TY - JOUR A1 - Müller, Jan Peter A1 - Dell'Avvocato, G. A1 - Krankenhagen, Rainer T1 - Assessing overload-induced delaminations in glass fiber reinforced polymers by its geometry and thermal resistance N2 - The one-dimensional thermal quadrupole method is used to evaluate a pulsed thermography measurement at delaminations in a glass-fiber reinforced plastic plate quantitatively. The large-scale delaminations have been induced by tension overload and are air-filled and are usually located at the same depth as the notch bottom of a notch on the rear side. While classical evaluation methods like pulsed phase thermography and thermal Signal reconstruction are focused on the delamination depth only, the thermal quadrupole method determines spatially resolved two parameters for delaminations, delamination depth and local thermal resistance. Interestingly, lateral heat flows do not disturb this kind of depth evaluation. KW - Pulsed thermography KW - Delamination KW - Debond KW - Composite materials PY - 2020 DO - https://doi.org/10.1016/j.ndteint.2020.102309 VL - 116 SP - 102309 PB - Elsevier Ltd. AN - OPUS4-50937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Super resolution laser line scanning thermography N2 - In this paper we propose super resolution measurement and post-processing strategies that can be applied in thermography using laser line scanning. The implementation of these techniques facilitates the separation of two closely spaced defects and avoids the expected deterioration of spatial resolution due to heat diffusion. The experimental studies were performed using a high-power laser as heat source in combination with pulsed thermography measurements (step scanning) or with continuous heating measurements (continuous scanning). Our work shows that laser line step scanning as well as continuous scanning both can be used within our developed super resolution (SR) techniques. Our SR techniques make use of a compressed sensing based algorithm in post- processing, the so-called iterative joint sparsity (IJOSP) approach. The IJOSP method benefits from both - the sparse nature of defects in space as well as from the similarity of each measurement. In addition, we show further methods to improve the reconstruction quality e.g. by simple manipulations in thermal image processing such as by considering the effect of the scanning motion or by using different optimization algorithms within the IJOSP approach. These super resolution image processing methods are discussed so that the advantages and disadvantages of each method can be extracted. Our contribution thus provides new approaches for the implementation of super resolution techniques in laser line scanning thermography and informs about which experimental and post-processing parameters should be chosen to better separate two closely spaced defects. KW - Super resolution KW - Laser thermography KW - Compressed sensing KW - Laser scanning KW - Joint sparsity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509796 DO - https://doi.org/10.1016/j.optlaseng.2020.106279 SN - 0143-8166 VL - 134 SP - 106279 PB - Elsevier Ltd. AN - OPUS4-50979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thummerer, G. A1 - Mayr, G. A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias A1 - Burgholzer, P. T1 - Photothermal Image Reconstruction in Opaque Media with Virtual Wave Backpropagation N2 - Thermographic reconstruction of defects that lie in the bulk of a sample is a difficult task because entropy production during heat diffusion leads to information loss. To reconstruct defects one has to solve an inverse heat conduction problem. The quality of the reconstruction is closely related to the information content of the observed data set that is reflected by the decreasing ability to spatially resolve a defect with growing defect depth. In this work we show a 2D reconstruction of rectangular slots with different width-to-depth ratios in a metallic sample. For this purpose, we apply the virtual wave concept and incorporate positivity and sparsity as prior information to overcome the diffusion-based information loss partially. The reconstruction is based on simulated and experimental pulse thermography data. In the first reconstruction step, we compute a virtual wave field from the surface temperature data. This allows us, in the second step, to use ultrasonic backpropagation methods for image reconstruction. KW - Virtual wave concept KW - Thermography KW - Photothermal Technique KW - Image reconstruction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506166 DO - https://doi.org/10.1016/j.ndteint.2020.102239 VL - 112 SP - 102239 PB - Elsevier Ltd. CY - Netherlands AN - OPUS4-50616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Photothermal super resolution imaging: A comparison of different thermographic reconstruction techniques N2 - This paper presents different super resolution reconstruction techniques to overcome the spatial resolution limits in thermography. Pseudo-random blind structured illumination from a onedimensional laser array is used as heat source for super resolution thermography. Pulsed thermography measurements using an infrared camera with a high frame rate sampling lead to a huge amount of data. To handle this large data set, thermographic reconstruction techniques are an essential step of the overall reconstruction process. Four different thermographic reconstruction techniques are analyzed based on the Fourier transform amplitude, principal component analysis, virtual wave reconstruction and the maximum thermogram. The application of those methods results in a sparse basis representation of the measured data and serves as input for a compressed sensing based algorithm called iterative joint sparsity (IJOSP). Since the thermographic reconstruction techniques have a high influence on the result of the IJOSP algorithm, this paper Highlights their Advantages and disadvantages. KW - Super resolution KW - Compressed sensing KW - Laser thermography KW - Virtual wave KW - Defect reconstruction PY - 2020 DO - https://doi.org/10.1016/j.ndteint.2020.102228 VL - 111 SP - 2228 PB - Elsevier Ltd. CY - Netherlands AN - OPUS4-50419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Hassenstein, Christian A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - New techniques in super resolution photothermal imaging for nondestructive testing N2 - In this work we focus on our most recent studies to super resolution (SR) laser thermography. The goal of SR nondestructive testing methods is to facilitate the separation of closely spaced defects. We explain how to combine laser scanning with SR techniques. It can be shown that stepwise as well as continuous scanning techniques are applicable. Finally, we discuss the effect of experimental parameters and im-age processing techniques to find the optimal SR technique which leads to the highest reconstruction quality within laser thermography. T2 - SMSI 2020 Conference CY - Online meeting DA - 22.06.2020 KW - Super resolution KW - Laser thermography KW - Nondestructive testing KW - Laser scanning KW - Photothermal imaging PY - 2020 DO - https://doi.org/10.5162/SMSI2020/C4.1 SP - 169 EP - 170 AN - OPUS4-50895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Lecompagnon, Julien A1 - Hassenstein, Christian A1 - Thiel, Erik A1 - Pech May, Nelson Wilbur T1 - Using spatial and temporal shaping of laser-induced diffuse thermal wave fields in thermography N2 - The diffuse nature of thermal waves is a fun-damental limitation in thermographic nonde-structive testing. In our studies we investigated different approaches by shaping the thermal wave fields which result from heating. We have used high-power laser sources to heat metallic samples. Using these spatial and temporal shaping techniques leads to a higher detection sensitivity in our measurements with the infra-red camera. In this contribution we show our implementation of shaping laser-induced diffuse thermal wave fields and the effect on the defect reconstruction quality. T2 - SMSI 2020 Conference CY - Online meeting DA - 22.06.2020 KW - Thermal wave KW - Diffusion KW - High-power laser KW - Thermography KW - Spatiotemporal shaping PY - 2020 DO - https://doi.org/10.5162/SMSI2020/C5.1 SP - 179 EP - 180 AN - OPUS4-50897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Puthiyaveettil, N. A1 - Thomas, K. R. A1 - Myrach, Philipp A1 - Ziegler, Mathias A1 - Rajagopal, P. A1 - Balasubramaniamam, K. T1 - Defect detection in steel bars up to 600 °C using laser line thermography N2 - Crack detection in steel bars at high surface temperatures is a critical problem in any manufacturing industry. Surface breaking cracks are the major problems during the billet casting. Many NDT techniques are proven its capability in crack detection at room temperature. Here, we are demonstrating the possibility of exposure of cracks using laser line thermography at higher surface temperatures (up to 600 °C). A continuous-wave (CW) laser is used to excite the sample kept at higher surface temperatures. The temperature distribution over the sample due to the laser line scanning is captured using a temperature calibrated infrared (IR) thermal camera. The response of the sample temperature in crack detection is investigated using a validated FE model. The impact of the oxide layer in crack detection is investigated by using two types of samples; one without any oxide layer and the second is with the oxide layer. The influence of laser power in the detection of defects at high temperatures is studied. 3D numerical models were developed for the cases; when the sample is with oxide layer and without any oxide layer for a better understanding of physics. The surface temperature rise due to laser heating is higher for the scaled sample compared to the no-scale sample. The presence of the oxide layer above the parent metal will reduce the reflectivity of the surface. Lower reflectivity will lead to increased absorption of incident energy so that the surface temperature rise will be higher than the surface with no scale. Thermal contrast linearly depends on laser power, which means higher laser power will increase the defect detectability even at a higher surface temperature. KW - Laser thermography KW - High temperature KW - Modeling KW - Surface cracks KW - Non-destructive testing PY - 2020 DO - https://doi.org/10.1016/j.infrared.2020.103565 SN - 1350-4495 VL - 111 SP - 103565 PB - Elsevier B.V. AN - OPUS4-51573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Mann, S. A1 - Sharma, R. A1 - Reisgen, U. T1 - In-situ Identifikation der Schweißnahtgeometrie bei der Anwendung von MSG-Schweißprozessen N2 - Lichtbogenbasierte Schweißverfahren wie das Metallschutzgasschweißen (MSG) zählen zu den Standardverfahren der Fügetechnik und werden in vielen Industriebereichen automatisiert unter Verwendung von Industrierobotern eingesetzt. Dabei können Schweißnahtabweichungen auftreten, die aus Änderungen der Prozessrandbedingungen und der hohen Prozessdynamik resultieren. Hier ist die Kontrolle von Schmelzbad- und Schweißnahtgeometrie für die Sicherung der Nahtqualität bedeutsam. Durch den Einsatz optischer Sensorsysteme können mit hoher zeitlicher Auflösung in-situ Informationen des Prozesszustands ermittelt werden. Dabei stellen die rauen Prozessbedingungen und die hohe Strahlungsintensität des Lichtbogens eine Herausforderung für die optischen Komponenten dar. Forschungsarbeiten am Institut für Schweißtechnik und Fügetechnik der RWTH Aachen haben gezeigt, dass durch den Einsatz einer HDR-Kamera in Kombination mit einer strukturierten Laserbelichtung gezielt geometrische Informationen des Lichtbogens und des Schmelzbads aus den Prozessaufnahmen gewonnen werden können. In dieser Arbeit wird eine parallele Schweißnaht- und Schmelzbadbeobachtung durchgeführt, wobei geometrische Informationen durch die Anwendung von Bildverarbeitungsalgorithmen extrahiert werden. Dabei wird ein nachlaufendes Sensorsystem eingesetzt, welches aus einer HDR-Kamera und einer Laserbeleuchtung besteht. Es werden diffraktive optische Elemente (DOE) zur Erzeugung von verschiedenen Laserprojektionsmustern verwendet, um sowohl eine unidirektionale als auch eine multidirektionale Prozessbeobachtung durchführen zu können. Aus den geometrischen Informationen werden Kenngrößen berechnet, anhand derer der Prozesszustand beurteilt werden kann. Es zeigt sich, dass anhand der Kenngrößenverläufe Abweichungen in der Schweiß- und Schmelzbadgeometrie und Positionierungsfehler des Roboters identifiziert werden können. T2 - Große Schweißtechnische Tagung - DVS CAMPUS CY - Online meeting DA - 14.09.2020 KW - Schweißnahtgeometrie KW - MSG-Schweißen KW - In-situ Monitoring KW - Schmelzbadbeobachtung PY - 2020 SN - 978-3-96144-098-6 VL - 365 SP - 41 EP - 47 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-51576 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon T1 - In-situ Identifikation der Schweißnahtgeometrie bei der Anwendung von MSG-Schweißprozessen N2 - Lichtbogenbasierte Schweißverfahren wie das Metallschutzgasschweißen (MSG) zählen zu den Standardverfahren der Fügetechnik und werden in vielen Industriebereichen automatisiert unter Verwendung von Industrierobotern eingesetzt. Dabei können Schweißnahtabweichungen auftreten, die aus Änderungen der Prozessrandbedingungen und der hohen Prozessdynamik resultieren. Hier ist die Kontrolle von Schmelzbad- und Schweißnahtgeometrie für die Sicherung der Nahtqualität bedeutsam. Durch den Einsatz optischer Sensorsysteme können mit hoher zeitlicher Auflösung in-situ Informationen des Prozesszustands ermittelt werden. Dabei stellen die rauen Prozessbedingungen und die hohe Strahlungsintensität des Lichtbogens eine Herausforderung für die optischen Komponenten dar. Forschungsarbeiten am Institut für Schweißtechnik und Fügetechnik der RWTH Aachen haben gezeigt, dass durch den Einsatz einer HDR-Kamera in Kombination mit einer strukturierten Laserbelichtung gezielt geometrische Informationen des Lichtbogens und des Schmelzbads aus den Prozessaufnahmen gewonnen werden können. In dieser Arbeit wird eine parallele Schweißnaht- und Schmelzbadbeobachtung durchgeführt, wobei geometrische Informationen durch die Anwendung von Bildverarbeitungsalgorithmen extrahiert werden. Dabei wird ein nachlaufendes Sensorsystem eingesetzt, welches aus einer HDR-Kamera und einer Laserbeleuchtung besteht. Es werden diffraktive optische Elemente (DOE) zur Erzeugung von verschiedenen Laserprojektionsmustern verwendet, um sowohl eine unidirektionale als auch eine multidirektionale Prozessbeobachtung durchführen zu können. Aus den geometrischen Informationen werden Kenngrößen berechnet, anhand derer der Prozesszustand beurteilt werden kann. Es zeigt sich, dass anhand der Kenngrößenverläufe Abweichungen in der Schweiß- und Schmelzbadgeometrie und Positionierungsfehler des Roboters identifiziert werden können. T2 - Große Schweißtechnische Tagung - DVS CAMPUS CY - Online meeting DA - 14.09.2020 KW - Schweißnahtgeometrie KW - MSG-Schweißen KW - In-situ Monitoring KW - Schmelzbadbeobachtung PY - 2020 AN - OPUS4-51579 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moskovchenko, A. I. A1 - Vavilov, V. P. A1 - Bernegger, Raphael A1 - Maierhofer, Christiane A1 - Chulkov, A. O. T1 - Detecting Delaminations in Semitransparent Glass Fiber Composite by Using Pulsed Infrared Thermography N2 - Thanks to its good strength/mass ratio, a glass fibre reinforced plastic (GFRP) composite is a common material widely used in aviation, power production, automotive and other industries. In its turn, active infrared (IR) nondestructive testing (NDT) is a common inspection technique for detecting and characterizing structural defects in GFRP. Materials to be tested are typically subjected to optical heating which is supposed to occur on the material surface. However, GFRP composite is semitransparent for optical radiation of both visual and IR spectral bands. Correspondingly, the inspection process represents a certain combination of both optical and thermal phenomena. Therefore, the known characterization algorithms based on pure heat diffusion cannot be applied to semi-transparent materials. In this study, the phenomenon of GFRP semi-transparency has been investigated numerically and experimentally in application to thermal NDT. Both Xenon flash tubes and a laser have been used for thermal stimulation of opaque and semi-transparent test objects. It has been shown that the Penetration of optical heating radiation into composite reduces detectability of shallower defects, and the signal-to-noise ratio can be enhanced by applying the technique of thermographic signal reconstruction (TSR). In the inspection of the semi-transparent GFRP composite, the most efficient has been the laser heating followed by the TSR data processing. The perspectives of defect characterization of semi-transparent materials by using laser heating are discussed. A neural network has been used as a candidate tool for evaluating defect depth in composite materials, but its training should be performed in identical with testing conditions. KW - Infrared thermography KW - Thermal testing KW - GFRP KW - Semi-transparent composite KW - Laser heating PY - 2020 DO - https://doi.org/10.1007/s10921-020-00717-x VL - 39 SP - 69 PB - Springer Science+Business Media, LLC, part of Springer Nature 2020 AN - OPUS4-51179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -