TY - CONF A1 - Witte, Julien A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stresses in repair welding of high-strength steels Part 2: Heat Control and Stress Optimization N2 - In welding of high-strength steels, e.g., for foundations and erection structures of wind energy plants, unacceptable defects can occasionally be found in the weld area, which should be removed by thermal gouging and subsequent re-welding. High shrinkage restraint of repair welds may lead to crack formation and component failure, particularly in interaction with degraded microstructures and mechanical properties due to repair cycles. This study aims for elaboration of recommendations for repair concepts appropriate to the stresses and materials involved to avoid cold cracking, damage and expensive reworking. In part 1 [1] of this study systematic investigations of influences of shrinkage restraint on residual stresses and cold cracking risk during repair welding of two high-strength steels S500MLO for offshore application and S960QL for mobile crane structures were focussed. In this part 2, the microstructure and residual stresses due to gouging and influences of heat control parameters in repair welding are analysed. A clear reduction in residual stress after gouging can be observed, especially for the specimens with restrained transverse shrinkage. Gouging to a depth of approx. 2/3 of the seam height does not lead to a complete relaxation of the observed reaction forces. Particularly for the higher strength steel S960QL, there are pronounced areas influenced by the gouging process in which a degradation of the microstructure and properties should be assumed. Overall, the repair welds show a significant increase in the width of the weld and HAZ compared to the original weld, especially in the case of S960QL/G89. The repair welds show higher welding-induced stresses than the original welds, especially in the areas of the HAZ and the base metal close to the weld seam. This behaviour can be attributed overall to increased restraint conditions due to the remaining root weld or shorter gouge grooves. In good agreement with earlier investigations, the residual stresses transverse to the weld can be significantly reduced by upwardly limited working or interpass temperatures and the reaction stresses resulting from high restraint conditions can be effectively counteracted. The influence of the heat input on the stress formation is low compared to the interpass temperature for both test materials. T2 - IIW Annual Assembly 2023 CY - Singapore DA - 16.07.2023 KW - Repair-welding KW - High-strength steels KW - Cold cracking KW - Residual stresses PY - 2023 AN - OPUS4-59254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-II/CIX CY - Munich, Germany DA - 06.03.2023 KW - Additive manufacturing KW - High strength steel KW - Residual stress PY - 2023 AN - OPUS4-59307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf- Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-XIII CY - Online meeting DA - 20.04.2023 KW - Additive Manufacturing KW - High strength steel KW - Residual Stress PY - 2023 AN - OPUS4-59308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien A1 - Schröpfer, Dirk A1 - Börner, Andreas A1 - Kannengießer, Thomas A1 - Hamacher, M. A1 - Michels, H. A1 - Hamm, C. A1 - Appelt, M. T1 - Ultraschallunterstütztes Fräsen zur Reduzierung der Belastung auf Werkzeug und Bauteiloberfläche von Eisenaluminid-Bauteilen N2 - Auf der Grundlage einer speziell entwickelten Werkzeugtechnologie sowie Prozessführung können die Belastungen auf das Werkzeug und die Bauteiloberfläche bei der frästechnischen Bearbeitung von Bauteilen aus dem innovativen jedoch schwer zerspanbaren Eisenaluminid deutlich reduziert werden. Die Messung der Prozesskräfte sowie der thermischen Belastung der Werkzeugschneide ermöglicht die Identifikation geeigneter Zerspanungsparameter hinsichtlich einer maximalen Werkzeuglebensdauer. Die Verwendung des ultraschallunterstützten Fräsens (USAM) besitzt vorteilhafte Einflüsse auf den Zerspanprozess, insbesondere hinsichtlich einer homogenen Bauteiloberfläche. Im Rahmen von Standzeitversuchen erfolgt durch USAM ein gleichmäßiger und im Vergleich zum konventionellen Fräsen (CM) deutlich reduzierter Werkzeugverschleiß. Mit wachsendem Zerspanvolumen verstärkt sich der positive Effekt von USAM und äußert sich in einer deutlichen Reduzierung der Rauheit und Defektdichte auf der Bauteiloberfläche. T2 - 5. Symposium Materialtechnik CY - Clausthal-Zellerfeld, Germany DA - 23.02.2023 KW - Eisenaluminid KW - Ultraschallunterstütztes Fräsen KW - Werkzeugverschleiß KW - Oberflächenintegrität PY - 2023 AN - OPUS4-59223 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Gräbner, Maraike A1 - Treutler, Kai A1 - Wesling, Volker T1 - Legierungsmodifikation und Einsatz hybrider Fräsprozesse zur Optimierung der Zerspanungssituation Ni-basierter Verschleißschutzauftragschweißungen mit definierten Oberflächen N2 - Die Ziele zur Verringerung der CO2-Emissionen sind eng verknüpft mit der Entwicklung hocheffizienter und wirtschaftlicher Komponenten aus Stahl in der Anlagen-, Verfahrens- und Kraftwerktechnik, die für hohe kombinierte korrosive, tribologische, thermische und mechanische Beanspruchungen auf Anwendungsfall und Stahlwerkstoff abgestimmte Verschleißschutzschichten erfordern. Neben zunehmenden Forderungen infolge des Preis- und Lieferrisikos konventionelle Kobalt- durch Nickellegierungen zu ersetzen, wächst in der Industrie der Bedarf nach definierten Oberflächen hoher Güte bzw. Funktionsflächen für die Schutzschichten. Eine für Bauteile mit komplexer Geometrie erforderliche Fräsbearbeitung ist insbesondere für KMU aufgrund hohen Werkzeugverschleißes oftmals nicht wirtschaftlich realisierbar, jedoch für viele Einsatzfälle dringend notwendig. In einem Gemeinschaftsvorhaben der BAM und des ISAF der TU Clausthal (Fosta P1550/IGF 21959 N) wird daher untersucht, wie mittels Legierungsmodifikationen der Schweißzusätze für nickelbasierte plasmaauftraggeschweißte Verschleißschutzschichten und durch Einsatz innovativer ultraschallunterstützter Fräsprozesse eine günstigere Zerspanbarkeit erreicht werden kann, ohne das Verschleißschutzpotential zu mindern. Im vorliegenden Beitrag wird der Einfluss der mittels Legierungsmodifikation eingestellten Gefüge- und Ausscheidungsmorphologie auf die Zerspanung untersucht. Dies erfolgt anhand einer typischerweise für Schneckenmaschinen eingesetzte Verschließschutzlegierung zur Substitution entsprechender CoCr-Legierungen (Stellite), einer NiCrMoSiFeB-Legierung (Handelsname: Colmonoy 56 PTA). Durch metallurgische Untersuchungen und In-situ-Messung auftretender Prozesskräfte und Temperaturen an der Werkzeugschneide beim Fräsprozesses sowie der anschließenden Untersuchung von Werkzeugverschleiß und Oberflächenintegrität ist eine detaillierte Analyse und Korrelation zwischen den mikrostrukturellen Eigenschaften und der Zerspanbarkeit möglich. Die Vorgehensweise erlaubt einer Beurteilung des Einflusses der ultraschallunterstützten Fräsbearbeitung auf den Prozess sowie die resultierenden Oberflächenintegrität. Unter systematischer Anwendung dieser Methodik sowie der Berücksichtigung der Anbindung zum Stahlsubstratwerkstoff und der Wirksamkeit des Verschleißschutzes lässt sich letztlich eine gezielte Optimierung der Zerspanungssituation und des Verschleißschutzes erreichen. Die Erkenntnisse erlauben Handlungsanweisungen und Empfehlungen für Normen und Verarbeitungsrichtlinien, die besonders KMU eine sichere und wirtschaftliche Fertigung hochbelasteter Stahlkomponenten mit unkritischen, kostenreduzierten Werkstoffen ermöglichen sollen. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Werkzeugverschleiß KW - Oberflächenintegrität KW - Ultraschallunterstütztes Fräsen KW - Zerspankräfte PY - 2023 AN - OPUS4-59209 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Gräbner, Maraike A1 - Treutler, Kai A1 - Wesling, Volker T1 - Alloy Modification and ultrasonic assisted milling of wear resistant alloys with defined surfaces N2 - The targets for reducing CO2 emissions are closely linked to the development of highly efficient and economical steel components in plant, process and power plant technology, which require wear protection coatings tailored to the application and steel material for high combined corrosive, tribological, thermal and mechanical stresses. In addition to increasing demands to replace conventional cobalt alloys with nickel alloys as a result of price and supply risks, there is a growing demand in industry for defined functional surfaces of high quality for these coatings. Milling is a standard process for finish machining. The desired properties of wear resistant alloys imply significant challenges for the milling process due to high tool wear and surface defects. Besides the hardness of the coating materials, especially due to the precipitations, inhomogeneous, anisotropic weld structures of the claddings lead to further deteriorations of milling processes due to unstable milling conditions and process forces. A joint project of BAM and ISAF of TU Clausthal (Fosta P1550/IGF 21959 N) investigates the optimization of these challenging machining conditions by means of alloy modifications of the welding powder for plasma transferred arc cladding, without reducing the wear protection potential and using ultrasonic assisted milling process. In this paper, the influence of the microstructure and precipitation morphology adjusted by means of alloy modification on machining is investigated. The alloy used is a NiCrMoSiFeB alloy (trade name: Colmonoy 56 PTA). Through metallurgical investigations and in-situ measurement of cutting forces and temperatures at the cutting edge during the milling process as well as the subsequent investigation of tool wear and surface integrity, a detailed analysis and correlation between microstructural properties and machinability is feasible. The findings allow recommendations for standards and processing guidelines, enabling safe and economical production of highly stressed steel components with non-critical, cost-reduced materials. T2 - Bachelor-, Master-, Doktoranden-Kolloquium CY - Magdeburg, Germany DA - 31.05.2023 KW - Werkzeugverschleiß KW - Oberflächenintegrität KW - Ultraschallunterstütztes Fräsen KW - Zerspankräfte PY - 2023 AN - OPUS4-59212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Einfluss trennender Fertigungsschritte auf die Eigenspannungen in additiv gefertigten Bauteilen aus hochfestem Stahl N2 - Additive Fertigungsverfahren wie das Wire Arc Additive Manufacturing (WAAM) ermöglichen die effiziente Fertigung von gewichtsoptimierten endkonturnahen Strukturen in modernen Stahlkonstruktionen. Ihre Effizienz kann weiter durch die Verwendung von hochfesten Stählen gesteigert werden. Dies erlaubt eine signifikante Einsparung von Kosten, Zeit und Ressourcen. Entsprechende Schweißzusatzwerkstoffe für Lichtbogenschweißverfahren sind kommerziell verfügbar. Fehlende Richtlinien und fehlende quantitative Kenntnisse über die schweißtechnische Beanspruchung während der Fertigung und im Betrieb limitieren den industriellen Einsatz stark. Daher werden in einem aktuellen Vorhaben (IGF-Nr. 21162 BG) der BAM und TU Chemnitz die wesentlichen Einflüsse und komplexen Interaktionen durch Werkstoff, Fertigungsprozess, Konstruktion und trennende Fertigungsschritte auf den Beanspruchungszustand untersucht. Der vorliegende Beitrag fokussiert hierfür die Auswirkungen trennender Fertigungsschritte auf Verzug und Eigenspannungen definierter WAAM-Prüfkörper. Die Eigenspannungsanalyse erfolgt mittels Röntgenbeugung. Die große Anzahl an Ergebnissen von zuvor untersuchten Referenzproben, die mit einem speziellen WAAM-Massivdraht (Streckgrenze >820 MPa) bei unterschiedlicher Wärmeführung und Geometrie vollautomatisiert geschweißt wurden, lässt eine Korrelation der Messdaten zu. Hierzu erfolgt die Analyse des Ausgangszustandes und abschließend des Zustandes nach trennender Bearbeitung, welche begleitend mittels digitaler Bildkorrelation hinsichtlich des Verzuges untersucht wurden. So ist zu beobachten, dass die Geometrie deutlichen Einfluss auf Relaxation und Umlagerung der Eigenspannungen hat und damit die Risssicherheit positiv beeinflussen kann. T2 - 23. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 29.03.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen KW - Residual stress PY - 2023 AN - OPUS4-59231 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Hälsig, A. A1 - Scharf-Wildenhain, R. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - 76th IIW Annual Assembly and International Conference on Welding and Joining CY - Singapore DA - 16.07.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-59233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Fertigungsbedingte Beanspruchungen und Kaltrisssicherheit in generativ gefertigten Bauteilen aus hochfesten Feinkornbaustählen N2 - Der Vortrag gibt einen Überblick über den Einfluss der Prozessparameter auf die Eigenspannungen sowie die Härte in additiv gefertigten Bauteilen aus hochfestem stahl. Des Weiteren wird dargestellt, wie sich das Bauteildesign und trennende Fertigungsschritte auf die Eigenspannungen der Bauteile auswirken. T2 - DVS Arbeitsgruppe (AG) V 12 CY - Online meeting DA - 15.11.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-59235 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf- Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Neutronen- und Röntgendiffraktion Zur Einflussanalyse des Bauteil-Designs auf die Eigenspannungen bei der additiven Fertigung mit hochfestem Stahl N2 - Der Vortrag gibt einen Überblick über die mittels XRD und Neutronenbeugung ermittelten Eigenspannungen in additiv gefertigten Bauteilen. Zusätzliche wird der Einfluss von Geometrieparameters auf de Eigenspannungen betrachtet T2 - Sitzung DIN NA 092-00-05 GA CY - Berlin, Germany DA - 15.03.2023 KW - Additive Fertigung KW - Hochfester Stahl KW - Eigenspannungen PY - 2023 AN - OPUS4-59236 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -