TY - JOUR A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - Influence of the free surface reconstruction on the spatial laser energy distribution in high power laser beam welding modeling N2 - An accurate and efficient description of the spatial distribution of laser energy is a crucial factor for the modeling of laser material processing, e.g., laser welding, laser cutting, or laser-based additive manufacturing. In this study, a 3D heat transfer and fluid flow model coupled with the volume-of-fluid algorithm for free surface tracking is developed for the simulation of molten pool dynamics in high-power laser beam welding. The underlying laser-material interactions, i.e., the multiple reflections and Fresnel absorption, are considered by a raytracing method. Two strategies of free surface reconstruction used in the ray-tracing method are investigated: a typical piecewise linear interface calculation (PLIC)-based method and a novel localized level-set method. The PLIC-based method is discrete, resulting in noncontinuous free surface reconstruction. In the localized level-set method, a continuous free surface is reconstructed, and, thus, the exact reflection points can be determined. The calculated spatial laser energy distribution and the corresponding molten pool dynamics from the two methods are analyzed and compared. The obtained numerical results are evaluated with experimental measurements to assure the validity of the proposed model. It is found that distinct patterns of the beam multiple reflections are obtained with the different free surface reconstructions, which shows significant influence not only on the molten pool behaviors but also on the localized keyhole dynamics. KW - Laser beam welding KW - Laser energy distribution KW - Weld pool dynamics KW - Ray teacing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562429 DO - https://doi.org/10.2351/7.0000739 SN - 1042-346X VL - 34 IS - 4 SP - 042023-1 EP - 042023-8 PB - Laser Institute of America CY - Orlando, Fla. AN - OPUS4-56242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - Evaluation of narrowed weld pool shapes and their effect on resulting potential defects during deep penetration laser beam welding N2 - This study presents mechanisms of the evolution of a narrowed region in the weld pool center during deep penetration laser beam welding. In numerous numerical studies presented in this study, it was also found that the local reduction of the weld pool size can cause detrimental effects on the melt flow behavior and the resulting properties of the welds. A particularly large influence of this effect was identified in three aspects. First, the local variation of the solidification sequence of the weld pool causes an increase in the hot-cracking susceptibility due to a locally delayed solidification. Second, it was proven that a change in the local length and width of the weld pool is associated with an adverse impact on the potential flow routes of the molten material that induces stronger local variations of its solidification. Thus, the element mixing, e.g., during the welding with filler materials, is blocked. This leads to a non-homogeneous chemical composition of the final weld and can cause undesired effects on the final material properties. Finally, another observed effect is related to the reduced ability of process pores to reach the top surface. As this type of porosity is usually produced around the keyhole tip, the change of the fluid flow regime above this area plays a significant role in determining the final path of the pores until the premature solidification in the middle of the weld pool captures them. This study summarizes mainly numerical results that were supported by selected experimental validation results. KW - Weld pool shape KW - Laser beam welding KW - Solidification KW - Porosity KW - Numerical process simulation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557759 DO - https://doi.org/10.2351/7.0000733 SN - 1042-346X VL - 34 IS - 4 SP - 1 EP - 7 PB - Laser Institute of America CY - Orlando, Fla. AN - OPUS4-55775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Study on the transition behavior of the bulging effect during deep penetration laser beam welding N2 - The present work is devoted to the study of the transition behavior of the recently confirmed widening of the weld pool, known as the bulging effect, during high-power deep penetration laser beam welding of thick unalloyed steel sheets. A three-dimensional transient multi-physics numerical model is developed, allowing for the prediction of the bulge formation and the study of its temporal behavior. The model is generalized to account automatically for the transition from partial to complete penetration. Several experimental measurements and observations, such as drilling period, weld pool length, temperature, efficiency, and metallographic cross-sections are used to verify the model and assure the plausibility of the numerical results. The analysis of the calculated temperature and velocity distributions, as well as the evolution of the keyhole geometry, shows that the formation of a bulging region strongly depends on the penetration depth of the weld. Based on the numerical results, the bulge is found to occur transiently, having its transition from a slight bulge to a fully developed bulging between penetration depths of 6 mm and 9 mm, respectively. KW - Laser beam welding KW - Deep penetration KW - Bulge formation KW - Numerical modeling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545067 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2021.122171 VL - 184 SP - 122171 PB - Elsevier Ltd. AN - OPUS4-54506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel T1 - The bulging effect and its relevance in high power laser beam welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root T2 - The 18th Nordic Laser Materials Processing Conference CY - Lulea, Sweden DA - 18.01.2022 KW - Laser beam welding KW - Melt pool dinamics PY - 2022 AN - OPUS4-54333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Life Cycle Assessment of Fusion Welding Processes - A Case Study of Resistance Spot Welding Versus Laser Beam Welding N2 - The high amount of resource consumption of fusion welding processes offers the potential to reduce their environmental impact. While the driving forces are known froma qualitative perspective, the quantitative assessment of the crucial parameters is not a trivial task. Therefore, herein, a welding-specific methodology to utilize life cycle assessment as a tool for evaluating the environmental impact of fusion welding processes is presented. In this context, two welding processes, resistance spot welding and laser beam welding, are analyzed for two different use cases. These comprise the welding of shear test specimens and a cap profile made of electrogalvanized sheets of DC 05þ ZE (1.0312) as representative of an automotive application. For both welding processes, the main influences on the resulting environmental impact categories are evaluated and compared. The requirements for ecological efficient welding processes are discussed and implemented. KW - Resistance spot welding KW - Carbon dioxide footprint KW - Environmental impact categories KW - Laser beam welding KW - Life cycle assessment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566458 DO - https://doi.org/10.1002/adem.202101343 SN - 1438-1656 VL - 24 IS - 6 SP - 1 EP - 14 PB - Wiley-VCH CY - Weinheim AN - OPUS4-56645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - Evaluation of narrowed weld pool shapes and their effect on resulting potential defects during deep penetration laser beam welding N2 - This study presents mechanisms of the evolution of a narrowed region in the weld pool center during deep penetration laser beam welding. In numerous numerical studies presented in this study, it was also found that the local reduction of the weld pool size can cause detrimental effects on the melt flow behavior and the resulting properties of the welds. A particularly large influence of this effect was identified in three aspects. Firstly, the local variation of the solidification sequence of the weld pool causes an increase in the hot-cracking susceptibility due to a locally delayed solidification. Secondly, it was proven that a change in the local length and width of the weld pool is associated with an adverse impact on the potential flow routes of the molten material that induces stronger local variations of its solidification. Thus, the element mixing, e.g. during the welding with filler materials, is blocked. This leads to a non-homogeneous chemical composition of the final weld and can cause undesired effects on the final material properties. Finally, another observed effect is related to the reduced ability of process pores to reach the top surface. As this type of porosity is usually produced around the keyhole tip, the change of the fluid flow regime above this area plays a significant role in determining the final path of the pores until the premature solidification in the middle of the weld pool captures them. This study summarizes mainly numerical results which were supported by selected experimental validation results. T2 - International Congress of Applications of Lasers & Electro-Optics 2022 CY - Orlando, FL, USA DA - 17.10.2022 KW - Weld pool shape KW - Laser beam welding KW - Solidification KW - Porosity KW - Numerical process simulation PY - 2022 SP - 1 AN - OPUS4-56532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - The influence of the free surface reconstruction on the spatial laser energy distribution in high power laser beam welding modeling N2 - An accurate and efficient description of the spatial distribution of laser energy is a crucial factor for the modeling of laser material processing, e.g., laser welding, laser cutting, or laser-based additive manufacturing. In this study, a 3D heat transfer and fluid flow model coupled with the volume-of-fluid algorithm for free surface tracking is developed for the simulation of molten pool dynamics in high-power laser beam welding. The underlying laser-material interactions, i.e., the multiple reflections and Fresnel absorption, are considered by a ray-tracing method. Two strategies of free surface reconstruction used in the ray-tracing method are investigated: a typical piecewise linear interface calculation (PLIC)-based method and a novel localized Level-Set method. The PLIC-based method is discrete, resulting in non-continuous free surface reconstruction. In the localized Level-Set method, a continuous free surface is reconstructed, and thus the exact reflection points can be determined. The calculated spatial laser energy distribution and the corresponding molten pool dynamics from the two methods are analyzed and compared. The obtained numerical results are evaluated with experimental measurements to assure the validity of the proposed model. It is found that distinct patterns of the beam multiple reflections are obtained with the different free surface reconstructions, which shows significant influence not only on the molten pool behaviors but also on the localized keyhole dynamics. T2 - International Congress of Applications of Lasers & Electro-Optics 2022 CY - Orlando, FL, USA DA - 17.10.2022 KW - Laser beam welding KW - laser energy distribution KW - Weld pool dynamics KW - Ray-tracing PY - 2022 SP - 1 EP - 9 AN - OPUS4-56533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of the weld pool geometry on solidification cracking in partial penetration high power laser beam welding N2 - Solidification cracking is still a serious problem in laser beam welding, especially in the welding of thick-walled plates. The influence of weld pool geometry on solidification cracking in partial penetration welding of thick plates is investigated within scope of this study. Therefore, a specific experimental setup of steel and quartz glass in butt configuration and on the side with high-speed camera were used to record the weld pool shape. In addition, the influence of laser inclination angle on the weld pool geometry and on solidification crack formation was investigated. The results show a bulge in the weld pool root, which is separated from an upper region by a necking region. This leads to a case where there are three different longitudinal region lengths with different solidification zones. This temporal sequence of solidification strongly promotes the formation of solidification cracks in the weld root. T2 - 12th CIRP Conference on photonic technologies (LANE 2022) CY - Fürth, Germany DA - 04.09.2022 KW - Laser beam welding KW - Partial penetration KW - Weld pool shape PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563940 DO - https://doi.org/10.1016/j.procir.2022.08.174 VL - 111 SP - 397 EP - 400 PB - Elsevier B.V. AN - OPUS4-56394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Churiaque Bermejo, C. A1 - Sánchez-Amaya, J. M. A1 - Porrúa-Lara, M. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - The Effects of HLAW Parameters for One Side T-Joints in 15 mm Thickness Naval Steel N2 - The present contribution is the first research reporting full penetration HLAW joints in 15 mm thick EH36 steel butt T-welds with square grooves on 2F welding position by single-sided welding. The effects of welding parameters were investigated to increase the quality of the joints. Conditions leading to defect-free full penetration welds fulfilling naval regulations includes a laser power of 12.5 kW, a welding speed of 1.6 m/min and the vertical laser offset distance from the flange of 1 mm. Advanced characterization of selected welds included a microstructural identification by optical microscopy, SEM, and XRD, revealing the presence of acicular, polygonal and Widmanstätten ferrite, lath martensite, and some retained austenite at FZ. Hardness and microhardness mapping tests showed values of 155 HV at base metal and 200 to 380 HV at the fusion zone connecting the web to the flange. KW - Ship building KW - Laser beam welding KW - Hybrid laser arc welding PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523931 DO - https://doi.org/10.3390/met11040600 VL - 11 IS - 4 SP - 600 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Verfahren zum fehlerfreien Laserstrahl-MSG-Hybridschweißen geschlossener Rundnähte N2 - In diesem Beitrag werden Ergebnisse der Untersuchungen eines Verfahrens zum fehlerfreien Laserstrahl-MSG-Hybridschweißen von geschlossenen Rundnähten vorgestellt. Das Verfahren zielt auf die Vermeidung von Schweißnahtunregelmäßigkeiten im Überlappbereich einer hybridgeschweißten Rundnaht. Eine Strategie der Prozessführung beim Schließen der Rundnaht wurde entwickelt, mit der ein fehlerfreier Überlappbereich durch die Kontrolle der Erstarrungsbedingungen am Schweißnahtende erreicht wird. Die kontrollierte Wärmeführung wird durch eine Anpassung der Parameter von beiden beteiligten Schweißprozessen, dem Laserstrahl sowie dem Metallschutzgas (MSG)-Schweißprozess, realisiert. Experimentelle Untersuchungen wurden an 12 bis 15 mm dicken Rohrabschnitten durchgeführt. Der Einfluss von Prozessparametern wie der Veränderung des Abbildungsmaßstabs und der Defokussierung des Laserstrahls auf die Erstarrungsbedingungen am Ende der Rundnaht wurde untersucht, um eine optimale Strategie zum Herausführen der Prozessenergie zu finden. Im Rahmen der experimentellen Untersuchungen konnte gezeigt werden, dass eine Defokussierung des Laserstrahls im Bereich zwischen 60 mm und 100 mm über einen kurzen Auslaufbereich der Naht von etwa 15 mm zu einer deutlich besseren Nahtausbildung im Überlappbereich führt. Es konnte eine günstige kelchförmige Schweißnaht ohne eine Tendenz zur Rissbildung erzielt werden. Die Laseroptik mit motorisch angesteuertem Linsensystem ermöglichte dabei eine Vergrößerung des Laserstrahldurchmessers ohne eine Veränderung der Position des MSG-Lichtbogens relativ zur Bauteiloberfläche. KW - Hybrid welding KW - Laser beam welding KW - Pipe manufacturing KW - As-shielded arc welding KW - Weld defects PY - 2021 VL - 73 IS - 3 SP - 116 EP - 121 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-52365 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -