TY - CHAP A1 - Wosniok, Aleksander ED - Werneck, M.M. ED - da Silva Barros Allil, R.C T1 - POF Sensors for Structural Health Monitoring N2 - The ever more ambitious strategic goals of meeting the requirements in ensuring technical safety and security of civil structures have resulted in flourishing development of innovative structural health monitoring (SHM) technologies for early damage diagnosis and prognosis. At the same time, implementing SHM systems provides tangible economic benefits derived from lower life-cycle costs associated with reduction in the maintenance, repair and insurance expenses. Due to the large size and harsh environmental conditions common to most civil structures, the broad range of favorable physical-mechanical properties of POFs allow for customized monitoring solutions for a wide variety of applications. In addition to common SHM-related advantages of optical fibers including their electromagnetic immunity, small size, lightweight as well as spark-free and non-conductive characteristics, POFs offer better bending and fracture resistance then their glass-counterparts. Particularly, the improved robustness of POFs, their ease of handling, low Young’s Modulus and high elastic limit of 10% compared to 1% in silica glass [1] are relevant to practical applications. Depending on the composition, dopants, drawing process and geometry [2], strain measurement up to 45% [3] or even above 100% [4,5] has been demonstrated with standard POFs. Therefore, the dominant market expected for POF sensors includes monitoring of high-strain-rate deformations in earthwork structures, crack detection in concrete and masonry structures [6] or overstressing in high-rise steel structures exposed to moisture, corrosion, leakage, fatigue, vibration, fire, overflow, earthquake and intentional damage. For fracture monitoring within concrete structures, the sensory usage of POFs becomes especially favorable since the extremely alkaline environment of concrete mixtures is well known to be corrosive to standard silica glass optical fibers (GOFs) [1,7]. Most of advanced distributed sensing techniques are commonly based on Rayleigh backscatter reflectometry using commercially available multimode (MM) POFs. Such typical MM POFs range from a step-index (SI) poly(methyl methacrylate) (PMMA) POF having a core diameter of 1 mm to a low-loss graded-index (GI) perfluorinated (PF) POF based on poly(perfluorobutenyl-vinylether) also known as CYTOP [8] with a 50 µm core diameter. The relatively low optical attenuation value of 30 dB/km at 1.3 µm [9,10] makes PFGI POFs also interesting for distributed Brillouin sensing [11-14]. Compared to GOFs, PFGI POFs offer better potential for temperature measurement and have comparably low theoretical attenuation limit [15]. Therefore, POF-based distributed Brillouin sensing is expected to play an important role in the future of SHM, especially at high-strain ranges. The significance of the Brillouin measurment technique can be also enhanced by further development of the single-mode (SM) POFs which are still subject of research and are used for coherent detection techniques [6]. Furthermore, SM PMMA POFs have been characterized in a Mach-Zehnder interferometer setup for strain values up to 15.8% [16,17]. The current development of SM perfluorinated and microstructured POFs (mPOFs) represents an immense promise for quasi-distributed dynamic measurement at high strain levels based on fiber Bragg grating (FBG) technology. While SM mPOFs with optical losses of about 1 dB/m can be fabricated [6], the SM PF POFs presented by Zhou et al. feature low attenuation of even less than 0.2 dB/m in the wavelength range of 1.41 µm to 1.55 µm [18]. At the same time, the SM PF POFs have the potential for improved thermal stability compared to their PMMA counterparts [19]. This whole chapter provides a comprehensive overview on current POF-based sensing principles and SHM technologies, highlighting their diverse applications in civil engineering structures. In the application-related context, close attention is paid to the development of smart sensor-based geotextiles and geogrids. Such geosynthetics-integrated distributed POF sensors have proven to be a promising solution for two- or even tree-dimensional monitoring of critical high mechanical deformations in both geotechnical and masonry structures. Moreover, geosynthetics in the form of nonwoven geotextiles as well as polymer-based geogrids used as carrier materials for POF sensors enable optimized load transfer from the monitored structure to the measuring fiber without losing their original functionality. In other words, smart geosynthetics provide a cost-efficient dual solution for, on the one hand, well-established increase of structure stability and decrease of erosion effects, on the other hand, early-warning and detection capabilities in the prevention and elimination of potential hazards and lasting damages. KW - Plastic Optical Fiber Sensor KW - OTDR KW - Brillouin Sensing KW - Interferometric Sensor KW - FBG KW - Long Period Grating KW - Smart Geosynthetics PY - 2020 SN - 978-1-13829-853-8 SP - 267 EP - 283 PB - CRC Press Taylor & Francis Group CY - Boca Raton, FL, USA AN - OPUS4-50561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander T1 - Multifunktionale Geokunststoffe - nachhaltige Zustandsüberwachung durch ortsaufgelöste faseroptische Sensoren N2 - Vorstellung von Entwicklungsarbeiten zum Thema sensorbasierte Geokunststoffe mit integrierten faseroptischen Sensoren. T2 - 14. Bautextilien-Symposium BAUTEX 2020 CY - Chemnitz, Germany DA - 29.01.2020 KW - Intelligente Geokunststoffe KW - Sensorbasierte Geokunststoffe KW - Faseroptischer Sensor KW - Ortsverteilter Sensor PY - 2020 AN - OPUS4-50321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Perk, M. A1 - Großwig, S. A1 - Pfeiffer, T. A1 - Rembe, M. A1 - den Hartogh, M. A1 - Weege, S. A1 - Krebber, Katerina A1 - Dijk, H. L. T1 - Faseroptische Leckage-Ortung zum Nachweis von Undichtheiten in Bohrlochkomplettierungen N2 - Im Rahmen der Integritätsbe­wertung einer zementierten 13 3/8" Rohrtour einer Sole-Produktionsbohrung wurden erstmals 2018 zeitgleich faserop­tische Temperaturmessungen (DTS) und faseroptische Akustikmessungen (DAS) durchgeführt und ausgewertet. Dazu wurde die Bohrung zeitweise mit Stick­stoff bespannt und wieder entlastet. T2 - DGMK/ÖGEW-Frühjahrstagung 2020 CY - Celle, Germany DA - 15.​04.​2020 KW - Kavernenspeicher KW - Verteilte faseroptische akustische Sensorik KW - Wasserstoffspeicher PY - 2020 N1 - Die DGMK/ÖGEW Frühjahrstagung 2020 wurde abgesagt, der Tagungsband aber trotzdem veröffentlicht. - The DGMK/ÖGEW Frühjahrstagung 2020 was cancelled, the proceedings were published nevertheless. VL - 136 IS - 4 SP - 25 EP - 26 PB - DVV Media Group CY - Hamburg AN - OPUS4-50783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowarik, Stefan A1 - Hussels, Maria-Teresa A1 - Chruscicki, Sebastian A1 - Münzenberger, Sven A1 - Lämmerhirt, A. A1 - Pohl, P. A1 - Schubert, M. T1 - Fiber Optic Train Monitoring with Distributed Acoustic Sensing: Conventional and Neural Network Data Analysis N2 - Distributed acoustic sensing (DAS) over tens of kilometers of fiber optic cables is well-suited for monitoring extended railway infrastructures. As DAS produces large, noisy datasets, it is important to optimize algorithms for precise tracking of train position, speed, and the number of train cars, The purpose of this study is to compare different data analysis strategies and the resulting parameter uncertainties. We present data of an ICE 4 train of the Deutsche Bahn AG, which was recorded with a commercial DAS system. We localize the train signal in the data either along the temporal or spatial direction, and a similar velocity standard deviation of less than 5 km/h for a train moving at 160 km/h is found for both analysis methods, The data can be further enhanced by peak finding as well as faster and more flexible neural network algorithms. Then, individual noise peaks due to bogie clusters become visible and individual train cars can be counted. From the time between bogie signals, the velocity can also be determined with a lower standard deviation of 0.8 km/h, The analysis methods presented here will help to establish routines for near real-time Train tracking and train integrity analysis. KW - Artificial neural networks KW - Distributed fiber optic sensing KW - Distributed acoustic sensing KW - Train tracking PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502872 DO - https://doi.org/10.3390/s20020450 VL - 20 IS - 2 SP - 450 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kowarik, Stefan A1 - Hicke, Konstantin A1 - Chruscicki, Sebastian A1 - Schukar, Marcus A1 - Breithaupt, Mathias A1 - Lämmerhirt, A. A1 - Pohl, P. A1 - Schubert, M. ED - Cranch, G. ED - Wang, A. ED - Digonnet, M. ED - Dragic, P. T1 - Train monitoring using distributed fiber optic acoustic sensing N2 - We use distributed acoustic sensing to determine the velocity of trains from train vibration patterns using artificial neural network and conventional algorithms. The velocity uncertainty depends on track conditions, train type and velocity. T2 - 27th International Conference on Optical Fiber Sensors (OFS) CY - Meeting was canceled DA - 08.06.2020 KW - Train monitoring KW - Distributed acoustic sensing KW - DAS KW - Distributed fiber optic sensing PY - 2020 SN - 978-1-55752-307-5 DO - https://doi.org/10.1364/OFS.2020.T3.25 SP - 1 EP - 4 PB - The Optical Society (Optical Society of America) CY - Washington D.C., USA AN - OPUS4-50758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schreier, Andy T1 - Distributed Brillouin sensor in polymer optical fibers utilizing BOFDA N2 - In this thesis, a distributed Brillouin sensor in perfluorinated polymer optical fibers utilizing BOFDA is presented. These commercially available polymer fibers offer beneficial characteristics for sensing applications such as higher break down strain up to 100 %, minimal bending radii below 2 mm, higher sensitivity to temperature and lower sensitivity to strain compared to their silica equivalent. The chosen wavelength of operation at 1319 nm corresponds to lower fiber propagation loss (< 37 dB/km) compared to other approaches at 1550 nm (150 - 250 dB/km). A 86 m PFGI-POF was successfully measured by BOFDA with spatial resolution of 3.4 m. The findings related to humidity influences can serve as a basis for future distributed humidity sensors not only limited to stimulated Brillouin backscattering. KW - BOFDA KW - Polymer optical fiber KW - POF KW - Brillouin sensor KW - Distributed sensor PY - 2020 SN - 978-3-7369-7146-2 SP - 1 EP - 116 PB - Cuvillier Verlag Göttingen CY - Göttingen AN - OPUS4-51041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Longobucco, M. A1 - Stajanca, Pavol A1 - Curilla, L. A1 - Buczynski, R. A1 - Bugar, I. T1 - Applicable ultrafast all-optical switching by soliton self-trapping in high index contrast dual-core fibre N2 - The improvement potential of ultrafast all-optical switching by soliton self-trapping, using all-solid dual-core fibres with high index contrast, was analyzed numerically. The study of the femtosecond nonlinear propagation was performed based on coupled generalised nonlinear Schrödinger equations considering three fibre architectures: homogeneous cladding all-solid, photonic crystal air-glass, and photonic crystal all-solid. The structural geometries of all three architectures were optimised in order to support high-contrast switching performance in the C-band, considering pulse widths at the 100 fs level. Comparing the three structural alternatives, the lowest switching energies at common excitation parameters (1700 nm and 70 fs pulses) were predicted for the homogeneous cladding dual-core structure. Further optimization of the excitation wavelength and pulse width resulted in lower switching energies and simultaneous improvement of the switching contrasts at the combination of 1500 nm, 75 fs pulses and a fibre length of 43 mm. The spectral aspect in this optimised case expresses a broadband and uniform switching character with a span of over 200 nm and a contrast exceeding 30 dB at more frequency channels. KW - Ultrafast nonlinear propagation KW - All-optical switching KW - Dispersion tailoring of optical fibres KW - Generalised nonlinear Schrödinger equation KW - Dual-core optical fibres KW - Nonlinear directional coupler KW - Soft-glass optical fibres PY - 2020 DO - https://doi.org/10.1088/1612-202X/ab63d8 VL - 17 IS - 2 SP - 025102 PB - Astro Ltd. AN - OPUS4-51042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hicke, Konstantin T1 - Infrastruktur- und Anlagenmonitoring mit verteilter faseroptischer akustischer Sensorik N2 - Anwendungsfelder von verteilter faseroptischer akustischer Sensorik (DAS) werden anhand von früheren, gegenwärtigen und zukünftigen Projekten an der BAM vorgestellt und die Leistungsfähigkeit von DAS demonstriert. Die dargestellten Anwendungen sind Monitoring von Rohrleitungen, von Unterseekabeln, von Zügen und Gleisen, von Brücken, von Strassen und Verkehr, von Erdbebenauswirkungen in urbanen Gebieten, von Bohrlöchern im Kontext Erdgasspeicher und für Exploration und Monitoring von Untergründen für Geothermie-Anwendungen. T2 - Sitzung des VDI/VDE-GMA FA 2.17 CY - Online meeting DA - 24.09.2020 KW - Verteilte faseroptische Sensorik KW - Verteilte faseroptische akustische Sensorik KW - DAS KW - Infrastrukturmonitoring KW - Zustandsüberwachung PY - 2020 AN - OPUS4-51304 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hicke, Konstantin T1 - Faseroptische akustische Sensorik zur Infrastrukturüberwachung N2 - Die Eigenschaften von optischen Fasern und faseroptischen Sensoren werden beschrieben und die Funktionsweise von verteilter faseroptischer akustischer Sensorik (DAS) erklärt. Die Verwendung von DAS für Zustandsmonitoring vor allem von Infrastruktur und Anlagen wird motiviert. Im Folgenden wird die Einsetzbarkeit von DAS für verschiedenste Anwendungen anhand einiger Beispiele (vergangene und gegenwärtige Projekte der BAM zum Thema DAS für Infrastrukturmonitoring) gezeigt. Diese betreffen das Monitoring von Rohrleitungen/Pipelines, von Energiekabeln, von Gleisanlagen und Zügen, von Brücken und von Strassen und Strassenverkehr. T2 - 419. Sitzung des AK Berlin der DGZfP CY - Online meeting DA - 15.09.2020 KW - Verteilte faseroptische Sensorik KW - DAS KW - Verteilte akustische Sensorik KW - Infrastrukturmonitoring KW - Zustandsüberwachung PY - 2020 AN - OPUS4-51249 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, T. A1 - Hicke, Konstantin A1 - Heidmann, G. A1 - Kölling, M. A1 - Menge, M. A1 - Vaterrodt, K. T1 - Integrierte lokale und verteilte faseroptische Sensorik zum flächende-ckenden Online-Monitoring von Kabelanlagen und Betriebsmitteln N2 - Faseroptische Sensorsysteme bieten heute die Möglichkeit des Online-Monitorings von sensiblen, für die Energieversorgung wichtigen Betriebsmitteln. Insbesondere Hochenergiekabel, wie diese sowohl im Offshore- als auch im Onshorebereich eingesetzt werden, sind prädestiniert für eine zustandsorientierte Überwachung. Gerade Hochspannungshochenergiekabel sind Betriebsmittel, die im Falle eines Ausfalls durch Schäden mit hohen Reparatur- und Folgekosten verbunden sind. Mit dem Einsatz von faseroptischen Sensoren sind mechanische Einflüsse wie Vibrationen z. B. verursacht durch Ankerfall, Temperaturhotspots oder auch Teilentladungsaktivitäten an dezidierten vulnerablen Stellen wie Kabelendverschlüssen oder –muffen über längere Kabelstrecken detektierbar. Der Einsatz von im Rahmen des Verbundprojekts Monalisa entwickelter faseroptischer Diagnosetechnik in Verbindung mit faseroptischen Sensoren wird hier aufgezeigt. T2 - VDE Fachtagung Hochspannungstechnik CY - Online-Meeting DA - 09.11.2020 KW - Verteilte faseroptische Sensorik KW - Energiekabel KW - Zustandsüberwachung KW - Infrastrukturmonitoring KW - Eingebettete Sensorik PY - 2020 SN - 978-3-8007-5353-6 SN - 0341-3934 VL - 2020 SP - 1 EP - 6 PB - VDE Verlag GmbH CY - Berlin AN - OPUS4-51559 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liehr, Sascha A1 - Münzenberger, Sven A1 - Borchardt, Christopher T1 - Long-distance fiber optic vibration sensing using convolutional neural networks as real-time denoisers N2 - A long distance range over tens of kilometers is a prerequisite for a wide range of distributed fiber optic vibration sensing applications. We significantly extend the attenuation-limited distance range by making use of the multidimensionality of distributed Rayleigh backscatter data: Using the wavelength-scanning coherent optical time domain reflectometry (WS-COTDR) technique, backscatter data is measured along the distance and optical frequency dimensions. In this work, we develop, train, and test deep convolutional neural networks (CNNs) for fast denoising of these two-dimensional backscattering results. The very compact and efficient CNN denoiser “DnOTDR” outperforms state-of-the-art image denoising algorithms for this task and enables denoising data rates of 1.2 GB/s in real time. We demonstrate that, using the CNN denoiser, the quantitative strain measurement with nm/m resolution can be conducted with up to 100 km distance without the use of backscatter-enhanced fibers or distributed Raman or Brillouin amplification. KW - Neural networks KW - Fiber optic KW - Vibration sensing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518694 DO - https://doi.org/10.1364/OE.402789 VL - 28 IS - 26 SP - 39325 AN - OPUS4-51869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Xin A1 - Krebber, Katerina T1 - Direct detection based φOTDR using the Kramers-Kronig receiver N2 - A Kramers-Kronig (KK) receiver is applied to a phase-sensitive optical time domain reflectometry based on direct detection. An imbalanced Mach-Zehnder interferometer with a 2× 2 coupler is used in sensing system to encode the phase information into optical intensity. The directly obtained signal is treated as the in-phase component, and the KK receiver provides the quadrature component by Hilbert transform of the obtained signal, so that the optical phase can be retrieved by IQ demodulation. The working principle is well explained, and the obtained phase variance is theoretically analyzed. The experiment demonstrates the functionality of the sensor and validates the theoretical analysis. KW - Kramers-Kronig detector KW - Distributed fiber sensing KW - Acoustic sensing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516803 UR - https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-28-24-37058&id=442839 DO - https://doi.org/10.1364/OE.405723 VL - 28 IS - 24 SP - 37058 EP - 37068 PB - Optical Society of America AN - OPUS4-51680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karapanagiotis, Christos T1 - Machine learning for strain and temperature discrimination in Brillouin distributed sensing N2 - Short presentation of the PhD project in machine learning based Brillouin distributed sensing. Machine learning can be used to enhance the performance of BOFDA and reduce considerably the measurement time. Apart from this, ML can also be used to extract more information from the Brillouin gain spectrum in order to render the temperature and strain discrimination possible T2 - PhD Day 2020 CY - Online meeting DA - 15.09.2020 KW - Fiber optics sensors KW - Machine learning PY - 2020 AN - OPUS4-51689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Perk, M. A1 - Großwig, S. A1 - Pfeiffer, T. A1 - Rembe, M. A1 - den Hartogh, M. A1 - Weege, S. A1 - Krebber, Katerina A1 - Dijk, H. L. T1 - Faseroptische Leckage-Ortung zum Nachweis von Undichtheiten in Bohrlochkomplettierungen N2 - Im Rahmen der Integritätsbewertung einer zementierten 13 3/8" Rohrtour einer Sole-Produktionsbohrung wurden erstmals 2018 zeitgleich faseroptische Temperaturmessungen (DTS, Distributed Temperature Sensing) und faseroptische Akustikmessungen (DAS, Distributed Acoustic Sensing) durchgeführt und ausgewertet. Dazu wurde die Bohrung zeitweise mit Stickstoff bespannt und wieder entlastet. Durch die Bespannung der Bohrung mit Stickstoff in Kombination mit dem Herunterdrücken des Stickstoff-Sole-Spiegels unter den Rohrschuh der 13 3/8" Rohrtour, konnte Stickstoff aus der Kavernenbohrung durch eine Leckagestelle in die Zementation übertreten und dort ein Stickstoff-Reservoir bilden. Bei der anschließenden Stickstoffentlastung erfolgte der Wiederanstieg des Stickstoff-Sole-Spiegels deutlich schneller als die Entleerung des in der Zementation angelegten Stickstoff-Reservoirs. Der dadurch entstandene Druckgradient hatte zur Folge, dass an der Leckagestelle der Stickstoff aus der Zementation in die aufsteigende Sole in Form von Bläschen eingetreten und dort aufgestiegen ist. Dieser Übertritt der Stickstoffbläschen war sowohl mit der Entstehung eines akustischen Geräusches als auch mit einer Temperaturänderung verbunden, welche mit der DAS- und DTS-Technik nachgewiesen werden konnten. Um die Ergebnisse bzgl. ihres physikalischen Hintergrundes zu überprüfen und basierend auf einer mathematisch-physikalischen Grundlage eine nachvollziehbare Interpretation der Messergebnisse zu ermöglichen, wurde ein numerisches Simulationsmodell der gekoppelten Festkörper- und Druckakustik für die Bohrung aufgebaut. Das Modell berücksichtigt die Geologie und die Komplettierung der Kavernenbohrung. Nach Identifikation der Schallquelle konnte mit dem Modell die Ausbreitung des Schalldrucks in der Bohrung erfolgreich nachgestellt werden. Um dieses Verfahren einer simultanen DAS-DTS-Messung in eine feldtaugliche Version zu überführen, läuft seit November 2019 ein breit angelegtes und vom BMWi gefördertes ZIM-Kooperationsprojekt zwischen der Bundesanstalt für Materialforschung und -prüfung (BAM), der IAB Weimar gGmbH, der GESO GmbH & Co. Projekt KG, der DEEP.KBB GmbH sowie der Rembe Consulting PartG mbB. Durch die Messdatenkopplung und den Wegfall der bewegungsbedingten Nachteile einer Messsonde werden präzisere Ergebnisse zur Bewertung der Bohrlochintegrität erwartet. Das Ziel ist, mit Hilfe der noch zu entwickelnden einfachen und robusten Technik, quantitative Aussagen über die Zustände im verrohrten Bohrloch direkt am Messplatz treffen zu können, wobei ein Fokus auf Detektierung und Quantifizierung von Kleinstleckagen liegt. Im Rahmen dieses Forschungsprojektes kommt neben numerischen Berechnungen auch ein geplanter Bohrlochsimulator zum Einsatz, mit dem umfangreiche Untersuchungen zur Ermittlung der Grenzparameter und Detektionsschwellen durchgeführt werden sollen. T2 - DGMK/ÖGEW-Frühjahrstagung 2020 CY - Celle, Germany DA - 15.​04.​2020 KW - Kavernenspeicher KW - Verteilte faseroptische akustische Sensorik KW - Wasserstoffspeicher PY - 2020 UR - https://dgmk.egnyte.com/fl/k3KJMqKMSb#folder-link/ SN - 978-3-947716-04-3 SN - 1433-9013 N1 - Die DGMK/ÖGEW Frühjahrstagung 2020 wurde abgesagt, der Tagungsband aber trotzdem veröffentlicht. - The DGMK/ÖGEW Frühjahrstagung 2020 was cancelled, the proceedings were published nevertheless. VL - DGMK-Tagungsbericht 2020-1 SP - 106 EP - 121 PB - DGMK - Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle CY - Hamburg AN - OPUS4-52159 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hicke, Konstantin T1 - Fiber optic distributed acoustic and vibration sensing for condition monitoring of infrastructure and hazard monitoring applications N2 - Fiber optic Distributed Acoustic Sensing (DAS) is an emerging method for many different monitoring purposes, enabling a spatially and temporally resolved collection of acoustic and vibration information over many kilometers. DAS, thus being a "dynamic" sensing technique, allows for online condition monitoring and the detection and localization of threats or hazards in real time via characteristic acoustic/vibration states and their changes or via occurring anomalous signals, respectively. At BAM, we have employed this technology for a number of different applications of monitoring of large infrastructures, e.g., bridges, pipelines, submarine power cables or railway tracks. Currently, we are investigating the use of DAS for further innovative uses, which aim at facilitating the energy transition, enabling "smart" infrastructure and providing the basis for comprehensive hazard monitoring and warning systems, respectively. Our research fields include fiber optic borehole monitoring in the context of hydrogen storage caverns, traffic and road monitoring, using DAS for earthquake monitoring in urban areas for disaster management and long-term monitoring of large-scale subsidence caused by mining activities. Another new topic is structural health monitoring in concrete structures in the framework of the FSP Security. In this talk, we will first briefly present the basics and capabilities of DAS. Then, we will portray our previous and current works related to this technology and show some attractive results. Finally, we will discuss our upcoming projects on exciting new applications of DAS. T2 - Abteilungsseminar 8. CY - Online meeting DA - 24.02.2021 KW - Distributed fiber optic sensing KW - Distributed acoustic sensing KW - DAS KW - Infrastructure monitoring KW - Hazard monitoring PY - 2021 AN - OPUS4-52160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander A1 - Jansen, R. A1 - Cheng, L. A1 - Chruscicki, Sebastian T1 - Ortsaufgelöste Zustandsüberwachung von Brückenbauwerken mittels faseroptischer Sensoren N2 - In der vorliegenden Studie wurde der Einfluss der statischen Verkehrsbelastung auf die geringen Durchbiegungseffekte in der Betonkonstruktion einer bestehenden Brücke mittels ortsauflösender faseroptischer Sensoren untersucht. Dabei tragen die Ergebnisse der an der Amsterdamer Brücke 705 durchgeführten Belastungstests wesentlich zum Verständnis des Strukturverhaltens bei. Das Konzept der statischen Belastung basierte auf dem Einsatz von zwei 36-Tonnen-Lastwagen, die an mehreren vorbestimmten Stellen auf der Brücke anhielten. Die auf diese Weise aufgebrachte Last führte zu ortsabhängigen kleinen Durchbiegungseffekten, die als lokale Längsdehnung der an der Unterseite der Brücke integrierten Sensorfaser aufgezeichnet wurden. Die reflektometrischen Messungen beruhten auf dem Prinzip genannt TW-COTDR (Tunable Wavelength Coherent Optical Time Domain Reflectometry). Die Messgenauigkeit lag im Bereich von 0,5 µm/m. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Frequenzbereichsreflektometrie KW - Ortsaufgelöste Fasersensorik KW - Rayleigh-Streuung PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526752 UR - https://jahrestagung.dgzfp.de/Programm#P73 SP - 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-52675 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Xin A1 - Krebber, Katerina T1 - Characterizing detection noise in phase-sensitive optical time domain reflectometry N2 - Phase-sensitive optical time domain reflectometry (φOTDR) is an excellent distributed fiber sensing technique and has been applied in various areas. Its noise is however never been comprehensively studied to the best of our knowledge. The different detection noise sources in such a sensing system are thoroughly investigated. The impacts of thermal noise, shot noise and the beat between signal and the amplified spontaneous emission from a pre-amplifier have been theoretically and experimentally demonstrated. Due to the random nature of the φOTDR signal, the detection noise demonstrates distinct features at different fiber positions in a single measurement. The theoretical analysis and the experimental result explicitly affirm most of the fiber sections, and the difference at some positions may be explained by ambient noise. KW - Noise analysis KW - Acoustic sensing KW - Distributed fiber sensing PY - 2021 DO - https://doi.org/https://doi.org/10.1364/OE.424410 SN - 1094-4087 VL - 29 IS - 12 SP - 18791 EP - 18806 PB - Optical Society of America CY - Washington, DC AN - OPUS4-52757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander T1 - Faseroptische Strahlungssensoren für kerntechnische Anwendungen N2 - Faseroptische Strahlungssensoren ermöglichen ein räumlich verteiltes Online-Monitoring entlang der gesamten Sensorfaser. Verschiedene Messverfahren nutzen überwiegend zwei durch die ionisierende Strahlung in optischen Fasern induzierte Effekte, d. h. die Erhöhung der optischen Dämpfung und die damit verbundene Veränderung des Brechungsindex des Fasermaterials. Die Sensitivität der Strahlungssensoren lässt sich je nach Anwendung durch die Wahl der Dotierstoffe im Glasfaserkern sowie der Art des Polymermaterials des POF-Sensors beeinflussen. Ferner ist die Sensitivität auch durch den Betrieb bei geeigneten Wellenlängen einstellbar. Bei dem sensorischen Einsatz von faseroptischen Sensoren muss auch die vorhandene Ausheilung des Sensors sowie die Abhängigkeit der erfassten Messsignale von der Temperatur und der Dosisleistung berücksichtigt werden. T2 - 2. Tage der Standortauswahl CY - Online meeting DA - 11.02.2021 KW - Faseroptischer Strahlungssensor KW - Ortsauflösende Fasersensorik KW - Strahlungsinduzierte optische Dämpfung PY - 2021 AN - OPUS4-52112 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander T1 - Faseroptische Strahlungssensoren für kerntechnische Anwendungen N2 - Faseroptische Strahlungssensoren ermöglichen ein räumlich verteiltes Online-Monitoring entlang der gesamten Sensorfaser. Verschiedene Messverfahren nutzen überwiegend zwei durch die ionisierende Strahlung in optischen Fasern induzierte Effekte, d. h. die Erhöhung der optischen Dämpfung und die damit verbundene Veränderung des Brechungsindex des Fasermaterials. Die Sensitivität der Strahlungssensoren lässt sich je nach Anwendung durch die Wahl der Dotierstoffe im Glasfaserkern sowie der Art des Polymermaterials des POF-Sensors beeinflussen. Ferner ist die Sensitivität auch durch den Betrieb bei geeigneten Wellenlängen einstellbar. Bei dem sensorischen Einsatz von faseroptischen Sensoren muss auch die vorhandene Ausheilung des Sensors sowie die Abhängigkeit der erfassten Messsignale von der Temperatur und der Dosisleistung berücksichtigt werden. T2 - 2. Tage der Standortauswahl CY - Online meeting DA - 11.02.2021 KW - Faseroptischer Strahlungssensor KW - Ortsauflösende Fasersensorik KW - Strahlungsinduzierte optische Dämpfung PY - 2021 AN - OPUS4-52113 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander T1 - Ortsaufgelöste Zustandsüberwachung von Brückenbauwerken mittels faseroptischer Sensoren N2 - In der vorliegenden Studie wurde der Einfluss der statischen Verkehrsbelastung auf die geringen Durchbiegungseffekte in der Betonkonstruktion einer bestehenden Brücke mittels ortsauflösender faseroptischer Sensoren untersucht. Dabei tragen die Ergebnisse der an der Amsterdamer Brücke 705 durchgeführten Belastungstests wesentlich zum Verständnis des Strukturverhaltens bei. Das Konzept der statischen Belastung basierte auf dem Einsatz von zwei 36-Tonnen-Lastwagen, die an mehreren vorbestimmten Stellen auf der Brücke anhielten. Die auf diese Weise aufgebrachte Last führte zu ortsabhängigen kleinen Durchbiegungseffekten, die als lokale Längsdehnung der an der Unterseite der Brücke integrierten Sensorfaser aufgezeichnet wurden. Die reflektometrischen Messungen beruhten auf dem Prinzip genannt TW-COTDR (Tunable Wavelength Coherent Optical Time Domain Reflectometry). Die Messgenauigkeit lag im Bereich von 0,5 µm/m. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Ortsaufgelöste Fasersensorik KW - Frequenzbereichsreflektometrie KW - Rayleigh-Streuung PY - 2021 UR - https://jahrestagung.dgzfp.de/Programm#P73 AN - OPUS4-52632 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -