TY - JOUR A1 - Ahmadi, Samim A1 - Thummerer, G. A1 - Breitwieser, S. A1 - Mayr, G. A1 - Lecompagnon, Julien A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Multi-dimensional reconstruction of internal defects in additively manufactured steel using photothermal super resolution combined with virtual wave based image processing N2 - We combine three different approaches to greatly enhance the defect reconstruction ability of active thermographic testing. As experimental approach, laser-based structured illumination is performed in a step-wise manner. As an intermediate signal processing step, the virtual wave concept is used in order to effectively convert the notoriously difficult to solve diffusion-based inverse problem into a somewhat milder wavebased inverse problem. As a final step, a compressed-sensing based optimization procedure is applied which efficiently solves the inverse problem by making advantage of the joint sparsity of multiple blind measurements. To evaluate our proposed processing technique, we investigate an additively manufactured stainless steel sample with eight internal defects. The concerted super resolution approach is compared to conventional thermographic reconstruction techniques and shows an at least four times better spatial resolution. KW - Active thermography KW - Additive manufacturing KW - Stainless steel KW - ADMM KW - Block regularization KW - Internal defects KW - Joint sparsity KW - Laser excitation KW - Multi-dimensional reconstruction KW - Photothermal super resolution KW - Virtual waves PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525330 DO - https://doi.org/10.1109/tii.2021.3054411 SN - 1551-3203 SN - 1941-0050 VL - 17 IS - 11 SP - 7368 EP - 7378 PB - IEEE CY - New York, NY AN - OPUS4-52533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Ahmadi, Samim A1 - Hauffen, Jan Christian A1 - Kästner, L. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Learned block iterative shrinkage thresholding algorithm for photothermal super resolution imaging N2 - Block-sparse regularization is already well-known in active thermal imaging and is used for multiple measurement based inverse problems. The main bottleneck of this method is the choice of regularization parameters which differs for each experiment. To avoid time-consuming manually selected regularization parameters, we propose a learned block-sparse optimization approach using an iterative algorithm unfolded into a deep neural network. More precisely, we show the benefits of using a learned block iterative shrinkage thresholding algorithm that is able to learn the choice of regularization parameters. In addition, this algorithm enables the determination of a suitable weight matrix to solve the underlying inverse problem. Therefore, in this paper we present the algorithm and compare it with state of the art block iterative shrinkage thresholding using synthetically generated test data and experimental test data from active thermography for defect reconstruction. Our results show that the use of the learned block-sparse optimization approach provides smaller normalized mean square errors for a small fixed number of iterations than without learning. Thus, this new approach allows to improve the convergence speed and only needs a few iterations to generate accurate defect reconstruction in photothermal super resolution imaging. KW - Iterative shrinkage thresholding algorithm KW - Neural network KW - Deep learning KW - Active thermography KW - Photothermal super resolution PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525364 DO - https://doi.org/10.48550/arXiv.2012.03547 SN - 2331-8422 SP - 1 EP - 11 PB - Cornell University CY - Ithaca, NY AN - OPUS4-52536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dell’Avvocato, G. A1 - Amiel, S. A1 - Maillard, S. A1 - Mayr, G. A1 - Oswald-Tranta, B. A1 - Colinas, E. A1 - Svantner, M. A1 - Bouteille, P. A1 - Huillery, R. A1 - Galietti, U. A1 - Deganova, L. A1 - Caulier, Y. A1 - Ziegler, Mathias ED - Sakagami, T. ED - Inoue, H. T1 - Advancing Active Thermography for NDT: The Role of Standardization N2 - Infrared thermography, particularly its active form, is increasingly used in various industries in non-destructive testing (NDT). To support its broader adoption, structured standardization efforts have been developed within CEN/TC 138/WG11 and coordinated with ISO. Key standards—such as EN 16714, EN 17119, and EN 17501—define principles, procedures, and equipment requirements. Current activities include finalizing the draft on induction thermography, revising EN 17119, and developing new projects on optical lock-in, laser weld inspection, and thermal diffusivity. Standardization enhances comparability, reliability, and certification, making thermography a robust and scalable solution within the global NDT framework. T2 - AITA 2025 CY - Kobe, Japan DA - 15.09.2025 KW - Active thermography KW - Non-destructive testing (NDT) KW - Standardization KW - CEN/TC 138/WG11 KW - Infrared inspection KW - Industrial qualification PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643972 DO - https://doi.org/10.3390/proceedings2025129030 VL - 129 IS - 1 SP - 1 EP - 4 PB - MDPI CY - Basel Switzerland AN - OPUS4-64397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias T1 - Advancing Active Thermography for NDT: The Role of Standardization N2 - Infrared thermography, particularly its active form, is increasingly used in various industries in non-destructive testing (NDT). To support its broader adoption, structured standardization efforts have been developed within CEN/TC 138/WG11 and coordinated with ISO. Key standards—such as EN 16714, EN 17119, and EN 17501—define principles, procedures, and equipment requirements. Current activities include finalizing the draft on induction thermography, revising EN 17119, and developing new projects on optical lock-in, laser weld inspection, and thermal diffusivity. Standardization enhances comparability, reliability, and certification, making thermography a robust and scalable solution within the global NDT framework. T2 - AITA 2025 CY - Kobe, Japan DA - 15.09.2025 KW - Active thermography KW - Non-destructive testing (NDT) KW - Standardization KW - CEN/TC 138/WG11 KW - Infrared inspection KW - Industrial qualification PY - 2025 AN - OPUS4-64572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobczak, M. A1 - Lecompagnon, Julien A1 - Hirsch, Philipp Daniel A1 - Pieczonka, Ł. A1 - Ziegler, Mathias T1 - Impact damage characterization on CFRP parts using laser line scanning active thermography N2 - This study presents a dual-path data processing framework for the detection and characterization of barely visible impact damage (BVID) in carbon-fiber-reinforced polymer (CFRP) structures using laser line thermography (LLT). A robotic LLT system was used to scan impacted CFRP specimens, and the resulting thermal sequences were analyzed using two complementary methods: full thermogram reconstruction followed by Pulse Phase Thermography (PPT) to detect subsurface delaminations, and Time-Summed Gradient Filtering (TSGF) to enhance surface-breaking cracks. Both processing paths produced interpretable results that were fused into a unified combined image and overlay mask, enabling simultaneous visualization of different defect types from a single scan. Quantitative analysis was performed on the binary masks to extract defect dimensions and Signal-to-noise ratio (SNR) values. The results demonstrated that delaminations and multiple cracks could be accurately detected and spatially distinguished, with good agreement to reference methods such as flash thermography and vibrothermography. This work highlights the potential of LLT as a versatile and scalable inspection technique, where multimodal defect detection and segmentation can be achieved through targeted processing and data fusion strategies. KW - Active thermography KW - CFRP KW - Laser line scanning KW - Delamination KW - Cracks KW - BVID KW - NDT PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654097 DO - https://doi.org/10.1016/j.compositesb.2026.113425 SN - 1359-8368 VL - 313 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-65409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -