TY - CONF A1 - Maillard, S. T1 - Development of Active Thermography for NDT applications through standardization N2 - Many laboratories have been working about Active Thermography as a Non Destructive Testing method for many years. This method can be applied on metallic or composites materials for surface or subsurface defects. Thus, many different configurations can be encountered to measure the heat distribution and generate heat flow into the part. Signal processing is also widely used to improve the performance of detection. After encouraging results, aerospace, automotive and energy industries are now involved into industrialization of the technology to apply it for production or maintenance applications. Good practices and common wording are often required by end-user to qualify the process. Since the beginning of the 2000s, a working group was founded within CEN/TC138 'Non-destructive Testing' to define standards in thermography, in the European Committee for Standardization (CEN). Some other actors have also produced standards (ISO, IEC, ASTM...). This paper aims to list the standards currently available about thermography and the associatd vocabulary. It describes the generic terms to be used in active and passive thermography (operating modes, reference blocks, reporting…) and also more specific elements about laser and induction thermography for example. It will also put in perspective the further works to be done in the next few years to take into account the new trends in active thermography and how to qualify for industrial applications. T2 - 17th Quantitative InfraRed Thermography Conference - QIRT 2024 CY - Zagreb, Croatia DA - 01.07.2024 KW - Infrared Thermography KW - Non-destructive testing KW - Standardization PY - 2024 AN - OPUS4-60931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - SAMMIE: Eigenbau-Anlage für Metall-AM zur Sensorentwicklung und Qualifizierung N2 - Im additiven Fertigungsprozess Laser-Pulverbettschweißen wird Metallpulver lagenweise mittels eines Lasers aufgeschmolzen, um Bauteile zu generieren. Hierbei werden die Eigenschaften der Bauteile zu einem großen Teil durch die im Verlauf des Prozesses vorliegenden Temperaturen bestimmt. Dies beinhaltet unter anderem Materialeigenschaften wie Mikrostruktur, Härte, thermische und elektrische Leitfähigkeiten sowie die Ausbildung von Defekten wie z.B. Anbindungsfehler, Keyhole-Porosität (Gaseinschlüsse) oder auch die Ausbildung von Rissen. Zur Überwachung bzw. Vorhersage dieser Eigenschaften sowie zum Abgleich von Simulationen ist eine orts- und zeitaufgelöste Messung der Temperaturverteilung im Prozess daher von herausragender Bedeutung. In der Industrie kommen optische Verfahren, die auf der Messung der thermischen Strahlung basieren, regelmäßig zum Einsatz. Allerdings dienen diese bislang nur der statistischen Auswertung und der Identifikation von Abweichungen vom Normalprozess. Der quantitativen Auswertung zur Temperaturbestimmung stehen aktuell noch eine Vielzahl von Herausforderungen entgegen. Einerseits stellt der Prozess an sich hohe Anforderungen an die Datenerfassung und -auswertung: der Emissionsgrad verändert sich dynamisch im Prozess und lokale Schmauchbildung sorgt für potenzielle Absorption oder Streuung der thermischen Strahlung oder auch des Fertigungslasers. Weiterhin stellt der hochdynamische Prozess hohe Anforderungen an Orts- und Zeitauflösung der eingesetzten Sensorik (z.B. Kameratechnik). Andererseits erschweren an üblichen kommerziell erhältlichen Fertigungsanlagen praktische Hindernisse wie eine eingeschränkte optische Zugänglichkeit und der fehlende Zugriff auf die Anlagensteuerung sowie fehlende Möglichkeiten der Synchronisation der Messtechnik mit dem Prozess eine eingehende Untersuchung dieser Effekte. Um letztere Hindernisse zu umgehen, wurde an der BAM die Forschungsanlage SAMMIE (sensor-based additive manufacturing machine) entwickelt. Einerseits bietet das System alle Möglichkeiten, die auch übliche kommerzielle Systeme bieten. Dies beinhaltet die Fertigung ganzer Bauteile (maximale Größe ca. 65mm x 45 mm x 30 mm) und den Einsatz einer Inertgasatmosphäre inkl. gefiltertem Schutzgasstrom. Andererseits bietet es aber auch einen besonders kompakten Bauraum, um die Sensorik möglichst nah an den Prozess führen zu können, sechs optische Fenster zur Prozessbeobachtung aus unterschiedlichen Winkeln und die Möglichkeit der Prozessbeobachtung koaxial zum Fertigungslaser. Des Weiteren besteht eine einfache Austauschbarkeit aller Fenster, Spiegel und Strahlteiler, um den gesamten optischen Pfad der aktuellen Messaufgabe flexibel anzupassen. Die komplette Anlagensteuerung ist eine Eigenentwicklung und bietet daher auch völlige Anpassbarkeit. Eine synchrone und frei konfigurierbare Triggerung diverser Sensoriken und synchrone Datenerfassung bieten maximale Kontrolle über die Sensorsteuerung. Dieser Beitrag gibt einen Überblick über die Fertigungsanlage SAMMIE. Wissenschaftliche Ergebnisse sowie laufende Arbeiten an der Anlage werden in weiteren Beiträgen vorgestellt. T2 - Temperatur 2024 CY - Berlin, Germany DA - 05.06.2024 KW - PBF-LB/M KW - In situ monitoring KW - Anlage KW - Additive Fertigung KW - Prozessüberwachung KW - Additive Manufacturing PY - 2024 AN - OPUS4-60234 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina T1 - PBF-LB/M: Prozess Monitoring mittels Multispektraler OT N2 - Die metallische additive Fertigung hat in den letzten Jahren in der industriellen Fertigung zunehmend an Bedeutung gewonnen. Hierbei dominiert das Laser-Pulverbettschweißen von Metallen (PBF/LB-M) die Fertigung von kleinformatigen Bauteilen mit hoher Oberflächengüte. Die anspruchsvolle und kostspielige Qualitätssicherung stellt aber weiterhin ein Hindernis für eine breitere und kostengünstigere Anwendung der additiven Fertigung dar. Dies resultiert teilweise aus fehlenden zuverlässigen In-situ-Monitoringsystemen. Belastbarere Prozessüberwachungsdaten würden eine oft erforderliche teure nachgelagerte Prüfung mittels Computertomografie entbehrlich machen. Die Aufzeichnung der thermischen Signaturen des Aufbauprozess mittels Thermografie-Kameras zeigen hier vielversprechende Ergebnisse. Eine Korrelation zu auftretender Porosität, Delaminationen und Deformationen scheinen möglich. Die geringe räumliche Auflösung und die hohen Anschaffungskosten für thermografische Kamerasysteme stehen jedoch einer größeren industriellen Nutzung im Wege. Ein bereits industriell angewendeter Ansatz zur in-Situ Überwachung des PBF-LB/M Prozesses ist die Optische Tomografie (OT). Hierbei wird die emittierte Prozessstrahlung jeder Bauteilschicht mittels einer hochauflösenden günstigen Kamera für den sichtbaren Wellenlängenbereich in einer Langzeitbelichtung dokumentiert. Die zeitliche Information der emittierten Strahlung geht hierbei verloren. Der gesamte Bauprozess kann jedoch in einem vergleichsweise kleinen Datensatz dokumentiert werden (ein Bild pro Schicht). Eine direkte Korrelation zu auftretenden Defekten gestaltet sich aufgrund der reduzierten thermischen Informationsdichte jedoch schwierig. In diesem Beitrag soll deshalb das Prinzip der Multispektralen Optischen Tomografie (MOT) vorgestellt und erste Messergebnisse an der Forschungsanlage SAMMIE diskutiert werden. Bei der MOT handelt es sich um eine Übertragung des Prinzips der Quotientenpyrometrie auf das etablierte Verfahren der Optischen Tomografie. Die auftretende Prozessstrahlung wird in mehreren Wellenlängenbereichen ortsaufgelöst über die gesamte Bauplattform erfasst und zeitlich in einer Langzeitbelichtung integriert. Hierbei kommen günstige Kamerasysteme für den sichtbaren Wellenlängenbereich zum Einsatz. Das erfasste Signal I jedes Bildpixels für jeden separat erfassten Wellenlängenbereich kann als Maß für das zeitliche Integral der spezifischen Ausstrahlung M des Schmelzbades in diesem Wellenlängenbereich gesehen werden. Nach dem Stefan-Boltzmann-Gesetz hängt die abgestrahlte thermische Leistung P eines idealen Schwarzen Körpers in der vierten Potenz von dessen absoluten Temperatur T ab. Wird nur, wie z.B. bei der klassischen OT angewendet, der nahinfrarote Wellenlängenbereich betrachtet, lässt sich mit dem Planck’schen Strahlungsgesetz sogar eine Proportionalität zur siebten Potenz der Temperatur zeigen. Deshalb liegt ein starker Einfluss der maximal auftretenden Oberflächentemperatur Tmax auf das erfasste Messsignal vor. Das erfasste Signal I wird aber auch durch die spektrale Transmission τ der verwendeten optischen Komponenten des Kamera-Setups, z.B. Filter und Objektive, durch die spektrale Sensitivität S der verwendeten Kamera-Sensoren und den nur sehr schwer zu bestimmenden Emissionsgrad ε der emittierenden (flüssigen) Oberfläche beeinflusst. In einer ersten Näherung wird das Schmelzbad hier als Graukörper, also ein Körper mit wellenlängenunabhängigem Emissionsgrad ε, betrachtet. Basierend auf dieser Annahme und vermessenen optischen Eigenschaften des verwendeten Systems ist es möglich, eine erste Schätzung der maximalen Oberflächentemperatur Tmax vorzunehmen, selbst ohne genaue Kenntnis des tatsächlichen Emissionsgrades ε. Dies wird durch die Anwendung des Planck‘schen Strahlungsgesetzes und die Quotienten Bildung aus den einzelnen erfassten Signalen I ermöglicht. Auch bei diesem Verfahren geht die zeitliche Information einer Schicht, also das Aufwärm- und Abkühlverhalten des Schmelzbades, verloren. Zudem sind die Messergebnisse in Hinblick auf tatsächlich gemessene „maximal auftretende Oberflächentemperatur“ mit gebotener Zurückhaltung zu interpretieren. Trotzdem konnten erste Ergebnisse bereits zeigen, dass die MOT-Daten auch in Bereichen mit Doppelbelichtungen (das teilweise notwendige mehrfache Scannen eines Bereiches mittels des Fertigungslasers) im Gegensatz zur klassischen OT erwartbare Maximaltemperaturen liefern. Abbildung 1 zeigt das erfasste Messergebnis für drei aufeinanderfolgende Schichten eines Bauteils einmal mit MOT (links) und einmal mit einfacher OT (rechts). Deutlich zu erkennen ist das durch die doppelte Belichtung hohe Signal bei der OT. Die Daten der MOT zeigen hier keine erhöhten Werte. Um die ermittelten Temperaturwerte mittels MOT besser einordnen zu können, sind u.a. vergleichende Messungen an Referenzmaterialien geplant. Um die Auswertung der gemessenen Daten zu verbessern, wird zudem der Zeitverlauf des Abkühlens und Aufheizens des Schmelzbades sowie die Einflüsse von Prozessbeiprodukten wie Schmauch und Spritzer näher untersucht. Auch werden Messungen zum Emissionsgrad ε an additiv gefertigten Proben und Metallschmelzen vorgenommen. T2 - Temperatur 2024 CY - Berlin, Germany DA - 05.06.2024 KW - PBF-LB/M KW - In situ monitoring KW - Optische Tomografie KW - Additive Fertigung KW - Prozessüberwachung KW - Additive Manufacturing PY - 2024 AN - OPUS4-60235 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Chaudry, Mohsin Ali A1 - Scheuschner, Nils A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Thermal history transfer from complex components to representative test specimens in laser powder bed fusion N2 - Additively manufactured components are characterized by heterogeneous mechanical properties due to variations of the microstructure, flaws and residual stresses resulting from the inhomogeneous fabrication process. The large number of influencing factors poses a further challenge in understanding the correlation between material properties, process parameters and component geometry. Therefore, the qualification of components based on witness specimens produced within the same job is questionable. This work aims to present a new strategy for the characterization of PBF-LB/M components based on representative specimens. The key assumption is the feasibility of a transfer of the thermal history from a component to a specimen. It is assumed that similar material properties are determined for components and specimens produced adopting a similar thermal history. After the definition of a region of interest in the component, a combination of thermal analyses by means of finite elements and in-situ experimental determination of the thermal history through infrared thermography is used to produce test coupons with a similar thermal history. The effectiveness of the procedure is demonstrated on a pressure vessel for applications in the chemical industry. KW - Additive manufacturing KW - Heat accumulation KW - Thermal history KW - In situ monitoring KW - Process simulation KW - Representative specimens PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602651 DO - https://doi.org/10.1007/s40964-024-00689-8 SN - 2363-9512 SN - 2363-9520 SP - 1 EP - 16 PB - Springer CY - Cham, Switzerland AN - OPUS4-60265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon T1 - Prozessüberwachung mittels Thermografie im Laser-Pulverbettschweißen zur Vorhersage von Fehlstellen im Bauteilvolumen N2 - Metallbasierte additive Fertigungsverfahren werden zunehmend industriell zur Anfertigung von komplex geformten Komponenten eingesetzt. In diesem Zusammenhang ist das Laser-Pulverbettschweißen von Metall (PBF-LB/M) ist ein weitläufig genutztes Verfahren. Im PBF-LB/M-Prozess werden lagenweise aufgetragene Metallpulverschichten selektiv mittels eines Lasers aufgeschmolzen. Die Entstehung von internen Fehlstellen (bspw. Porosität, Lunker oder Risse) während des Fertigungsvorgangs stellt ein ernstzunehmendes Risiko für die Bauteilsicherheit und somit für die weitere industrielle Etablierung des Verfahrens dar. Die Entstehung von Fehlstellen hängt eng mit lokalen Änderungen der thermischen Historie des Bauteils zusammen. Mit Hilfe von thermografischen Kameras zur Prozessüberwachung kann die thermische Historie bereits während der Fertigung erfasst werden. Damit eröffnet sich die Möglichkeit, die Entstehung von Fehlstellen anhand der thermografischen Daten vorherzusagen und somit potenziell Kosten für eine nachgelagerte Qualitätssicherung einzusparen. In diesem Beitrag soll die Modellierung der Fehlstellenvorhersage anhand thermografischer Prozessdaten diskutiert werden. Hierbei liegt ein Schwerpunkt auf der Fragestellung, mit welcher Genauigkeit unterschiedliche Formen von Fehlstellen, im speziellen Anbindungsfehler und Keyhole-Porosität, auf lokaler Bauteilebene vorhergesagt werden können. Weiterhin werden verschiedenen Modelltypen aus dem Bereich des Maschinellen Lernens auf ihre Eignung für die Fehlstellenvorhersage verglichen. Ein weiterer zentraler Aspekt in diesem Zusammenhang ist die Untersuchung der Eingangsdaten des Modells auf ihre Relevanz für das Vorhersageergebnis. Als Datengrundlage für die durchgeführten Untersuchungen dienen die Fertigungsprozesse von zwei identischen Haynes-282-Bauteilen (Nickel-Basislegierung), welche mit Hilfe einer im kurzwelligen Infrarotbereich arbeitenden Thermografiekamera überwacht wurden. Das Bauteildesign umfasste lokale Bereiche, in denen mit Hilfe einer Parametervariation die Entstehung von Fehlstellen forciert wurde. Um die Position und Größe der entstandenen Defekte zu quantifizieren, wurden beide Bauteile nach erfolgter Fertigung mittels Computertomografie (CT) geprüft. Im Rahmen der Datenvorbereitung für die Modellierung erfolgte eine Reduzierung der erhobenen Thermogramme zu physikalisch-interpretierbaren Merkmalen (bspw. Schmelzbadfläche oder Zeit-über-Schwellwert). Weiterhin erfolgte eine Registrierung der thermografischen Daten mit den Fehlstellen-Referenzdaten der CT, um eine exakte örtliche Überlagerung von thermischer Information und lokalem Fehlstellenbild zu erzielen. Zur Ermöglichung einer lokalen Fehlstellenvorhersage wurden die thermografischen Daten schichtweise in kleinteiligen Volumina angeordnet, welche als Eingangsgröße für die genutzten ML-Algorithmen dienten. Die Ergebnisse der Untersuchungen zeigen, dass sich die Porosität auf Bauteilschichtebene mit einer hohen Genauigkeit vorhersagen lässt. Eine Vorhersage der Porosität auf lokaler Bauteilebene erweist sich noch als herausfordernd. Die erprobten ML-Algorithmen zeigen vergleichbare Ergebnisse, obwohl ihnen unterschiedliche Modellierungsannahmen zugrunde liegen und sie variierende Komplexität aufweisen. Mit Hilfe der erzielten Erkenntnisse eröffnet sich die Möglichkeit, Rückschlüsse auf die gewählte Prozessüberwachungshardware und Datenvorverarbeitung zu ziehen und somit langfristig die Leistungsfähigkeit von Modellen zur Fehlstellenvorhersage zu verbessern. T2 - Temperatur 2024 CY - Berlin, Germany DA - 05.06.2024 KW - Laser-Pulverbettschweißen KW - Porositätsvorhersage KW - Qualitätsüberwachung KW - Thermografie KW - Machine Learning PY - 2024 AN - OPUS4-60267 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barretto, T. A1 - Gentes, S. A1 - Braun, J. A1 - Averin, Anton A1 - Lecompagnon, Julien A1 - Stroncik, N. T1 - Automated non-destructive internal corrosion detection on radioactive drums (ZIKA) N2 - The aim of the ZIKA research project, funded by the BMBF funding program FORKA (FKZ:15S9446 A-C), is the automated detection of internal corrosion of radioactive drums using non-destructive testing (NDT). The newly gained findings will be combined with research results from the previous project EMOS (FKZ:15S9420), which dealt with the external damage of drums. Using NDT, internal corrosion and possible internal sources of damage can be identified before they become a safety-relevant issue. However, if internally sourced damages can be seen externally, the integrity of the damaged drum is no longer guaranteed, which has significant consequences. Therefore, early detection before integrity failure is of particular importance for interim storage facilities with low- and medium-level radioactive waste drums. T2 - Kerntechnik 2024 CY - Leipzig, Germany DA - 11.06.2024 KW - Corrosion detection KW - Non-destructive testing KW - Automated inspection system PY - 2024 SP - 1 EP - 5 AN - OPUS4-60322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Lasers: A versatile Heat Source for Modern Active Thermographic Testing N2 - The properties of laser radiation result in a wide range of applications, making laser technologies indispensable in areas such as industry, science and medicine. The possible areas of application for thermography in this context are just as diverse. Thermography is used in laser applications when permanent monitoring and control of thermal development is necessary. Among others, this is the case in additive manufacturing, laser-based measuring devices and non-destructive testing. Furthermore, thermography is ideally suited as a testing method when it comes to ensuring the quality of the laser itself. In this talk it is outlined, how lasers can be used as a heat source in active thermographic testing. Furthermore, two special variants (spatial & temporal structured heating) are described, for which lasers are highly suitable. T2 - Webinar: Laser Technologies Benefiting from Infrared Thermography CY - Online meeting DA - 24.04.2024 KW - Thermography KW - Laser KW - NDT PY - 2024 UR - https://www.infratec.eu/press/press-releases/details/2024-03-04-laser-technologies-benefiting-from-infrared-thermography/ AN - OPUS4-59934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Automatisierte aktive thermografische Prüfung N2 - Aktive thermografische Prüfung ist ein vielseitiges Instrument in der Familie der zerstörungsfreien Prüfverfahren. Der Einzug moderner Lasertechnologie hat hier bedeutende neue Anwendungsfelder eröffnet. In Kombination mit Industrierobotik können nun beispielsweise beliebig komplex geformte Bauteile großflächig vollautomatisiert auf Oberflächenrisse überprüft werden. Der hier vorliegende Vortrag gibt einen Überblick über die Grundlagen der Laserthermografie, zeigt unsere Anstrengungen am Fachbereich im Bereich der automatisierten thermografischen Detektion von Oberflächenrissen und gibt ein Ausblick über neue moderne Thermografieverfahren aus der Forschung. T2 - VATH Frühjahrssymposium CY - Lingen, Germany DA - 26.04.2024 KW - Thermografie KW - Laser KW - ZfP PY - 2024 AN - OPUS4-59965 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ratkovac, Mirjana A1 - Gerards-Wünsche, Paul A1 - Thiele, Marc A1 - Brackrock, Daniel A1 - Stamm, Michael T1 - Detection and monitoring of the fatigue crack growth on welds – Application-oriented use of NDT methods N2 - Early detection of fatigue cracks and accurate measurements of the crack growth play an important role in the maintenance and repair strategies of steel structures exposed to cyclic loads during their service life. Observation of welded connections is especially of high relevance due to their higher susceptibility to fatigue damage. The aim of this contribution was to monitor fatigue crack growth in thick welded specimens during fatigue tests as holistically as possible, by implementing multiple NDT methods simultaneously in order to record the crack initiation and propagation until the final fracture. In addition to well-known methods such as strain gauges, thermography, and ultrasound, the crack luminescence method developed at the Bundesanstalt für Materialforschung und -prüfung (BAM), which makes cracks on the surface particularly visible, was also used. For data acquisition, a first data fusion concept was developed and applied in order to synchronize the data of the different methods and to evaluate them to a large extent automatically. The resulting database can ultimately also be used to access, view, and analyze the experimental data for various NDT methods. During the conducted fatigue tests, the simultaneous measurements of the same cracking process enabled a comprehensive comparison of the methods, highlighting their individual strengths and limitations. More importantly, they showed how a synergetic combination of different NDT methods can be beneficial for implementation in large-scale fatigue testing but also in monitoring and inspection programs of in-service structures - such as the support structures of offshore wind turbines. T2 - Fatigue Design 2023 (FatDes 2023) CY - Senlis, France DA - 29.11.2023 KW - Fatigue KW - Welded KW - NDT KW - Crack growth PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600238 DO - https://doi.org/10.1016/j.prostr.2024.03.062 VL - 57 SP - 560 EP - 568 PB - Elsevier B.V. AN - OPUS4-60023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saeed, Hasan A1 - Chaudhuri, Somsubhro A1 - De Waele, Wim T1 - Experimental evaluation of the short and long fatigue crack growth rate of S355 structural steel offshore monopile weldments in air and synthetic seawater N2 - Welded steel structures used in the offshore wind industry are exposed to harsh marine environments, which can result in corrosion-induced fatigue damage. Of particular concern is the heat affected zone (HAZ) of welded joints, a region known for its altered microstructure and mechanical properties, which can significantly influence the initiation and propagation of fatigue cracks. This study investigates the short and long fatigue crack growth rates, and the effect of seawater exposure, for the HAZ in S355 steel weldments. Single-edge notch bend (SENB) specimens are used, with a shallow notch in the HAZ. A series of specimens is immersed in synthetic seawater that is continuously circulated at a controlled temperature to assess the synergistic effects of corrosion and fatigue. The experimental method integrates a novel application of front face strain compliance for monitoring short cracks, alongside an extended back-face strain compliance approach for monitoring long crack propagation. It is concluded that the short fatigue crack growth rate of the HAZ is 2.7 to 3.5 times higher in seawater as compared to air. As the crack propagates and enters into the long crack regime, the ratio decreases to 2.2 times at the transition point of the two-stage crack growth curve and further decreases to 1.5 times when the notch advances towards fracture. The findings indicate that the fatigue crack growth rates documented in standards tend to be on the conservative side. This study significantly enriches the fatigue crack growth data available in literature, which will contribute to a more accurate lifetime assessment offshore wind turbine structures. KW - Fatigue crack growth rate KW - Short crack KW - Offshore monopile foundation KW - Corrosion fatigue PY - 2024 DO - https://doi.org/10.1016/j.apor.2024.104063 VL - 149 SP - 1 EP - 17 PB - Elsevier Ltd. AN - OPUS4-60691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -