TY - CONF A1 - Markötter, Henning A1 - Dayani, Shahabeddin A1 - Dong, K. A1 - Manke, I. T1 - Tomographic Imaging of Battery Materials at BAMline (Bessy II) N2 - Different scientific questions in battery research can be addressed by synchrotron X-Ray imaging. The BAMline at the 3rd generation synchrotron X-ray source BESSY II has been supporting researchers in a wide range of research areas for over 20 years. Being a non-destructive characterization method, synchrotron X-ray imaging, in particular tomography (SXCT), plays a particularly important role in structural characterization. This poster gives few examples from battery research conducted at BAMline. As a non-destructive characterization method, synchrotron X-ray imaging, especially tomography with hard X-Rays, plays an important role in structural 3D characterization. The upgraded dual multilayer monochromator offers flexibility by providing different energy spectra to optimize flux and energy resolution as desired. The upgraded detector (in white beam configuration, equipped with an sCMOS camera) allows the higher flux to be exploited with reduced readout times. Shorter tomographic acquisition times in the range of seconds are now possible. Hence, in-situ and operando examinations are routinely available. An integrated slip ring allows continuous rotation of the sample stage for ease of wiring. The pink beam option allows tomographic observation of processes occurring in the time domain of a few seconds with a resolution down to ~ 1 µm. The in-situ capabilities include electrochemical cycling, mechanical load (tension and compression) and heating up to 1100°C. Ergebnisse The method, equipment, data handling pipeline as well as various examples from battery research conducted at BAMline are presented and discussed. In particular, the 3D morphology and distribution of deposited Li within the widely used Celgard® 2325 polyolefin separator are visualized in situ, thus promoting the understanding of the short-circuiting process of Li metal batteries. In addition, we also visualized and quantified the spatial distribution of Li depositions inside a porous carbon host to unravel the deposition behavior that can hardly be probed by surface imaging techniques. The Li electrodeposition behavior found here could help to promote the understanding and development of surface modifications related to Li anodes, separators as well as novel 3D geometry electrode designs for accommodation of Li depositions and alleviation of volumetric changes. T2 - Batterieforum Deutschland CY - Berlin, Germany DA - 18.01.2023 KW - BAMline KW - X-ray tomography KW - Li-ion battery PY - 2023 AN - OPUS4-56909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dayani, Shahabeddin A1 - Markötter, Henning A1 - Schmidt, Anita A1 - Widjaja, Martinus Putra A1 - Bruno, Giovanni T1 - Multi-level X-ray computed tomography (XCT) investigations of commercial lithium-ion batteries from cell to particle level JF - Journal of Energy Storage N2 - Adopting X-ray computed tomography (XCT) for ex-situ characterization of battery materials has gained interest in the past decade. The main goal of this paper is to demonstrate the effectiveness of several X-ray computer tomography techniques to study commercial batteries. General guidelines are provided to select the most suitable imaging equipment and parameters for investigations of lithium-ion batteries, spanning the length scales from cell to electrode, down to particle level. Relevantly, such parameters would also be suitable for operando experiments. Safety mechanisms and manufacturing inconsistencies at cell level as well as defects and inhomogeneity in cathode and anode is illustrated and quantified. Furthermore, relation of beam energy and sample-detector-distance on contrast retrieved from attenuation and phase shift is inspected using Synchrotron XCT. KW - Non-destructive testing KW - X-ray computed tomography KW - Synchrotron X-ray computed tomography KW - Lithium-ion battery PY - 2023 DO - https://doi.org/10.1016/j.est.2023.107453 SN - 2352-152X VL - 66 SP - 107453 PB - Elsevier Ltd. AN - OPUS4-57512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, Henning A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Evsevleev, Sergei A1 - Arlt, T. A1 - Ulbricht, Alexander A1 - Dayani, Shahabeddin A1 - Bruno, Giovanni T1 - A Review of X-Ray Imaging at the BAMline (BESSY II) JF - Advanced Engineering Materials N2 - The hard X-ray beamline BAMline at BESSY II (Berlin, Germany) has now been in service for 20 years. Several improvements have been implemented in this time, and this review provides an overview of the imaging methods available at the BAMline. Besides classic full-field synchrotron X-ray computed tomography (SXCT), also absorption edge CT, synchrotron X-ray refraction radiography (SXRR), and synchrotron X-ray refraction tomography (SXRCT) are used for imaging. Moreover, virtually any of those techniques are currently coupled in situ or operando with ancillary equipment such as load rigs, furnaces, or potentiostats. Each of the available techniques is explained and both the current and the potential usage are described with corresponding examples. The potential use is manifold, the examples cover organic materials, composite materials, energy-related materials, biological samples, and materials related to additive manufacturing. The article includes published examples as well as some unpublished applications. KW - Material science KW - Radiography KW - Refraction KW - Tomography KW - X-ray imaging PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572417 DO - https://doi.org/10.1002/adem.202201034 SN - 1438-1656 SP - 1 EP - 22 PB - Wiley VHC-Verlag AN - OPUS4-57241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dayani, Shahabeddin A1 - Markoetter, Henning A1 - Bruno, Giovanni T1 - Quantification of Deep Discharge Mechanism in a Li-Ion Battery by operando X-ray Computed Tomography N2 - Lithium-ion batteries connected in series are prone to an electrical abuse called over discharge. We present a comprehensive investigation of the over discharge abuse mechanism in lithium-ion batteries using operando non-destructive imaging. The study focuses on understanding the behavior of copper dissolution and deposition during over discharge, which can lead to irreversible capacity loss and internal short circuits. By utilizing synchrotron X-ray computed tomography (SXCT), the concentration of dissolved and deposited copper per surface area is quantified as a function of depth of discharge (DoD). T2 - HZB user meeting CY - Berlin, Germany DA - 22.06.2023 KW - Non-destructive testing PY - 2023 AN - OPUS4-57793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dayani, Shahabeddin A1 - Markötter, Henning A1 - Schmidt, Anita A1 - Bruno, Giovanni T1 - 4D imaging of abuse mechanisms in Li-ion batteries N2 - Higher energy density materials are being pushed by the research community to make lithium ion batteries a better competitor of chemical fossil fuels for transport applications. This increases potential risk of lithium ion batteries and therefore safety investigations are highly important for application purposes. Operando Computer Tomography provides a non-destructive investigation method of different abuse mechanisms. Application of X-ray computed tomography (XCT) for studying lithium-ion batteries has gained interest among the research community especially in the past decade [1]. This technique is widely used for ex-situ samples to measure porosity and tortuosity [2], particle size and volume distribution [3] in the graphite anode as well as different cathode materials such as LiCoOx and NiMnCoOx. [4]. In situ measurements of commercial batteries are also often carried out to detect defects induced in a cell by a safety abuse test or manufacturing process [5]. Operando CT of large cells (for example 18650 form factor) is conducted at synchrotron facilities with high flux of high energy photons, however at a cost of details due to the large field of view [6]. Methodik Thanks to their high brilliance, synchrotron beam facilitates us to do a full Computed Tomography in a short time. This enables us to measure batteries while being cycled with a reasonable time resolution to record morphological changes. In this poster we illustrate how one can utilize this ability to investigate abuse mechanisms on an actual commercially available lithium ion battery as well as a home made micro cell. Ergebnisse In this work, lab-based and synchrotron X-ray computed tomography is applied to commercial Li-ion batteries. It is shown how to find most suitable imaging settings to study available lithium-ion batteries on different size scales, from cell level to particle level. We also demonstrate how to optimize contrast as well as both temporal and spatial resolutions to study in-situ and operando processes in a commercial battery using attenuation and phase contrast SXCT. Manufacturing defects and inconsistencies on cell level as well as the electrode and microstructure on material level are shown in our study. Moreover, some abuse conditions are imaged in operando in a commercially available li-ion battery. Diskussion This work has demonstrated various imaging settings using lab and synchrotron based X-ray computed tomography to study in-situ as well as under operando condition, some abuse mechanisms in commercial lithium-ion batteries from cell level to electrode and particle level. T2 - Batterie Forum Deutschland CY - Berlin, Germany DA - 18.01.2023 KW - X-ray Computed tomography KW - Li ion Battery KW - Imaging PY - 2023 AN - OPUS4-57156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dayani, Shahabeddin A1 - Markötter, Henning A1 - Krug von Nidda, Jonas A1 - Schmidt, Anita A1 - Bruno, Giovanni T1 - Quantification of the Deep Discharge Induced Asymmetric Copper Deposition in Lithium‐Ion Cells by Operando Synchrotron X‐Ray Tomography JF - Advanced Materials Technologies N2 - AbstractLithium‐ion cells connected in series are prone to an electrical safety risk called overdischarge. This paper presents a comprehensive investigation of the overdischarge phenomenon in lithium‐ion cells using operando nondestructive imaging. The study focuses on understanding the behavior of copper dissolution and deposition during overdischarge, which can lead to irreversible capacity loss and internal short‐circuits. By utilizing synchrotron X‐ray computed tomography (SXCT), the concentration of dissolved and deposited copper per surface area is quantified as a function of depth of discharge, confirming previous findings. The results also highlight for the first time a nonuniform distribution pattern for copper deposition on the cathode. This research provides insights for safer battery cell design. KW - Lithium Ion Batteries KW - Deep Discharge KW - Computer Tomography KW - Copper Deposition KW - Litium Ion Cells PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592717 DO - https://doi.org/10.1002/admt.202301246 SP - 1 EP - 7 PB - Wiley AN - OPUS4-59271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -