed circumferential welds N2 - The present work deals with the development of a strategy for the prevention of end crater defects in high-power laser welding of thick-walled circumferential welds. A series of experiments were performed to understand the influence of the welding parameters on the formation of end crater defects such as pores, cracks, excessive root-side drop-through and shrinkage cavities in the overlap area. An abrupt switch-off of the laser power while closing the circumferential weld leads to a formation of a hole which passes through the whole welded material thickness. A laser power ramp causes solidification cracks which are initiated on the transition from full-penetration mode to partial penetration. Strategies with a reduction of the welding speed shows a creation of inadmissible root sagging. Defocusing the laser beam led to promising results in terms of avoiding end crater defects. Cracks and pores in the overlap area could be effectively avoided by using defocusing techniques. A strategy for avoiding of end crater imperfections was tested on flat specimens of steel grade S355J2 with a wall thickness of 10 mm and then transferred on the 9.5 mm thick pipe sections made of high-strength steel X100Q. T2 - The 72nd IIW Annual Assembly and International Conference 2019 CY - Bratislava, Slovakia DA - 07.07.2019 KW - End crater KW - Laser beam welding KW - Circumferential welds PY - 2019 AN - OPUS4-48976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Karkhin, Victor A1 - Rethmeier, Michael ED - Sommertisch, C. ED - Enzinger, N. ED - Mayr, P. T1 - A novel approach for calculating the thermal cycle of a laser beam welding process using a stationary CFD model N2 - This work aims to find the thermal cycles during and after fusion welding through simulation by first calculating the resulting local temperature field in the quasi-stationary part of the process. Here complete-penetration keyhole laser beam welding with a laser power of 18 kW on a 15 mm thick slab of a low-alloyed steel at a welding speed of 2 m/min is considered. In order to physically depict the laser material interaction a multi-physics numerical model including the effects of phase transformation, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature is developed. It uses a fixed keyhole geometry with a right truncated circular cone shape to introduce the laser beam energy to the workpiece. In a subsequent study, the resulting local temperature field is then used as an equivalent heat source in order to predict the unsteady thermal cycle during and after fusion welding. The translational movement of the laser beam through the workpiece is represented by a moving mesh approach. For the simulation, stationary heat transfer and fluid dynamics are described by a system of strongly coupled partial differential equations. These are solved with the commercial finite element software COMSOL Multiphysics 5.0. The results of the numerical simulation are validated by experiments, where the weld bead shapes and the thermal cycles show good correlation. T2 - 12th International Seminar "Numerical Analysis of Weldability" CY - Graz, Austria DA - 24.09.2018 KW - Equivalent heat source KW - Process simulation KW - Laser beam welding KW - Transient heat transfer KW - Moving mesh PY - 2019 SN - 978-3-85125-616-1 VL - 12 SP - Chapt. VI, 694 EP - 710 PB - Verlag der Technischen Universität Graz AN - OPUS4-48817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates N2 - A three-dimensional multi-physics numerical model was developed for the calculation of an appropriate equivalent volumetric heat source and the prediction of the transient thermal cycle during and after fusion welding. Thus the modelling process was separated into two studies. First, the stationary process simulation of full-penetration keyhole laser beam welding of a 15 mm low-alloyed steel thick plate in flat position at a welding speed of 2 m/min and a laser power of 18 kW was performed. A fixed keyhole with a right circular cone shape was used to consider the energy absorbed by the workpiece and to calibrate the model. In the calculation of the weld pool geometry and the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature were taken into account. The obtained local temperature field was then used in a subsequent study as an equivalent heat source for the computation of the transient thermal field during the laser welding process and the cooling stage of the part. The system of partial differential equations, describing the stationary heat transfer and the fluid dynamics, were strongly coupled and solved with the commercial finite element software COMSOL Multiphysics 5.0. The energy input in the transient heat transfer simulation was realised by prescription of the nodes temperature. The prescribed nodes reproduced the calculated local temperature field defining the equivalent volumetric heat source. Their translational motion through the part was modelled by a moving mesh approach. An additional remeshing condition and helper lines were used to avoid highly distorted elements. The positions of the elements of the polygonal mesh were calculated with the Laplace’s smoothing approach. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and transient temperature distributions was found. KW - Laser beam welding KW - Process simulation KW - Equivalent heat source KW - Transient heat transfer KW - Deformed geometry PY - 2018 UR - https://authors.elsevier.com/a/1WbSq44xZwola DO - https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.058 SN - 0017-9310 SN - 1879-2189 VL - 122 SP - 1003 EP - 1013 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-44272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Artinov, Antoni A1 - Gumenyuk, Andrey A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical simulation on the origin of solidification cracking in laser welded thick-walled structures N2 - One of the main factors affecting the use of lasers in the industry for welding thick structures is the process accompanying solidification cracks. These cracks mostly occurring along the welding direction in the welding center, and strongly affect the safety of the welded components. In the present study, to obtain a better understanding of the relation between the weld pool geometry, the stress distribution and the solidification cracking, a three-dimensional computational fluid dynamic (CFD) model was combined with a thermo-mechanical model. The CFD model was employed to analyze the flow of the molten metal in the weld pool during the laser beam welding process. The weld pool geometry estimated from the CFD model was used as a heat source in the thermal model to calculate the temperature field and the stress development and distributions. The CFD results showed a bulging region in the middle depth of the weld and two narrowing areas separating the bulging region from the top and bottom surface. The thermo-mechanical simulations showed a concentration of tension stresses, transversally and vertically, directly after the solidification during cooling in the region of the solidification cracking. T2 - 27TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS - METAL 2018 CY - Brno, Czech Republic DA - 23.05.2018 KW - Laser beam welding KW - Weld pool KW - Full penetration KW - Finite element method (FEM) KW - CFD model KW - Numerical simulation KW - Solidification cracking PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-450595 DO - https://doi.org/10.3390/met8060406 SN - 2075-4701 VL - 8 IS - 6 SP - 406, 1 EP - 15 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A.M. A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - Comparison between GTA and laser beam welding of 9%Ni steel for critical cryogenic applications N2 - IncomparisonwithGTAweldedjoints,highertensilestrengthcomparabletothatofthebasemetalwasobtained for laser beam welded joints due to fine martensitic microstructure. Impact fracture toughness values with much lower mismatching were obtained for laser beam welded joints due to similarity in the microstructures of its weld metal and HAZ. In this case, the lower impact fracture toughness obtained (1.37J/mm2) was much higher than that of the GTA welded joints (0.78J/mm2), which was very close to the specified minimum value (≥0.75J/mm2). In contrast to other research works, the overall tensile and impact properties are influenced not only by the fusion zone microstructure but also by the size of its hardened area as well as the degree of its mechanical mismatching, as a function of the welding process. A better combination of tensile strength and impact toughness of the concerned steel welded joints is assured by autogenous laser beam welding process. KW - Impact absorbed energy KW - 9%Ni steel KW - GTAW KW - Laser beam welding KW - Fusion zone size KW - Microstructure Tensile strength PY - 2018 DO - https://doi.org/10.1016/j.jmatprotec.2018.05.023 SN - 0924-0136 IS - 261 SP - 193 EP - 201 PB - Elsevier AN - OPUS4-45776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Teichmann, F. A1 - Pries, H. A1 - Dilger, K. A1 - Rethmeier, Michael T1 - Improved degassing in laser beam welding of aluminum die casting by an electromagnetic field N2 - The paper describes an experimental investigation of the electromagnetic porosity reduction in partial penetration laser beam welding of 6 mm thick aluminum die casting AlSi9MnMg. The Investigation reveals that the usage of an electromagnetic field leads to a significant reduction of the porosity as well as to a surface smoothing of aluminum die casting. Based on the reference case without an electromagnetic influence, the porosity area was reduced gradually up to 76%. Metallurgical pores as well as process pores were removed from the weld pool. Also the weld reinforcement was improved up to 78%. Best results were reached with a frequency of 4325 Hz and a magnetic flux density of 348 mT. Although a complete prevention of porosity was not achieved, the best weld seam reached a high quality and can be ranked in valuation group B of DIN EN ISO 13919-2:2001–12. KW - Laser beam welding KW - Die-cast aluminum KW - Porosity reduction KW - Electromagnetic influence PY - 2018 DO - https://doi.org/10.1016/j.jmatprotec.2017.10.021 SN - 0924-0136 VL - 253 SP - 51 EP - 56 PB - Elsevier CY - Amsterdam AN - OPUS4-42767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Novel metrology to determine the critical strain conditions required for solidification cracking during laser welding of thin sheets N2 - This paper represents the results for proposed optical flow method based on the Lucas-Kanade (LK) algorithm applied to two different problems. The following observations can be made: - The estimated strain and displacement for conducted tensile test are generally very close to those measured with conventional DIC-technique. - The LK technique allows measurement of strain or displacement without special selection of a region of interest. Using a novel optical measurement technique together with the optical flow algorithm, a twodimensional deformation analysis during welding was conducted. This technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Additionally, the described procedure of the optical measurement allows the real material-dependent values of critical strain characterizing the transition to hot cracking during laser welding processes to be determined. T2 - Beam Technologies and Laser Application CY - Sankt Petersburg, Russia KW - Hot cracking test KW - Local critical strain KW - Solidification cracking KW - Laser beam welding KW - Novel metrology PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-467226 DO - https://doi.org/10.1088/1742-6596/1109/1/012047 SN - 1742-6596 VL - 1109 IS - 012047 SP - 1 EP - 9 PB - IOP Publ. CY - Bristol AN - OPUS4-46722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - About the origin of solidification cracking in laser welded thick-walled structures N2 - In this study, a three-dimensional CFD-simulation model was developed to simulate the fluid flow in the weld pool. The CFD-model showed a bulging region in the middle of the depth, which is separated from the top surface and bottom surface by two narrowing regions. It can be concluded that the interaction of the movement of the laser source with the Marangoni vortex leads to a teardrop shape at the upper and bottom surface of the workpiece. Additionally, it shows that the bulging in the weld is a result of the backflows on the upper and lower sides due to the thermo-capillary-driven flows. The weld pool shape was used as a heat source in a two-dimensional thermomechanical model, which allows a highly accurate transformation of the weld pool dimensions obtained from the CFD model. This developed technique allows the consideration of physical aspects, which cannot be considered when using traditional heat sources. The mechanical model has shown that the chronological order of the solidification of the weld has a significant influence on the nature and distribution of the stresses in the weld. High tensile stress has been observed in the bulging region, i.e. in the susceptible region for solidification cracking, when compared to the other narrowing regions, which show compressive stress. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - Laser beam welding KW - Solidification cracking KW - Numerical simulation KW - Weld pool geometry KW - CFD-model KW - FE-model PY - 2018 SP - W-6, 1 EP - 10 CY - Aswan, Egypt AN - OPUS4-46735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -