TY - CONF A1 - Bachmann, Marcel T1 - Elucidation of the Laser Beam Energy Attenuation by the Vapor Plume Formation during High Power Laser Beam Welding N2 - In high-power laser beam welding, a common phenomenon is the formation of a keyhole caused by the rapid evaporation of the material. Under atmospheric pressure, this evaporation generates a vapor plume that interacts with the laser beam, leading to energy attenuation and scattering of the laser radiation along its path. These interactions affect the stability of the process and the overall weld quality. This study investigates the influence of the vapor plume on the weld pool and keyhole dynamics during high-power laser beam welding of AlMg3 aluminum alloy through experimental and numerical approaches. The primary goal is to identify key vapor plume characteristics, particularly its length fluctuations, and to improve the accuracy of the numerical models. To achieve this, an algorithm was developed for the automated measurement of the vapor plume length using high-speed imaging and advanced data processing techniques. The measured plume length is then used to estimate the additional vapor heating and laser energy attenuation using the Beer–Lambert law. A refined numerical CFD model, incorporating 3D transient heat transfer, fluid flow, and ray tracing, was developed to evaluate the vapor plume’s impact. Results show that already the time-averaged plume length effectively captures its transient influence and aligns well with experimental weld seam geometries. Additionally, energy scattering and absorption caused by the vapor plume led to a wider weld pool at the top surface. The study also shows an increased percentage of keyhole collapses due to the reduced laser power absorption at the keyhole bottom, further highlighting the importance of accurately modeling vapor plume effects. T2 - International Congress of Applications of Lasers & Electro-Optics 2025 CY - Orlando, FL, USA DA - 12.10.2025 KW - Laser beam welding KW - Vapor plume formation KW - Weld pool KW - Keyhole dynamics KW - Numerical modeling PY - 2025 AN - OPUS4-64816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng T1 - Prediction of weld pool and keyhole geometries in high-power laser beam welding through a physics-informed generative approach N2 - The weld pool and keyhole geometries are critical characteristics in evaluating the stability of the high-power laser beam welding (LBW) process and determining the resultant weld quality. However, obtaining these data through experimental or numerical methods remains challenging due to the difficulties in experimental measurements and the high computational demands of numerical modelling. This paper presents a physics-informed generative approach for predicting weld pool and keyhole geometries in the LBW process. With the help of a well experimentally validated numerical model considering the underlying physics in the LBW, the geometries of the weld pool and keyhole under various welding conditions are calculated, serving as the dataset of the generative model. A Conditional Variational Autoencoder (CVAE) model is employed to generate realistic 2D weld pool and keyhole geometries from the welding parameters. We utilize a β-VAE model with the Evidence Lower Bound (ELBO) loss function and include Kullback-Leibler divergence annealing to better optimize model performance and stability during training. The generated results show a good agreement with the ground truth from the numerical simulation. The proposed approach exhibits the potential of physics-informed generative models for a rapid and accurate prediction of the weld pool geometries across a diverse range of process parameters, offering a computationally efficient alternative to full numerical simulations for process optimization and control in laser beam welding processes. T2 - The 45th annual International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 12.10.2025 KW - Laser beam welding KW - Generative artificial intelligence KW - Machine Learning KW - Numerical Simulation KW - Weld pool KW - Keyhole dynamics PY - 2025 AN - OPUS4-64812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey T1 - Strain distribution vs strain evolution during solidification cracking CTW test for laser beam welding of 1 mm austenitic stainless steels N2 - Laser welding is a widely established manufacturing process across many industrial sectors. However, solidification cracking and the weldability of materials have remained contentious issues for many years, particularly concerning the causes of hot crack formation. The local distribution of total strain was measured in close proximity to the solidification zone during laser welding of AISI 304 and AISI 310S stainless steels, using the Controlled Tensile Weldability (CTW) test. In this setup, 1 mm thick weld coupons were subjected to a defined external tensile load during welding. Mechanical loading parameters were varied by adjusting the strain rate and ultimate strain level to identify the critical conditions that lead to solidification crack formation along the weld seam centerline. Using Digital Image Correlation (DIC) and the optical flow method [1], we estimated the local strain distribution at the surface near the molten pool and tracked its evolution across several characteristic zones—before, during, and after the application of mechanical loading. The results revealed that solidification crack formation coincides with regions of high plastic deformation within a critical temperature range. Furthermore, we identified a clear relationship between strain rate and both crack initiation probability and maximum local strain. Importantly, neither strain rate nor maximum strain alone is sufficient to predict cracking; instead, their combined effect must be considered to accurately assess hot cracking susceptibility. T2 - AJP 2025 CY - Coimbra, Portugal DA - 16.10.2025 KW - Laser beam welding KW - Solidification cracking KW - Optical measurement PY - 2025 AN - OPUS4-64431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey T1 - Reducing Noise Impact on Strain Accuracy Measurement by Optical Flow and DIC for Laser Welding Applications N2 - In recent years, non-contact methods for in situ local strain measurement during welding processes have gained increasing importance. This trend is driven by advancements in both measurement technology—such as improved camera systems, illumination sources, and X-ray techniques—and in image processing algorithms for strain evaluation. Laser beam welding poses specific challenges for optical strain measurement due to various types of process-related emissions that impair measurement accuracy. In this study, two different algorithms were applied to analyze the local strain field in the solidification zone during laser welding of AISI 310S stainless steel: the inverse compositional Gauss-Newton algorithm for Digital Image Correlation (DIC) and the Lucas-Kanade method for optical flow analysis [1]. Video sequences were recorded under Controlled Tensile Weldability Test (CTW) conditions, in which the specimens were subjected to a defined external tensile load during welding. This setup consistently induced solidification cracking at the material surface, which could be observed in the video recordings. To enhance the robustness and accuracy of the strain evaluation, various noise reduction techniques were implemented. These included identification and mitigation of erroneous frames caused by process emissions and dynamic disturbances. The resulting strain distributions showed high repeatability across multiple experiments and were in good qualitative agreement with predictions from high-fidelity finite element simulations. [2]. T2 - AJP 2025 CY - Coimbra, Portugal DA - 16.10.2025 KW - Laser beam welding KW - Solidification cracking KW - Optical measurement PY - 2025 AN - OPUS4-64428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Kising, Pascal A1 - Yang, Fan A1 - Rethmeier, Michael T1 - Prediction of weld pool and keyhole geometries in high-power laser beam welding through a physics-informed generative artificial intelligence approach N2 - The weld pool and keyhole geometries are critical characteristics in evaluating the stability of the high-power laser beam welding (LBW) process and determining the resultant weld quality. However, obtaining these data through experimental or numerical methods remains challenging due to the difficulties in experimental measurements and the high computational demands of numerical modelling. This paper presents a physics-informed generative approach for predicting weld pool and keyhole geometries in the LBW process. With the help of a well experimentally validated numerical model considering the underlying physics in the LBW, the geometries of the weld pool and keyhole under various welding conditions are calculated, serving as the dataset of the generative model. A Conditional Variational Autoencoder (CVAE) model is employed to generate realistic 2D weld pool and keyhole geometries from the welding parameters. We utilize a β-VAE model with the Evidence Lower Bound (ELBO) loss function and include Kullback-Leibler divergence annealing to better optimize model performance and stability during training. The generated results show a good agreement with the ground truth from the numerical simulation. The proposed approach exhibits the potential of physics-informed generative models for a rapid and accurate prediction of the weld pool geometries across a diverse range of process parameters, offering a computationally efficient alternative to full numerical simulations for process optimization and control in laser beam welding processes. T2 - International Congress of Applications of Lasers & Electro-Optics 2025 CY - Orlando, USA DA - 12.10.2025 KW - Laser beam welding KW - Generative artificial intelligence KW - Machine learning KW - numerical simulation PY - 2025 SP - 1 EP - 10 AN - OPUS4-65075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Putra, Stephen Nugraha A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Pusbatzkies, Pablo A1 - Rethmeier, Michael T1 - Elucidation of the laser beam energy attenuation by the vapor plume formation during high-power laser beam welding N2 - In high-power laser beam welding, a common phenomenon is the formation of a keyhole caused by the rapid evaporation of the material. Under atmospheric pressure, this evaporation generates a vapor plume that interacts with the laser beam, leading to energy attenuation and scattering of the laser radiation along its path. These interactions affect the stability of the process and the overall weld quality. This study investigates the influence of the vapor plume on the weld pool and keyhole dynamics during high-power laser beam welding of AlMg3 aluminum alloy through experimental and numerical approaches. The primary goal is to identify key vapor plume characteristics, particularly its length fluctuations, and to improve the accuracy of the numerical models. To achieve this, an algorithm was developed for the automated measurement of the vapor plume length using high-speed imaging and advanced data processing techniques. The measured plume length is then used to estimate additional vapor heating and laser energy attenuation using the Beer–Lambert law. A refined numerical CFD model, incorporating 3D transient heat transfer, fluid flow, and ray tracing, was developed to evaluate the vapor plume’s impact. Results show that already the time-averaged plume length effectively captures its transient influence and aligns well with experimental weld seam geometries. Additionally, energy scattering and absorption caused by the vapor plume led to a wider weld pool at the top surface. The study also shows an increased percentage of keyhole collapses due to the reduced laser power absorption at the keyhole bottom, further highlighting the importance of accurately modeling vapor plume effects. T2 - International Congress of Applications of Lasers & Electro-Optics 2025 CY - Orlando, USA DA - 12.10.2025 KW - Laser beam welding KW - Vapor plume formation KW - Weld pool KW - Keyhole dynamics KW - Numerical modeling PY - 2026 DO - https://doi.org/10.2351/7.0001863 SN - 1938-1387 IS - 38 SP - 012001-1 EP - 012001-9 PB - Laser Institute of America AN - OPUS4-64949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bevilacqua, Tommaso A1 - Gumenyuk, Andrey A1 - Habibi, Niloufar A1 - Hartwig, Philipp A1 - Klawonn, Axel A1 - Lanser, Martin A1 - Rethmeier, Michael A1 - Scheunemann, Lisa A1 - Schröeder, Jöerg T1 - Large-scale thermo-mechanical simulation of laser beam welding using high-performance computing: A qualitative reproduction of experimental results N2 - Laser beam welding (LBW) is a non-contact joining technique that has gained significant importance in modern industrial manufacturing. One potential problem, however, is the formation of solidification cracks, which particularly affects alloys with a pronounced melting range. The aim of the present work is the development of computational methods and software tools to numerically simulate LBW. In order to obtain a sufficiently accurate solution, a large number of finite elements has to be used. Therefore, a highly parallel scalable solver framework, based on the software library PETSc, was used to solve this computationally challenging problem on a high-performance computing architecture. Finally, the experimental results and the numerical simulations are compared. They are found to be in good qualitative agreement, which confirms the validity of the numerical simulations and allows for a better interpretation of the experimentally observed strain distribution. KW - Laser beam welding KW - Termo-mechanical processes KW - Solidification cracking KW - High-performance computing KW - Domain decomposition methods PY - 2025 DO - https://doi.org/10.1016/j.rineng.2025.108827 SN - 2590-1230 SP - 1 EP - 33 PB - Elsevier B.V. AN - OPUS4-65290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Meng, Xiangmeng T1 - Project title: Multi-physical simulation of the influence of an auxiliary magnetic field on the process porosity formation during high-power laser beam welding N2 - In this project, a multiphysically coupled numerical model will be developed to quantitatively describe porosity reduction in high-power laser beam welding of up to 10 mm thick AlMg3 using an oscillating magnetic field. The aim is to gain fundamental insights into the physical dependencies of the introduced electromagnetic forces on the melt pool behavior and the reduction of porosity. With the help of the numerical model, the transient, multi-coupled, three-dimensional problem of heat transfer, liquid flow, free surface deformation, and magnetic induction is to be solved, taking into account temperature-dependent material properties. The numerical modelling of the heat source will integrate all relevant physical mechanisms, for instance, multiple reflections of the laser radiation by an advanced ray tracing model, as well as local Fresnel absorption at the keyhole wall. This allows an analysis of the keyhole fluctuations, which have a dominant influence on the formation of process spores during deep penetration welding, based on physical principles. In addition, further physical factors such as the ablation pressure of the evaporating metal, the Laplace pressure, and Marangoni shear stresses are also to be integrated into the model. To evaluate the pore formation and reduction by means of the electromagnetic forces introduced in the molten pool, suitable models for describing the movement of the pores in the melt are to be developed. For the process pores, their movement can be implemented by tracking their surface under consideration of their internal pressure and temperature. With the help of the simulation model, all key factors for the formation of process pores during laser beam welding of the used aluminum alloy, as well as their avoidance, can be decoupled and analyzed. Accompanying welding tests are planned at BAM on a 20 kW fiber laser and a 16 kW disk laser. The magnetic flux density will be up to 500 mT at a maximum frequency of 5 kHz. The experimental results, in particular temperature measurements, weld cross sections, computer tomography, and X-ray examinations, will be used to verify the multiphysical model and its calibration. Moreover, the models will be validated and quantified by in situ high-speed imaging of the keyhole dynamics in a metal/quartz glass configuration with keyhole illumination by a diode laser coaxial to the processing laser. On the basis of the numerical and experimental results, the dependencies between applied magnetic field, melt pool behavior, and porosity formation will be revealed in this project. KW - Laser beam welding KW - Electromagnetic weld pool control KW - Numerical simulation KW - Process porosity PY - 2026 DO - https://doi.org/10.34657/27669 SP - 1 EP - 14 AN - OPUS4-65335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -