TY - CONF A1 - Epple, Niklas T1 - Monitoring of bridges with coda waves - first steps towards an imaging strategy N2 - Monitoring of concrete structures is of utmost importance in maintenance and preservation of infrastructure. As a part of the DFG research group CoDA (Concrete Damage Assessment by Coda Waves), the works within this PhD project aim for identification of damage sensitive parameters extracted from ultrasonic measurements obtained with embedded sensors, the determination of environmental (reversible) influences on the signal and the localisation of damaged areas. The main technique used for the detection of changes in the monitored material is the so-called Coda Wave Interferometry (CWI). It uses the later part of the ultrasonic recording for the detection of small changes in the sensed area and the calculation of a relative velocity change. Using this technique we can show that we are able to detect changes in concrete temperature with ultrasound measurements. This enables temperature correction for ultrasound monitoring with embedded sensors. The crucial point for imaging and localisation with coda waves is the calculation of the so-called sensitivity kernels. We propose the application of numerical wave simulations for the kernel calculations instead of the commonly used diffusivity equation. Using finite-difference wave modelling code from our DFG project partners we are able to calculate those Kernels and first results are shown in this presentation. The major task for the second year will be the development and implementation of the inversion algorithm as well as the preparation of validation experiments. T2 - Doktorandenseminar BAM Abt. 8 CY - Berlin, Germany DA - 30.03.2020 KW - Ultrasound KW - Non-destructive testing KW - Numerical modelling KW - Structural health monitoring PY - 2020 AN - OPUS4-50624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Advances in ultrasonic testing and monitoring of concrete structures N2 - Recent years have seen extended use of ultrasonic techniques for concrete infrastructure assessement. They are applied for quality assurance and condition assessement at bridges, power plants, dams and other important objects. However, there are still a couple of significant limitations. They include, but are not limited to depth of penetration, imaging complex structures or early stage detections of distributed damage. The talk will give information on recent research in this area. Specifically, the application of the unique deep penetration system LAUS is shown. Ultrasonic monitoring using embedded transducers to check for subtle and sudden changes in the material is introduced as well. Comments on initiatives for validation, standardization and certification will be given. T2 - 341e Conférence CERES CY - Online meeting DA - 26.10.2020 KW - Concrete KW - Ultrasound KW - Imaging KW - Monitoring PY - 2020 AN - OPUS4-51463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin T1 - Entwicklung eines luftgekoppelten Ultraschall-Echo-Prüfverfahrens mittels fluidischer Anregung N2 - In vielen technischen Bereichen werden Ultraschallverfahren zur zerstörungsfreien Werkstoffprüfung (ZfP) eingesetzt um auf Basis der Signalstärke und der Laufzeit Einbauteile und Beschädigungen zu orten. Luftgekoppelter Ultraschall spielt bisher in kommerziellen Anwendungen vor Allem im Bauwesen eine untergeordnete Rolle, da die Differenz der akustischen Impedanzen von Luft und Festkörpern immense Verluste beim Übergang des Schallsignals hervorruft. Im Rahmen des Promotionsvorhabens soll die Eignung eines neuartigen Anregungsprinzip untersucht werden, mit dem ein Großteil dieser Verluste vermieden werden soll. Anstelle eines Festkörpers soll mit Hilfe einer fluidischen Düse Druckluft zur Signalerzeugung eingesetzt werden. Die Impedanzverluste zwischen Aktuatormembran und Umgebungsluft entfallen daher. Die gezielte Schallerzeugung durch einen pulsierenden Freistrahl ist weitgehend unerforscht. Es ist daher notwendig, den so erzeugten Schallpuls in der Interaktion mit dem transienten Strömungsfeld zu untersuchen. Das kompressible Medium Luft und die geringen räumlichen Dimensionen einer hochfrequenten Pulsdüse werfen darüber hinaus einige Herausforderungen hinsichtlich der eingesetzten Messtechnik auf. Hier sollen geeignete Verfahren weiterentwickelt und validiert werden, um die Eignung des fluidisch erzeugten Pulses zu überprüfen. In diesem Vortrag werden erste Messungen an einem fluidischen Schalter mit denen an einem kommerziellen Luftultraschallprüfkopf verglichen. T2 - Doktorandenseminar BAM Abt. 8 CY - Berlin, Germany DA - 17.02.2020 KW - ZfP KW - Ultraschall KW - NDT KW - Ultrasound KW - Air-coupled KW - Non-Contact KW - Luftgekoppelt KW - Kontaktlos PY - 2020 AN - OPUS4-51120 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schweitzer, T. A1 - Hörmann, M. A1 - Bühling, Benjamin A1 - Bobusch, B. T1 - Switching Action of a Bistable Fluidic Amplifier for Ultrasonic Testing N2 - Air-coupled ultrasonic testing is widely used in the industry for the non-destructive testing of compound materials. It provides a fast and efficient way to inspect large concrete civil infrastructures for damage that might lead to catastrophic failure. Due to the large penetration depths required for concrete structures, the use of traditional piezoelectric transducer requires high power electric systems. In this study, a novel fluidic transducer based on a bistable fluidic amplifier is investigated. Previous experiments have shown that the switching action of the device produces a high-power broadband ultrasonic signal. This study will provide further insight into the switching behaviour of the fluidic switch. Therefore, parametric CFD simulations based on compressible supersonic RANS simulations were performed, varying the inlet pressure and velocity profiles for the control flow. Switching times are analyzed with different methods, and it was found that These are mostly independent of the slope of the velocity profile at the control port. Furthermore, it was found that an inversely proportional relationship exists between flow velocity in the throat and the switching time. The results agree with the theoretical background established by experimental studies that can be found in the literature. KW - Ultrasound KW - Non-destructive testing KW - Fluidic devices KW - Computational fluid dynamics KW - Concrete KW - Bistable fluidic amplifier PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525115 DO - https://doi.org/10.3390/fluids6050171 SN - 2311-5521 VL - 6 IS - 5 SP - 171 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Oesch, T. A1 - Mielentz, Frank A1 - Meinel, Dietmar A1 - Spyridis, P. T1 - Non-Destructive Multi-Method Assessment of Steel Fiber Orientation in Concrete N2 - Integration of fiber reinforcement in high-performance cementitious materials has become widely applied in many fields of construction. One of the most investigated advantages of steel Fiber reinforced concrete (SFRC) is the deceleration of crack growth and hence its improved sustainability. Additional benefits are associated with its structural properties, as fibers can significantly increase the ductility and the tensile strength of concrete. In some applications it is even possible to entirely replace the conventional reinforcement, leading to significant logistical and environmental benefits. Fiber reinforcement can, however, have critical disadvantages and even hinder the Performance of concrete, since it can induce an anisotropic material behavior of the mixture if the fibers are not appropriately oriented. For a safe use of SFRC in the future, reliable non-destructive testing (NDT) methods need to be identified to assess the fibers’ orientation in hardened concrete. In this study, ultrasonic material testing, electrical impedance testing, and X-ray computed tomography have been investigated for this purpose using specially produced samples with biased or random Fiber orientations. We demonstrate the capabilities of each of these NDT techniques for fiber orientation measurements and draw conclusions based on these results about the most promising areas for future research and development. KW - Spectral induced polarization KW - Steel fiber reiniforced concrete KW - Fiber orientation KW - Non-destructive testing KW - Micro-computed tomography KW - Ultrasound PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543520 DO - https://doi.org/10.3390/app12020697 VL - 12 IS - 2 SP - 1 EP - 14 PB - MDPI CY - Basel Switzerland AN - OPUS4-54352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas T1 - Coda Measurements for monitoring infrastructure durability N2 - Presentation about the advancements in the DFG Research unit CoDA, with focus on Coda Wave Monitoring of Infrastructure. With some case studies, possibilities and challenges are discussed on the way towards infrastructural monitoring with CWI. T2 - PhD-Seminar Department 8.2 CY - Berlin, Germany DA - 07.09.2023 KW - CWI KW - Embedded Sensors KW - Ultrasound KW - Bridge Monitoring PY - 2023 AN - OPUS4-58196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Imani, A. A1 - Niederleithinger, Ernst T1 - Nondestructive Evaluation of Bridges without Structural Plans for Load Rating Purposes N2 - According to the NBI database, more than 21,000 in-service U.S. bridges lack sufficient structural documentation necessary for analytical load rating. Among these are a significant proportion of older prestressed concrete bridges. Given the lack of documentation on the reinforcing layout, such structures cannot be load rated analytically and are often subject to engineering judgement as the basis for rating. Otherwise, the typical approach for load rating such bridges is to conduct costly proof load testing and destructive probing together with making conservative assumptions. Therefore, any improvement to current practices will benefit DOTs and taxpayers alike. Accurately reconstructed 3D images of the girders to reflect the internal reinforcement could mitigate the need for costly, if not impractical, destructive testing and proof load testing, and help reduce dependency on conservative assumptions. This study examines a comprehensive NDE approach using ultrasonic tomography and GPR to aid in gathering structural information for load rating purposes. Different types of AASHTO and hollow core girders were tested. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Radar KW - Bridges KW - Load rating PY - 2022 AN - OPUS4-56356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Schönsee, Eric A1 - Schweitzer, Thorge A1 - Strangfeld, Christoph T1 - Acoustic and flow data of fluidic and piezoelectric ultrasonic transducers N2 - This data article presents characteristic acoustic and flow data of a fluidic ultrasonic transducer as well as acoustic data of a commercial piezoelectric ultrasonic transducer used in non-destructive testing for civil engineering. The flow data has been acquired using hot-wire anemometry and a Pitot tube. The three-dimensional acoustic data of both devices has been acquired using a calibrated microphone. The distribution of characteristic acoustic properties of both transducers are extracted and given in addition to the raw data. The data presented in the article will be a valuable source for reference and validation, both for developing fluidic and alternate ultrasound generation technologies. Furthermore, they will give additional insight into the acoustic-flow interaction phenomena of high speed switching devices. This article is accompanying the paper Experimental Analysis of the Acoustic Field of an Ultrasonic Pulse Induced by a Fluidic Switch (Bühling et al., 2021) published in The Journal of the Acoustical Society of America, where the data is interpreted in detail and the rationale for characteristic sound properties of the fluidic transducer are given. KW - Ultrasound KW - Non-destructive testing KW - Air-coupled ultrasound KW - Fluidics KW - Acoustic-flow interaction KW - Piezoelectric transducer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531308 DO - https://doi.org/10.1016/j.dib.2021.107280 VL - 38 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin T1 - Low-frequency ultrasound data (pulse-echo technique) with shear horizontal and longitudinal waves on the step-shaped concrete specimen “Pk050” N2 - This dataset contains raw data acquired in ultrasound measurements on a reference specimen made of concrete at Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin (Germany). The internal specimen identifier is “Pk050”. The measurements were conducted using the pulse-echo method. The upper surface of the specimen was defined as measuring area. The aim of the measurements is to determine the geometrical dimensions (thickness) of the specimen “Pk050”. In addition to this, a dataset of a second specimen with identifier “Pk266” has been acquired. Pk266 has the same geometrical dimensions and concrete recipe as Pk050, but contains tendons [Reference: https://doi.org/10.7910/DVN/NUU0WZ]. KW - Ultrasound KW - Pulse echo method KW - Synthetic Aperture Focusing Technique KW - Validation KW - Elastic wave PY - 2023 DO - https://doi.org/10.7910/DVN/9EID5D PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-57231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - Adaption of fluidic devices for SHM of hydrogen tanks N2 - Frequency analysis of the tank during every filling Passive actuator is integrated inside filling nozzle/ pressure vessel Frequency from 5 kHz to 150 kHz Frequency sweep (Chirp) can be performed Works with every fluid: air, hydrogen, oxygen, argon, water. T2 - H2Safety Kompetenzzentrum CY - BAM Berlin, Germany DA - 07.07.2021 KW - Fluidic device KW - Structural health monitoring KW - Hydrogen tank KW - Ultrasound PY - 2021 AN - OPUS4-52930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin T1 - Low-frequency ultrasound data (pulse-echo technique) with shear horizontal and longitudinal waves on the step-shaped concrete specimen “Pk266” with tendons N2 - This dataset contains raw data acquired in ultrasound measurements on a reference specimen made of concrete at Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin (Germany). The internal specimen identifier is “Pk266”. The measurements were conducted using the pulse-echo method. The upper surface of the specimen was defined as measuring area. The aim of the measurements is to determine both the geometrical dimensions (thickness) and the position of tendons to the measuring area. In addition to this, a second dataset of a second specimen with identifier is existing named “Pk050” has been acquired. Pk050 has the same geometrical dimensions and concrete recipe as Pk266 recipe but does not contain tendons [Reference: https://doi.org/10.7910/DVN/9EID5D]. KW - Ultrasound KW - Pulse echo method KW - Synthetic Aperture Focusing Technique KW - Validation KW - Elastic wave PY - 2023 DO - https://doi.org/10.7910/DVN/NUU0WZ PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-57232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin T1 - OsciCheck - Fluidic Generation of Ultrasound N2 - The OsciCheck project is presented. The working principle and sound field of a fluidic switch is described. Future goals of the project are presented. T2 - CoDA Summer School 2020 CY - Berchtesgaden, Germany DA - 28.09.2020 KW - Fluidic Switch KW - Air-coupled ultrasound KW - Ultrasound KW - Non-destructive testing KW - Fluidischer Schalter KW - Luftgekoppelter Ultraschall KW - Ultraschall KW - Zerstörungsfreie Prüfung PY - 2020 AN - OPUS4-51380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bühling, Benjamin T1 - Acoustic and flow data of an ultrasonic fluidic switch and an ultrasonic piezoelectric transducer N2 - This dataset contains acoustic and flow data of an ultrasonic fluidic switch, which have been acquired using a microphone, a hot-wire anemometer and a pitot tube. Furthermore, acoustic data of a commercial piezoelectric transducer is provided. KW - Fluidics KW - Air-coupled ultrasound KW - Ultrasound KW - Non-destructive testing KW - Acoustic-flow interaction KW - Piezoelectric transducer PY - 2020 DO - https://doi.org/10.7910/DVN/OQYPC9 PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-52392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Schweitzer, T. A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Influence of operating conditions on the fluidic ultrasonic transducer signal N2 - While contact and immersion ultrasonic testing are established methods in non-destructive testing (NDT), generating high power air-coupled ultrasound remains a challenging task. Solutions often involve setups that are restricted to lab environments. When field measurements are required, such as in NDT for civil engineering, a handy, robust and safe transducer is needed. For this purpose, an ultrasonic transducer based on a fluidic switch has been developed. A sonic air flow inside the device is switched rapidly so that an ultrasonic signal is generated. Both theory and previous flow simulations suggest that the control flow pressure ramp has only little influence on the switching time of the device. This publication gives an overview over the operating principle of the fluidic ultrasonic transducer and investigates the influence of control tube length and pulsing repetition rate on the ultrasonic pressure amplitude. High repetition rates are found to reduce the signal amplitude, whereas long tubing has only little negative influence on the amplitude while improving signal quality. T2 - 47. Jahrestagung für Akustik (DAGA 2021) CY - Vienna, Austria DA - 15.08.2021 KW - Ultrasound KW - Non-destructive testing KW - Fluidic devices PY - 2021 UR - https://pub.dega-akustik.de/DAGA_2021 SN - 978-3-939296-18-8 SP - 48 EP - 51 CY - Berlin, Germany AN - OPUS4-53493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin T1 - Influence of Operating Conditions on the Fluidic Ultrasonic Transducer Signal N2 - Motivation: • Air-coupled ultrasound (AC-US) enables faster measurements in non-destructive testing for civil engineering • Current state of the art: piezo and capacitive transducers are mostly used for AC US • Currently >99.9% sound intensity loss due to impedance mismatches Innovation: • Fluidic transducers generate US (30-60 kHz) by rapid switching of a supersonic jet • Fluidic transducers rely on external components such as solenoid valves and tubing --> How do repetition time and tube length influence the signal? T2 - DAGA 2021 CY - Vienna, Austria DA - 15.08.2021 KW - Ultrasound KW - Non-destructive testing KW - Fluidic devices PY - 2021 AN - OPUS4-53408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clauß, F. A1 - Epple, Niklas A1 - Ahrens, M. A. A1 - Niederleithinger, Ernst A1 - Mark, P. T1 - Correlation of Load-Bearing Behavior of Reinforced Concrete Members and Velocity Changes of Coda Waves N2 - The integral collection of information such as strains, cracks, or temperatures by ultrasound offers the best prerequisites to monitor structures during their lifetime. In this paper, a novel approach is proposed which uses the collected information in the coda of ultrasonic signals to infer the condition of a structure. This approach is derived from component tests on a reinforced concrete beam subjected to four-point bending in the lab at Ruhr University Bochum. In addition to ultrasonic measurements, strain of the reinforcement is measured with fiber optic sensors. Approached by the methods of moment-curvature relations, the steel strains serve as a reference for velocity changes of the coda waves. In particular, a correlation between the relative velocity change and the average steel strain in the reinforcement is derived that covers 90% of the total bearing capacity. The purely empirical model yields a linear function with a high level of accuracy (R 2 =0.99, R2=0.99, RMSE≈90μ RMSE≈90μ strain). KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Structural Health Monitoring KW - Reinforced Concrete KW - Embedded Sensors PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542316 DO - https://doi.org/10.3390/ma15030738 VL - 15 IS - 3 SP - 738 PB - MDPI AN - OPUS4-54231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chakraborty, J. A1 - Wang, Xin A1 - Stolinski, M. T1 - Analysis of Sensitivity of Distance between Embedded Ultrasonic Sensors and Signal Processing on Damage Detectability in Concrete Structures N2 - Damage detection of reinforced concrete (RC) structures is becoming a more attractive domain due to the safety issues arising in the last few decades. The damage in concrete can be caused by excessive exploitation of the structure or environmental effects. The cracks in concrete can be detected by different nondestructive testing methods. However, the available methods used for this purpose have numerous limitations. The technologies available in the market nowadays have difficulties detecting slowly progressive, locally limited damage. In addition, some of These methods cannot be applied, especially in hard-to-reach areas in the superstructures. In order to avoid these deficiencies, an embedded ultrasonic methodology can be used to detect cracks in RC structures. In this study, the methodology of crack detection supported with the advanced Signal processing algorithm was proposed and verified on RC structures of various types, and cracks occurring between embedded sensors can be detected. Moreover, different pairs of ultrasonic sensors located in the considered structures are used for the analysis of the sensitivity of distance between them. It is shown that the ultrasonic sensors placed in the range of 1.5–2 m can detect cracks, even when the other methods failed to detect changes in the structure. The obtained results confirmed that diffuse ultrasonic sensor methodology is able to monitor real structures more effectively than traditional techniques. KW - Ultrasound KW - Coda wave interferometry KW - Structural health monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543624 DO - https://doi.org/10.3390/acoustics4010007 VL - 4 IS - 1 SP - 89 EP - 110 PB - MDPI CY - Basel, Schweiz AN - OPUS4-54362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Baensch, Franziska A1 - Johann, Sergej A1 - Sturm, Patrick A1 - Mielentz, Frank A1 - Prabhakara, Prathik A1 - Hofmann, Detlef A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten T1 - SealWasteSafe: materials technology, monitoring techniques, and quality assurance for safe sealing structures in underground repositories N2 - Within the project SealWasteSafe, we advance construction materials and monitoring concepts of sealing structures applied for underground disposal of nuclear or toxic waste. As these engineered barriers have high demands concerning integrity, an innovative alkali-activated material (AAM) is improved and tested on various laboratory scales. This AAM has low reaction kinetics related to a preferential slow release of the heat of reaction in comparison to alternative salt concretes based on Portland cement or magnesium oxychloride cements. Hence, crack formation due to thermally induced strain is reduced. After successful laboratory scale analysis (Sturm et al., 2021), the AAM is characterised on a larger scale by manufacturing test specimens (100–300 L). Conventional salt concrete (DBE, 2004) and the newly developed AAM are compared using two specimen geometries, i.e. cylindrical and cuboid. A comprehensive multisensor monitoring scheme is developed to compare the setting process of AAM and salt concrete for these manufactured specimens. The analysed parameters include temperature and humidity of the material, acoustic emissions, and strain variations. Passive sensor systems based on radiofrequency identification technology (RFID) embedded in the concrete, enable wireless access to temperature and humidity measurements and are compared to conventional cabled systems. Additionally, fibre-optic sensors (FOS) are embedded to record strain, but also have potential to record temperature and moisture conditions. Part of this project aims at demonstrating the high reliability of sensors and also their resistance to highly alkaline environments and to water intrusion along cables or at sensor locations. Further technical improvements were implemented so that first results clearly show the scalability of the setting process from previous small-scale AAM experiments and particularly the high potential of the newly developed approaches. Furthermore, ultrasonic methods are used for quality assurance to detect obstacles, potential cracks and delamination. On the one hand, both active and passive ultrasonic measurements complement the results obtained from the multisensor monitoring scheme for the produced specimens. On the other hand, the unique large aperture ultrasonic system (LAUS) provides great depth penetration (up to nearly 10 m) and can thus be applied at in situ sealing structures built as a test site in Morsleben by the Federal Company for Radioactive Waste Disposal (Bundesgesellschaft für Endlagerung, BGE) as shown by Effner et al. (2021). An optimised field lay-out identified from forward modelling studies and advanced imaging techniques applied to the measured data will further improve the obtained results. To characterise the inside of the test engineered barrier and achieve a proof-of-concept, an ultrasonic borehole probe is developed to enable phased arrays that can further improve the detection of potential cracks. Modelling results and first analysis of semispherical specimens confirmed the reliability of the directional response caused by the phased arrays of the newly constructed ultrasonic borehole probe. Overall, the project SealWasteSafe improves the construction material, multisensor monitoring concepts and ultrasonics for quality assurance. This will help to develop safe sealing structures for nuclear waste disposal. The outcomes are particularly valuable for salt as a host rock but partly also transferrable to alternative conditions. T2 - Safe ND Interdisciplinary research symposium on the safety of nuclear disposal practices CY - Berlin, Germany DA - 10.11.2021 KW - Borehole probe KW - SealWasteSafe KW - Engineered barrier KW - Materials technology KW - Monitoring KW - AAM KW - Ultrasound PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539172 DO - https://doi.org/10.5194/sand-1-127-2021 VL - 1 SP - 127 EP - 128 PB - Copernicus AN - OPUS4-53917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fontoura Barroso, Daniel A1 - Epple, Niklas A1 - Niederleithinger, Ernst T1 - A Portable Low-Cost Ultrasound Measurement Device for Concrete Monitoring N2 - This paper describes a new ultrasonic measuring device called “W-Box”. It was developed based on the requirements of the DFG Forschergruppe (research unit) CoDA for a portable device for monitoring of concrete specimens, models and actual structures using embedded ultrasonic transducers as well as temperature and humidity sensors. The W-Box can send ultrasonic pulses with a variable frequency of 50–100 kHz to one selectable transducer and records signals from up to 75 multiplexed channels with a sample rate of 1 MHz and a resolution of 14 bits. In addition, it measures temperature and humidity with high accuracy, adjustable amplification, restarts automatically after a power failure and can be fully controlled remotely. The measured data are automatically stored locally on-site data quality checks and transferred to remote servers. The comparison of the W-Box with a laboratory setup using commercial devices proves that it is equally reliable and precise, at much lower cost. The W-Box also shows that their measurement capacities, with the used embedded ultrasonic transducers, can reach above 6 m in concrete. KW - Low-cost KW - Coda wave interferometry KW - Ultrasound KW - IoT KW - Non-destructive testing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546756 DO - https://doi.org/10.3390/inventions6020036 SN - 2411-5134 VL - 6 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel, Switzerland AN - OPUS4-54675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin A1 - Niederleithinger, Ernst T1 - Low frequency ultrasonic dataset for pulse echo object detection in an isotropic homogeneous medium as reference for heterogeneous materials in civil engineering N2 - The dataset presented contains ultrasonic data recorded in pulse echo mode. The investigated specimen is made of the isotropic homogeneous material polyamide and has a drill hole of constant diameter running parallel to the surface, which was scanned in a point grid using an automatic scanner system. At each measuring position, a pitch-catch measurement was performed using a sampling rate of 2 MHz. The probes used are arrays consisting of a spatially separated receiving and in-phase transmitting unit. The transmitting and receiving sides each consist of 12 point-shaped single probes. These dry-point contact (DPC) probes operate according to the piezoelectric principle at nominal frequencies of 55 kHz (shear waves) and 100 kHz (longitudinal waves), respectively, and do not require a coupling medium. The measurements are performed with longitudinal (100 kHz) and transverse (55 kHz) waves with different geometric orientations of the probe on the measurement surface. The data presented in the article provide a valid source for evaluating reconstruction algorithms for imaging in the low-frequency ultrasound range. KW - Non-destructive testing KW - Ultrasound KW - Pulse-echo method KW - Reference material KW - Reconstruction algorithm KW - Validation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547326 DO - https://doi.org/10.1016/j.dib.2022.108235 VL - 42 SP - 1 EP - 11 PB - Elsevier Inc. AN - OPUS4-54732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diewald, F. A1 - Epple, Niklas A1 - Kraenkel, T. A1 - Gehlen, C. A1 - Niederleithinger, Ernst T1 - Impact of External Mechanical Loads on Coda Waves in Concrete N2 - During their life span, concrete structures interact with many kinds of external mechanical loads. Most of these loads are considered in advance and result in reversible deformations. Nevertheless, some of the loads cause irreversible, sometimes unnoticed changes below the macroscopic scale depending on the type and dimension of the impact. As the functionality of concrete structures is often relevant to safety and society, their condition must be known and, therefore, assessed on a regular basis. Out of the spectrum of non-destructive monitoring methods, Coda Wave Interferometry using embedded ultrasonic sensors is one particularly sensitive technique to evaluate changes to heterogeneous media. However, there are various influences on Coda waves in concrete, and the interpretation of their superimposed effect is ambiguous. In this study, we quantify the relations of uniaxial compression and uniaxial tension on Coda waves propagating in normal concrete. We found that both the signal correlation of ultrasonic signals as well as their velocity variation directly reflect the stress change in concrete structures in a laboratory environment. For the linear elastic range up to 30% of the strength, we calculated a velocity variation of −0.97‰/MPa for compression and 0.33%/MPa for tension using linear regression. In addition, these parameters revealed even weak irreversible changes after removal of the load. Furthermore, we show the time-dependent effects of shrinkage and creep on Coda waves by providing the development of the signal parameters over time during half a year together with creep recovery. Our observations showed that time-dependent material changes must be taken into account for any comparison of ultrasonic signals that are far apart in time. The study’s results demonstrate how Coda Wave Interferometry is capable of monitoring stress changes and detecting even small-size microstructural changes. By indicating the stated relations and their separation from further impacts, e.g., temperature and moisture, we anticipate our study to contribute to the qualification of Coda Wave Interferometry for its application as an early-warning system for concrete structures. KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Mechanical Load KW - Microstructure KW - Concrete PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556878 DO - https://doi.org/10.3390/ma15165482 SN - 1996-1944 VL - 15 IS - 16 SP - 1 EP - 15 PB - MDPI AN - OPUS4-55687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas T1 - Bridge Monitoring with Coda Waves - Embedding Ultrasonic Transducers in a Reinforced Concrete Bridge to Monitor Small Changes in Multiply Scattered Waves N2 - Within a DFG-funded research group, we investigate the possibility of concrete damage assessment with coda waves. Coda wave interferometry (CWI) can be a valuable asset to structural health monitoring (SHM) as we can detect small signal changes and quantify them with the calculation of relative velocity changes. By equipping an in-service road bridge with more than 24 embedded ultrasonic transducers, we want to analyze how methods developed within the research group perform in an uncontrollable environment. We evaluate individual source-receiver combinations for detection of temporal changes as well as the entire installed sensor array to create maps of material change comparing two distinct states of the bridge. T2 - Research Unit CoDA Summer School 2 CY - Garmisch-Partenkirchen, Germany DA - 19.07.2022 KW - Coda Wave Interferometry KW - Embedded sensors KW - Structural Health Monitoring KW - Ultrasound KW - Reinforced Concrete Structures PY - 2022 AN - OPUS4-55382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chakraborty, J. A1 - Wang, Xin A1 - Stolinski, M. T1 - Damage Detection in Multiple RC Structures Based on Embedded Ultrasonic Sensors and Wavelet Transform N2 - This paper summarizes the results of research aimed at assessing cracks in reinforced concrete structures using embedded ultrasonic sensors. The diffuse ultrasonic waves were considered to evaluate the health status of the tested structures. There are different algorithms used to detect cracks in the structure, but most studies have been performed on benchmark reinforced concrete (RC) structures and in laboratory conditions. Since there were difficulties with the validity of Damage detection in real structures in the presence of environmental changes and noises, the application of advanced signal processing methods was necessary. Therefore, the wavelet transform was applied to process ultrasonic signals acquired from multiple civil structures. It is shown that the ultrasonic sensors with an applied wavelet transform algorithm on collected signals can successfully detect cracks in the laboratory as well as in a real environment. Experimental results showed a perfect match for detecting damage and quasi-static load in the presence of environmental changes. The results were confirmed with other techniques. In addition, designing an extra filter for removing noises can be avoided by using the applied algorithms. The obtained results confirmed that diffuse ultrasonic sensor methodology with the proposed algorithm is useful and effective in Monitoring real RC structures, and it is better than traditional techniques. KW - Ultrasound KW - Damage KW - Detection KW - Concrete KW - Wavelet PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523089 DO - https://doi.org/10.3390/buildings11020056 VL - 11 IS - 2 SP - 56 PB - MDPI AN - OPUS4-52308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas T1 - Monitoring Reinforced Concrete Structures with Coda Waves The Influence of Temperature on Ultrasound Velocity Changes calculated with Coda Wave Interferometry N2 - Monitoring of reinforced concrete structures to ensure their stability and increase their service-life is a crucial element of a modern infrastructural concept. With classical methods of non-destructive testing and inspection, repeated measurements under comparable conditions are difficult to conduct. Therefore, DFG research unit FOR 2825 CoDA researches the assessment of concrete damage using ultrasound coda wave interferometry and embedded sensors. Embedding the sensors into the monitoring target reduces human and non-human factors influencing repeatability. Using Coda Wave Interferometry (CWI), small velocity changes in the material can be detected by comparison of repeated measurements. The technique is sensitive to damaging changes like cracking as well as to reversible influences like material temperature. The understanding of these different influences on the signal is crucial for the analysis of long-term monitoring data to make an educated assessment of the structure and its integrity. With several laboratory experiments in a climate chamber and a long-term experiment recording an annual cycle in a large model on an outdoor test site in Horstwalde close to Berlin, we try to understand the influence of temperature on the CWI results. The results show that the velocity change calculated by CWI does closely follow the trend of concrete temperature. After one year of data recording with the large model being exposed to environmental variations only, the calculated velocity change resembles the annual temperature curve. The data shows a linear dependency between velocity and temperature change in a range of -0.03 percent per °K to -0.06 percent per °K - regardless of specimen size. An approach to remove temperature influence from the yearly cycle recorded in the large-scale experiment using this linear relation is unable to remove high-frequency variations - especially daily influences. Low-pass filtering the data can eliminate these variations while preserving permanent shifts caused by damages. Although we have shown that the influence of temperature on long term monitoring can be removed to a significant extent, there is still an influence of environmental changes remaining in the data. Possible nonlinear effects and influences not related to temperature need to be investigated in the future. T2 - DGG 81. Jahrestagung 2021 CY - Online meeting DA - 01.03.2021 KW - Ultrasound KW - Bridge Monitoring KW - Coda Wave Interferometry KW - Structural health monitoring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522401 DO - https://doi.org/10.23689/fidgeo-3975 AN - OPUS4-52240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clauß, F. A1 - Epple, Niklas A1 - Ahrens, M. A. A1 - Niederleithinger, Ernst A1 - Mark, P. T1 - Comparison of Experimentally Determined Two-Dimensional Strain Fields and Mapped Ultrasonic Data Processed by Coda Wave Interferometry N2 - Due to the high sensitivity of coda waves to the smallest structural alterations such as strain, humidity or temperature changes, ultrasonic waves are a valid means to examine entire structures employing networks of ultrasonic transducers. In order to substantiate this ex ante assessment, the viability of measuring ultrasonic waves as a valid point of reference and inference for structural changes is to be further scrutinized in this work. In order to investigate the influence of mechanical strain on ultrasonic signals, a four-point bending test was carried out on a reinforced concrete beam at Ruhr University Bochum. Thus, measurements collected from a network of selected transducer pairings arranged across the central, shear-free segment of the test specimen, were correlated to their respective strain fields. Detected ultrasonic signals were evaluated employing Coda Wave Interferometry. Such analysis comprised the initial non-cracked state as well as later stages with incremental crack depth and quantity. It was to ascertain that the test specimen can in fact be qualitatively compartmentalized into areas of compression and tension identified via Relative Velocity Changes presented in Attribute Maps. However, since results did not entail a zero crossing, i.e., neither positive nor negative values were to be calculated, only relative changes in this work displayed staggered over the height of the object under test, are discussed. Under the given methodological premises, additional information is currently required to make quantitative assertions regarding this correlation of ultrasonic and strain results. This holds true for the comparability of the ultrasonic and strain results for both non-cracked and even the cracked state. KW - Digital image correlation KW - Fiber optic sensors KW - Coda Wave Interferometry KW - Ultrasound KW - Concrete PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510501 DO - https://doi.org/10.3390/s20144023 SN - 1424-8220 VL - 20 IS - 14 SP - Paper 4023, 1 PB - MDPI CY - Basel AN - OPUS4-51050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Gardner, S. A1 - Kind, Thomas A1 - Kaiser, R. A1 - Grunwald, Marcel A1 - Yang, G. A1 - Redmer, Bernhard A1 - Waske, Anja A1 - Mielentz, Frank A1 - Effner, Ute A1 - Köpp, Christian A1 - Clarkson, A. A1 - Thompson, F. A1 - Ryan, M. A1 - Mahon, D. T1 - Muon Tomography of the Interior of a Reinforced Concrete Block: First Experimental Proof of Concept N2 - Quality assurance and condition assessment of concrete structures is an important topic world-wide due to the aging infrastructure and increasing traffic demands. Common topics include, but are not limited to, localisation of rebar or tendon ducts, geometrical irregularities, cracks, voids, honeycombing or other flaws. Non-destructive techniques such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features. Until the 1980s X-ray transmission was used in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Muon tomography has received much attention recently. Novel detectors for cosmic muons and tomographic imaging algorithms have opened up new fields of application, such as the investigation of freight containers. Muon imaging also has the potential to fill some of the gaps currently existing in concrete NDT. As a first step towards practical use and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results are at least of similar quality compared to ultrasonic and radar imaging, potentially even better. The data acquisition takes more time and signals contain more noise, but the images allowed to detect the same important features that are visible in conventional high energy X-ray tomography. In our experiment, we have shown that muon imaging has potential for concrete inspection. The next steps include the development of mobile detectors and optimising acquisition and imaging parameters. KW - Concrete KW - Muon KW - Radar KW - Ultrasound KW - X-ray PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529974 DO - https://doi.org/10.1007/s10921-021-00797-3 VL - 40 IS - 3 SP - 1 EP - 14 PB - Springer Nature AN - OPUS4-52997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Xin A1 - Niederleithinger, Ernst A1 - Hindersmann, Iris T1 - The installation of embedded ultrasonic transducers inside a bridge to monitor temperature and load influence using coda wave interferometry technique N2 - This article presents a unique method of installing a special type of embedded ultrasonic transducers inside a 36-m-long section of an old bridge in Germany. A small-scale load test was carried out by a 16 ton truck to study the temperature and load influence on the bridge, as well as the performance of the embedded transducers. Ultrasonic coda wave interferometry technique, which has high sensitivity in detecting subtle changes in a heterogeneous medium, was used for the data evaluation and interpretation. The separation of two main influence factors (load effect and temperature variation) is studied, and future applications of wave velocity variation rate Φ for structural health condition estimation are discussed. As a preliminary research stage, the installation method and the performance of the ultrasonic transducer are recognized. Load- and temperature-induced weak wave velocity variations are successfully detected with a high resolution of 10−4%. The feasibility of the whole system for long-term structural health monitoring is considered, and further research is planned. KW - Ultrasound KW - Bridge KW - Monitoring KW - coda wave interferometry KW - embedded PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527978 DO - https://doi.org/10.1177/14759217211014430 SN - 1475-9217 VL - 21 IS - 3 SP - 913 EP - 927 PB - SAGE AN - OPUS4-52797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büttner, C. A1 - Niederleithinger, Ernst A1 - Buske, S. A1 - Friedrich, C. T1 - Ultrasonic Echo Localization Using Seismic Migration Techniques in Engineered Barriers for NuclearWaste Storage N2 - In the framework of non-destructive-testing advanced seismic imaging techniques have been applied to ultrasonic echo data in order to examine the integrity of an engineered test-barrier designed to be used for sealing an underground nuclear waste disposal site. Synthetic data as well as real multi-receiver ultrasonic data acquired at the test site were processed and imaged using Kirchhoff prestack depth migration reverse time migration (RTM). In general, both methods provide a good Image quality as demonstrated by various case studies, however deeper parts within the test barrier containing inclined reflectors were reconstructed more accurately by RTM. In particular, the image quality of a specific target reflector at a depth of 8 m in the test-barrier has been significantly improved compared to previous investigations using synthetic aperture Focusing technique, which justifies the considerable computing time of this method. KW - Radioactive waste disposal KW - Engineered barrier KW - Ultrasound KW - Imaging KW - Crack detection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537956 DO - https://doi.org/10.1007/s10921-021-00824-3 SN - 0195-9298 VL - 40 IS - 4 SP - 1 EP - 10 PB - Springer AN - OPUS4-53795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, T. A1 - Sens-Schönfelder, C. A1 - Epple, Niklas A1 - Niederleithinger, Ernst T1 - Imaging of Small-Scale Heterogeneity and Absorption Using Adjoint Envelope Tomography: Results From Laboratory Experiments N2 - To complement the information provided by deterministic seismic imaging at length scales above a certain resolution limit we present the first application of adjoint envelope tomography (AET) to experimental data. AET uses the full envelopes of seismic records including scattered coda waves to obtain information about the distribution of absorption and small-scale heterogeneity which provide complementary information about the investigated medium. Being below the resolution limit this small-scale structure cannot be resolved by conventional tomography but still affects wave propagation by attenuating ballistic waves and generating scattered waves. Using ultrasound data from embedded sensors in a meter-sized concrete specimen we image the distribution of absorption and heterogeneity expressed by the intrinsic quality factor Q−1 and the fluctuation strength ɛ that characterizes the strength of the heterogeneity. The forward problem is solved by modeling the 2-D multiple nonisotropic scattering in an acoustic medium with spatially variable heterogeneity and attenuation using the Monte-Carlo method. Gradients for the model updates are obtained by convolution with the back-propagated envelope misfit using the adjoint formalism in analogy to full waveform inversion. We use a late coda time window to invert for absorption and an earlier time window to infer the distribution of heterogeneity. The results successfully locate an area of salt oncrete with increased scattering and concentric anomalies of intrinsic attenuation. The resolution test shows that the recovered anomalies constitute reasonable representations of internal structure of the specimen. KW - Ultrasound KW - Scattering KW - Tomography KW - Concrete KW - Heterogeneity PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563163 DO - https://doi.org/10.1029/2022JB024972 SN - 2169-9313 VL - 127 IS - 11 SP - 1 EP - 21 PB - American Geophysical Union AN - OPUS4-56316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Niederleithinger, Ernst A1 - Fontoura Barroso, Daniel T1 - Coda Wave Interferometry for Monitoring Bridges with Embedded Ultrasonic Transducers – Lessons Learned at the Gänstorbrücke Bridge Ulm, Germany N2 - Ultrasonic Coda Wave interferometry has the potential to detect minute changes in scattering materials like concrete. By permanently installing ultrasonic transducers in concrete, DFG Research unit CoDA aims to develop methods for concrete damage assessment in Germany's aging infrastructure. To test the methods developed in simulations and laboratory experiments on a large scale, we have implemented several ultrasonic transducers at the Gänstorbrücke Ulm, one of Germany's most monitored road bridges. Since fall 2020 we are monitoring parts of the center of the Bridge, as well as an abutment, and compare the results to the commercial monitoring system. All data is recorded with a self-made data collection device, the so-called W-Box, and analyzed with different coda wave-based algorithms to detect signal and volumetric velocity changes. The long-term measurements show that the influence of temperature changes on strains and therefore ultrasound velocity changes calculated with coda waves can be monitored. The capabilities and limitations of the coda wave-based monitoring system are tested in a controlled experiment. Static loading using a truck with varying loads at several positions allows the calibration of the system to improve the detectability of possibly damaging loads and changes induced by this loading. A map of velocity change analyzing data from this load experiment shows that the influence of load on the material and strain distribution can be detected with array measurements. T2 - NDT-CE 2022 - The International Symposium on Nondestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Coda Wave Interferometry KW - Ultrasound KW - Embedded sensors KW - Bridge Monitoring KW - Load Experiment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564531 SP - 1 EP - 8 AN - OPUS4-56453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, U. A1 - Pudovikov, S. A1 - Herrmann, H.-G. A1 - Wiggenhauser, H. A1 - Prabhakara, Prathik A1 - Niederleithinger, Ernst T1 - Evaluation of retroreflective corner echo for detection of surface breaking cracks in concrete by ultrasound N2 - The retroreflective corner echo is used, for example, in ultrasonic non-destructive testing of metals to find fatigue cracks in tubes or shafts. If the much weaker crack tip signal is additionally detected, the crack length can also be determined. A corner reflection occurs in cases of surface breaking cracks with predominantly perpendicular orientation to the surface. The intensity of the corner reflection depends on the angle of incidence and on the ultrasonic wave mode used. For the reliable detection of vertical surface breaking cracks in metals, transversal waves are commonly used, which propagate at an angle of 37° to 53° to the inspection surface. As shown in this contribution, the wide spread low frequency ultrasonic arrays with dry point contact sources available for ultrasonic testing of concrete also allow to receive corner echoes. These devices generate transversal waves in concrete structures with a large divergence of the sound field. A series of experiments was carried out with such dry point contact arrays on concrete specimens with artificial test defects and controlled induced cracks of different depths. The ultrasonic time-of-flight signals were recorded, exported and reconstructed utilising the SAFT (Synthetic Aperture Focusing Technique) algorithm. The SAFT reconstruction parameters were adjusted to visualize the corner echo indication. As will be shown, with this targeted processing, the reproducible detection of surface breaking cracks in concrete is possible. The retroreflective corner echo can thus be exploited in civil engineering for non-destructive inspection of concrete. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - Crack depth KW - Ultrasound KW - SAFT PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563365 UR - https://www.ndt.net/article/ndtce2022/paper/27256_manuscript.pdf IS - 27256 SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Landis, E. A1 - Hassefras, Emiel A1 - Oesch, Tyler A1 - Niederleithinger, Ernst T1 - A Microstructural Basis for Diffuse Ultrasound in Concrete N2 - Attenuation of ultrasonic signals in concrete has the potential to carry much information about the microstructure of the material. In this work a series of concrete specimens of varying porosities and pore size distributions were internally imaged with x-ray computed tomography (CT), and then subsequently examined with throughtransmission ultrasound. The CT images were used to quantify both capillary porosity of cement paste as well as internal interfaces that are likely to produce elastic wave scattering. Ultrasound signals were represented as a diffusion process such that absorption and scattering attenuation could be isolated. As implemented, the diffusion model was a poor predictor of capillary porosity, while diffusivity was a reasonable predictor of scattering interfaces. Diffusivity was found to scale extremely well with small scale porosity, which made it a good predictor of compressive strength. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - X-ray tomography KW - Ultrasound PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563371 UR - https://www.ndt.net/article/ndtce2022/paper/61592_manuscript.pdf SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, S. A1 - Büttner, C. T1 - Application of Elastic P-SV Reverse Time Migration to Synthetic Ultrasonic Echo Data from Concrete Members N2 - The ultrasonic echo technique is frequently used in non-destructive testing (NDT) of concrete structures for thickness measurements, geometry determinations as well as localization of built-in components. To improve ultrasonic imaging of complex structures in concrete, we transferred a geophysical imaging technique, the reverse time migration (RTM), to NDT in civil engineering. In contrast to the conventionally used synthetic aperture focusing technique (SAFT) algorithms, RTM is a wavefield continuation method in time and uses the full wave equation. Thus, RTM can handle complicated wave propagations in any direction without dip limitation. In this paper, we focused on the application and evaluation of a two-dimensional (2D) elastic RTM algorithm considering compressional waves, vertically polarized shear waves, and Rayleigh waves. We tested the elastic RTM routine on synthetic ultrasonic echo data generated with a 2D concrete model consisting of several steps and circular air inclusions. As these complex structures can often be found in real-world NDT use cases, their imaging is especially important. By using elastic RTM, we were able to clearly reproduce vertical reflectors and lower edges of circular air voids inside our numerical concrete model. Such structures cannot be imaged with conventional SAFT algorithms. Furthermore, the used elastic RTM approach also yielded a better reconstruction of a horizontal reflector and upper boundaries of circular air inclusions. Our encouraging results demonstrate that elastic RTM has the potential to significantly improve the imaging of complex concrete structures and, thus, is a step forward for detailed, high-quality ultrasonic NDT in civil engineering. KW - Concrete KW - Ultrasound KW - Imaging KW - Reverse time migration KW - Elastic PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580680 DO - https://doi.org/10.1007/s10921-023-00962-w SN - 0195-9298 VL - 42 IS - 3 SP - 1 EP - 18 PB - Springer Nature AN - OPUS4-58068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, U. A1 - Pudovikov, S. A1 - Herrmann, H.-G. A1 - Wiggenhauser, H. A1 - Prabhakara, Prathik A1 - Niederleithinger, Ernst T1 - Using the Corner Reflection for Depth Evaluation of Surface Breaking Cracks in Concrete by Ultrasound N2 - The corner echo is a well-known effect in ultrasonic testing, which allows detection of surface breaking cracks with predominantly perpendicular orientation to the surface as, for example, corrosion cracks in metal pipes or shafts. This echo is formed by two planes, the surface of the crack and the surface which the crack breaks. It can also be classified as a half-skip method, since a reflection of the pulse occurs on the backwall before the reflection at the defect takes place. In combination with the diffraction from the crack tip, the corner echo also allows crack sizing. As shown in this paper, the corner reflection can be used in civil engineering for nondestructive inspection of concrete. Commercially available low frequency ultrasonic arrays with dry point contact sources generate SH transversal waves with sufficient divergence of the sound field in order to detect corner reflections. Ultrasonic line-scans and area-scans were acquired with a linear array on flat concrete specimens, and the data were reconstructed by the Synthetic aperture focusing technique. If the angles and the area of reconstruction are chosen accordingly, the corner echo reflection can be distinguished from other ultrasonic information. The corner echo can thus be used as a method for deciding whether a crack is a partial-depth crack or a full-depth crack and thus for obtaining a statement about crack depth. This paper presents corresponding experimental results obtained on concrete specimens with artificial test defects and cracks induced under controlled conditions. KW - Ultrasound KW - Crack depth KW - Concrete KW - Corner echo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574631 DO - https://doi.org/10.1007/s10921-023-00956-8 SN - 0195-9298 VL - 42 IS - 2 SP - 1 EP - 19 PB - Springer Nature AN - OPUS4-57463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Hofmann, M. A1 - Kudla, W. T1 - Ultrasonic quality assurance at magnesia shotcrete sealing structures N2 - Engineered barriers are a key element to enable safe nuclear waste disposal. One method currently under research for their construction is magnesia concrete applied in a shotcrete procedure. In this study, the ultrasonic echo method is evaluated as a means for quality assurance. Imaging of internal structures (backwall, boreholes) and defects, such as delamination, has successfully been achieved in the shotcrete. Additionally, detailed information about the potential cause of selected reflectors are obtained by phase analysis. In several test blocks of various sizes, no consistent concrete section boundaries have been found by ultrasonic imaging, which was verified by subsequent drilling and complementary tests. An experiment with artificial defects imitating cracks, air-filled voids, and material with lower density has been challenging and shows the limitations of the current methods. Although significant defects, such as a large delamination, are reliably identified, several smaller defects are not identified. Generally, ultrasonic imaging provides a suitable base as a mean for quality assurance during and after the construction of sealing structures. However, further developments are required to enhance the reliability of the method and a full validation is still pending. Still, the method has potential to increase the safety of nuclear waste repositories. KW - Ultrasound KW - Imaging KW - Engineered barrier systems KW - Underground KW - Shotcrete PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563170 DO - https://doi.org/10.3390/s22228717 SN - 1424-8220 VL - 22 IS - 22 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, T. A1 - Niederleithinger, Ernst T1 - Combining Passive and Active Ultrasonic Stress Wave Monitoring Techniques: Opportunities for Condition Evaluation of Concrete Structures N2 - Concrete structures are invaluable assets to a society and managing them efficiently and effectively can be supported by information gathered through structural health monitoring (SHM). In this paper, a combined approach based on passive, i.e., acoustic emission (AE), and active, i.e., ultrasonic stress wave (USW) monitoring techniques for application to concrete structures is proposed and evaluated. While AE and USW are based on the same underlying physics, i.e., wave motion in solids, they differ fundamentally with respect to the nature of the source. For the former, external stimuli such as mechanical loads or temperature cause the rapid release of energy from initially unknown locations. As a result, AE events are unique and cannot be repeated. For the latter, a known source at a known location is employed at a specified time. This approach is thus controlled and repeatable. It is argued that a combination of these two techniques has the potential to provide a more comprehensive picture of ongoing fracture processes, damage progression, as well as slowly occurring aging and degradation mechanisms. This combined approach does thus promise new opportunities to support condition assessment of concrete structures. After providing an overview and comparison of the two techniques, results, and observations from a full-scale laboratory experiment and an in-service bridge monitoring study are discussed to demonstrate the promise of the proposed combined monitoring approach. Finally, suggestions for further work are presented. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Acoustic emission KW - Concrete structures KW - Monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563242 UR - https://www.ndt.net/article/ndtce2022/paper/61607_manuscript.pdf SP - 1 EP - 11 PB - NDT.net AN - OPUS4-56324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Kudla, W. T1 - Ultrasonic quality assurance for underground salt shotcrete sealing structures in Teutschenthal mine, Germany N2 - Underground sealing structures are necessary to seal radioactive or toxic waste in underground repositories. A special version of MgO concrete is used in the mine in Teutschenthal and applied at a large-scale test with the aim to provide a low permeability barrier. The test structures (up to 10 m long) were created by shotcreting. Besides destructive tests, non-destructive ultrasonic measurements have been evaluated for quality assurance to monitor potential anomalies such as cracks, concrete inhomogeneities, and delamination. We show results of ultrasonic measurements with a multi-transducer system used at the front and from the side of the concrete structure. Images are obtained by synthetic aperture focusing techniques. The boundaries between concreting sections are not visible in the ultrasonic images systematically so that a successful concreting is assumed, which is confirmed by the low permeabilities observed. Several reflectors up to a depth of 1.2 m are identified and interpreted as potential damages in the concrete. Phase analysis of prominent reflectors reveal a negative impedance contrast thus indicating air filled voids, cracks or delamination. Boreholes through some of the identified reflectors are used to verify the results from ultrasonic measurements. Additionally, an experiment with incorporated artificial defects was undertaken to analyse the reliability of the applied methods. Overall, the conducted tests show the potential of ultrasonic measurements to detect critical anomalies. Despite challenges at small-scale structures (cm-order), large-scale anomalies can be identified. Consequently, implementing ultrasonic monitoring during and after the construction of concrete sealing structures has shown its potential as a tool for quality assurance, but needs further development and validation. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Ultrasonic imaging KW - Magnesia shotcrete KW - Underground KW - Engineered barrier systems PY - 2022 UR - https://www.ndt.net/events/proceedings/topic.php?eventID=292&TopicID=27209 SP - 1 EP - 4 PB - NDT.net AN - OPUS4-55824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabhakara, Prathik A1 - Mielentz, Frank A1 - Stolpe, Heiko A1 - Behrens, Matthias A1 - Lay, Vera A1 - Niederleithinger, Ernst T1 - Validation of novel ultrasonic phased array borehole probe by using simulation and measurement N2 - Low-frequency ultrasonic testing is a well-established non-destructive testing (NDT) method in civil engineering for material characterization and the localization of cracks, reinforcing bars and delamination. A novel ultrasonic borehole probe is developed for in situ quality assurance of sealing structures in radioactive waste repositories using existing research boreholes. The aim is to examine the sealing structures made of salt concrete for any possible cracks and delamination and to localize built-in components. A prototype has been developed using 12 individual horizontal dry point contact (DPC) shear wave transducers separated by equidistant transmitter/receiver arrays. The probe is equipped with a commercially available portable ultrasonic flaw detector used in the NDT civil engineering industry. To increase the sound pressure generated, the number of transducers in the novel probe is increased to 32 transducers. In addition, the timed excitation of each transducer directs a focused beam of sound to a specific angle and distance based on the previously calculated delay time. This narrows the sensitivity of test volume and improves the signal-to-noise ratio of the received signals. In this paper, the newly designed phased array borehole probe is validated by beam computation in the CIVA software and experimental investigations on a half-cylindrical test specimen to investigate the directional characteristics. In combination with geophysical reconstruction methods, it is expected that an optimised radiation pattern of the probe will improve the signal quality and thus increase the reliability of the imaging results. This is an important consideration for the construction of safe sealing structures for the safe disposal of radioactive or toxic waste. KW - Ultrasound KW - Phased array KW - Concrete KW - Borehole PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565722 DO - https://doi.org/10.3390/s22249823 SN - 1424-8220 VL - 22 IS - 24 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Maack, Stefan T1 - Low-frequency ultrasound data (pulse-echo technique) with shear horizontal and longitudinal waves on a reference polyamide specimen “BAM-Pk218” N2 - This dataset contains raw data observed with ultrasound measurements on a polyamide reference specimen at Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin. The internal specimen identifier is „Pk218“. The measurements were conducted using the pulse-echo method. KW - Nondestructive testing KW - Ultrasound KW - Pulse-echo technique KW - Validation KW - Reference material KW - Reconstruction algorithm PY - 2022 DO - https://doi.org/10.7910/DVN/KVN7CY PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-54959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, T. A1 - Bertola, N. A1 - Epple, Niklas A1 - Bruehwiler, E. A1 - Niederleithinger, Ernst T1 - Combined Passive and Active Ultrasonic Stress Wave Monitoring of Concrete Structures: An Overview of Data Analysis Techniques and Their Applications and Limitations N2 - Combined passive ultrasonic (US) stress wave [better known as acoustic emission (AE)] and active US stress wave monitoring has been shown to provide a more holistic picture of ongoing fracture processes, damage progression, as well as slowly occurring aging and degradation mechanisms in concrete structures. Traditionally, different data analysis techniques have been used to analyze the data generated from these two monitoring techniques. For passive US stress wave monitoring, waveform amplitudes, hit rates, source localization, and b-value analysis, among others, have been used to detect and locate cracking. On the other hand, amplitude tracking, magnitude squared coherence (MSC), and coda wave interferometry (CWI) are examples of analyses that have been employed for active US stress wave monitoring. In this paper, we explore some of these data analysis techniques and show where their respective applications and limitations might be. After providing an overview of the monitoring approach and the different data analysis techniques, results and observations from selected laboratory experiments are discussed. Finally, suggestions for further work are proposed. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 11.06.2024 KW - Ultrasound KW - Acoustic emission KW - Concrete KW - Stress PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604687 UR - https://www.ndt.net/article/ewshm2024/papers/824_manuscript.pdf DO - https://doi.org/10.58286/29863 SN - 1435-4934 SP - 1 EP - 8 PB - NDT.net AN - OPUS4-60468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vössing, Konrad A1 - Gaal, Mate A1 - Niederleithinger, Ernst T1 - Imaging wood defects using air coupled ferroelectret ultrasonic transducers in reflection mode N2 - Air-coupled ultrasound (ACU) is used to detect defects in wood panels without physically contacting the sample and with a quick scanning rate. Transducers made of cellular polypropylene (PP) with a high signal-to-noise ratio are quite suitable for ACU testing of wood. The extremely low modulus of elasticity and low density of PP transducers results in a small difference in acoustic impedance for the Transmission of ultrasonic waves between the transducer and air, allowing new areas of application to become possible. To demonstrate the suitability of the reflection technique, measurements are shown on the three samples Multiplex, LVL, and MDF and compared with transmission measurements. Due to this acoustic barrier and the use of cellular PP transducers, an exact detection of delamination and cavities is possible in wood panels up to 40 mm thick. If only one side of an object is accessible and the depth of the defect is of interest, the reflection technique is preferred at the expense of a reduced measuring accuracy and Penetration depth. KW - Wood KW - Ultrasound KW - Air coupled KW - Defects PY - 2020 DO - https://doi.org/10.1016/j.conbuildmat.2020.118032 VL - 241 SP - 118032, 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-50235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Niederleithinger, Ernst ED - Rizzo, P. ED - Milazzo, A. T1 - Towards Monitoring of Concrete Structures with Embedded Ultrasound Sensors and Coda Waves – First Results of DFG for CoDA N2 - Due to the importance of reinforced concrete structures for modern society, damage assessment during the entire life-cycle of such structures has become a special interest in non-destructive testing. Using embedded ultrasound sensors in combination with other measurement methods, numerical modeling and self-made data collectors, tailored specifically for monitoring tasks, the German research group DFG FOR CoDA aims to investigate and develop novel methods for damage detection and rapid model updating in reinforced concrete structures. In the first stage of the project, besides the development of custom-built, low-cost data collectors, ultrasonic transducers are embedded in a large, reinforced concrete specimen on a BAM test site near Berlin. In this experiment, the influence of changing environmental conditions (mainly temperature) on the ultrasound signal is investigated using coda-wave interferometry. The results show a correlation between changes in temperature and ultrasonic velocity. Such changes must be taken into consideration in a long-term monitoring setup to distinguish between reversible and permanent changes. By correcting the data using a linear relation between concrete temperature and velocity change to remove the seasonal trends and by low-pass filtering the data to remove daily variations can remove most of the temperature influence on the ultrasound measurements. KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Embedded sensors KW - Structural health monitoring PY - 2021 SN - 978-3-030-64593-9 SN - 978-3-030-64594-6 DO - https://doi.org/10.1007/978-3-030-64594-6_27 VL - 127 SP - 266 EP - 275 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-52012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas T1 - Monitoring of Concrete with Embedded Ultrasound Sensors, Coda Waves and a Novel Measurement Device N2 - Using embedded ultrasound (US) sensors in civil engineering structures and Coda Wave Interferometry (CWI), DFG research group CoDA aims for developing methods of concrete damage assessment by combination of Micro and macro scale simulations and experiments. BAMs goal within the project is the provision of small and durable measurement equipment on the one hand, and the investigation of damage sensitive parameters and development of an imaging algorithm on the other hand. In this study we focus on the development of the measurement system and the influence of temperature variations on the measurements. T2 - Summer School DFG FOR CoDA CY - Berchtesgaden, Germany DA - 27.09.2020 KW - Ultrasound KW - Coda Wave Interferometry KW - Structural Health Monitoring PY - 2020 AN - OPUS4-51382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera T1 - Ultrasonic quality assurance for underground salt shotcrete sealing structures in Teutschenthal mine, Germany N2 - Underground sealing structures are necessary to seal radioactive or toxic waste in underground repositories. Particularly developed MgO concrete is used in the mine in Teutschenthal and applied at a large-scale test with the aim to provide concrete with low permeabilities. The test structures (up to 10 m long) were created with the help of a shotcrete procedure. Besides destructive tests, non-destructive ultrasonic measurements are used for quality assurance to monitor potential anomalies such as cracks, concrete inhomogeneities, and delamination. We show results of ultrasonic measurements with a multi-transducer system used at the front site of the concrete structure. Images are obtained by synthetic aperture focusing techniques. Concreting sections are not systematically imaged so that a successful concreting is assumed as also indicated by observed low permeabilities. Several reflectors up to a depth of 1.2 m are identified and interpreted as potential damages in the concrete. Phase analysis of prominent reflectors reveal a negative impedance contrast thus indicating air filled voids, cracks or delamination. Boreholes through some of the identified reflectors are used to verify the results from ultrasonic measurements. Additionally, an experiment with incorporated defects is undertaken to analyse the reliability of the applied methods. Overall, the conducted tests show the great potential of ultrasonic measurements to detect critical anomalies. Despite challenges at small-scale structures (cm-order), large-scale anomalies can be identified. Implementing ultrasonic monitoring during and after the construction of concrete sealing structures is recommended as a tool for quality assurance. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Ultrasonic imaging KW - Magnesia shotcrete KW - Underground KW - Engineered barrier systems PY - 2022 AN - OPUS4-55825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Niederleithinger, Ernst A1 - Hindersmann, I. A1 - Sodeikat, C. A1 - Groschup, R. ED - Rizzo, P. ED - Milazzo, A. T1 - From the Lab to the Structure: Monitoring of a German Road Bridge Using Embedded Ultrasonic Transducers and Coda Waves N2 - The ‘Gänstorbrücke’ bridge between the cities of Ulm and Neu-Ulm is one of the best-monitored bridges all over Germany. In addition to an already active bride monitoring system, we have equipped the bridge with 30 ultrasonic transducers to explore the monitoring possibilities at an in-service large-scale reinforced concrete structure with continuous active ultrasonic measurements. The monitoring system is based on the detection of small changes in the entire signal, especially the multiply scattered parts of the recording, the so-called coda. Applying Coda Wave Interferometry (CWI), subtle changes in the signal can be detected and related to changing velocities in the area between source and receiver. A comparison of the results from coda wave interferometry with the strain measurements of the permanent monitoring system shows a correlation between strain measurements and CWI results. We discuss the challenges of changing environmental conditions, pose for interpretation of the results, and highlight the advantages of embedded versus externally attached ultrasonic transducers in permanent bridge monitoring, especially when coda wave interferometry is applied. KW - Bridge monitoring KW - Ultrasound KW - Embedded sensors KW - Coda wave interferometry PY - 2022 SN - 978-3-031-07258-1 DO - https://doi.org/10.1007/978-3-031-07258-1_83 VL - 254 SP - 824 EP - 832 PB - Springer Cham CY - Cham AN - OPUS4-55385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Landis, E. A1 - Hassfras, Emiel A1 - Oesch, Tyler A1 - Niederleithinger, Ernst T1 - Relating ultrasonic signals to concrete microstructure using X-ray computed tomography N2 - With a goal to improve our understanding of the relationships between microstructural features and ultrasonic signal behavior, concrete specimens of varying water-to-cement ratio were imaged using X-ray computed tomography (CT), and subsequently subjected to ultrasonic testing. From the CT scans, measurements were made of cement paste density and number of interfaces. Ultrasonic signals produced using a through-transmission configuration were analyzed and fit to a diffusion model to separate absorption from scattering attenuation. The results showed that at the frequencies tested, ultrasonic dissipation rate correlated weakly with paste density, while diffusivity correlated well with number of interfaces, but only if entrained air is considered separately. Cement paste density was found to be very well predicted by diffusivity, leading to a clear power-law relationship between diffusivity and compressive strength. KW - Concrete KW - Ultrasound KW - Strength KW - CT PY - 2021 DO - https://doi.org/10.1016/j.conbuildmat.2020.121124 SN - 0950-0618 VL - 268 SP - Paper 121124, 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-52073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Xin A1 - Chakraborty, J. A1 - Niederleithinger, Ernst T1 - Noise Reduction for Improvement of Ultrasonic Monitoring Using Coda Wave Interferometry on a Real Bridge N2 - Reinforced concrete bridges are iconic parts of modern infrastructure. They are designed for a minimum service life of 100 years. However, environmental factors and/or inappropriate use might cause overload and accelerate the deterioration of bridges. In extreme cases, bridges could collapse when necessary maintenance lacks. Thus, the permanent monitoring for structure health assessment has been proposed, which is the aim of structural health monitoring (SHM). Studies in laboratories have shown that ultrasonic (US) coda wave interferometry (CWI) using diffuse waves has high sensitivity and reliability to detect subtle changes in concrete structures. The creation of micro-cracks might be recognized at an early stage. Moreover, large-volume structures can be monitored with a relatively small number of US transducers. However, it is still a challenge to implement the CWI method in real SHM practical applications in an outdoor environment because of the complex external factors, such as various noise sources that interfere with the recorded signals. In this paper, monitoring data from a 36-m long bridge girder in Gliwice, Poland, instrumented with embedded US transducers, thermistors, and vibrating wire strain gauges, is presented. Noise estimation and reductionmethods are discussed, and the influence of traffic, as well as temperature variation, are studied. As a result, the relative velocity variation of US waves following the temperature change with a very high precision of 10−4% is shown, and a good bridge health condition is inferred. The influence of lightweight real traffic is negligible. The study verified the feasibility of the implementation of the CWI method on real bridge structures. KW - Ultrasound KW - Coda Wave Interferometry KW - Noise KW - Concrete KW - Bridge PY - 2021 DO - https://doi.org/10.1007/s10921-020-00743-9 VL - 40 IS - 1 SP - Article number: 14 PB - Springer Nature AN - OPUS4-52052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Current Trends in SHM of German Prestressed Concrete Road bridges N2 - Due to increasing ageing, deterioration and loading , several prestressed concrete bridges bulit in the 1950ies and 1960ies need monitoring. Recently several bridges have sucesssfully equipped with acoustic emission sensing system. BAM works together with several universities on an add onn: Active ultrasonic monitoring combined with coda wave interferometry will help to detect subtle changes and precursors fo failure earlier than other methods. T2 - TRB 100th Annual Meeting, Subcommittee AKT40(3) CY - Online meeting DA - 05.01.2021 KW - Bridges KW - Monitoring KW - Acoustic emission KW - Ultrasound KW - Coda wave interferometry PY - 2021 AN - OPUS4-51972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic coda wave monitoring of concrete structures: First experiences with large-scale experiments and real structures N2 - Ultrasonic monitoring, making use of the sensitivity of the coda of repeated transmission meas-urements to changes in stress, temperature, moisture, as well as localized or distributed damage, has gotten at-tention in structural health monitoring (SHM) research recently. Analysis methods such as coda wave inter-ferometry (CWI), including its nonlinear extension, have been shown to be able to measure ultrasonic wave velocity changes with a 1∙10-5 resolution, while indicators such as cross-correlation or cross-coherence have been used to distinguish between reversible and irreversible changes. Several small- and large-scale laboratory experiments have demonstrated that stress changes in structures can be captured or damage detected in a very early stage. The use of this technique for pre-warning before failure are currently under investigation, as well as detailed research on the physical causes and the connection between ultrasonic wave properties and materi-al/structural behavior. Recently, several of large-scale laboratory and real structures have been instrumented with embedded ultrasonic transducers to gather experience and evidence on how to use this technology in re-al-world applications. Preliminary results from installations on a new bridge, an existing bridge, a tunnel, a la-boratory earthquake test as well as a historic stadium in Germany, Poland, and the United States, respectively, are presented. Environmental influences (mainly temperature) and validation by load tests are discussed. T2 - IABMAS 2020 CY - Online meeting DA - 11.04.2021 KW - Ultrasound KW - Monitoring KW - Coda wave interferometry KW - Concrete KW - Bridges PY - 2021 AN - OPUS4-54167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Epple, Niklas A1 - Schumacher, T. A1 - Ahmend, S. A1 - Klikowicz, P. ED - Yokota, H. ED - Frangopol, D. W. T1 - Ultrasonic coda wave monitoring of concrete structures: First experiences with large-scale experiments and real structures N2 - Ultrasonic monitoring, making use of the sensitivity of the coda of repeated transmission meas-urements to changes in stress, temperature, moisture, as well as localized or distributed damage, has gotten at-tention in structural health monitoring (SHM) research recently. Analysis methods such as coda wave inter-ferometry (CWI), including its nonlinear extension, have been shown to be able to measure ultrasonic wave velocity changes with a 1∙10-5 resolution, while indicators such as cross-correlation or cross-coherence have been used to distinguish between reversible and irreversible changes. Several small- and large-scale laboratory experiments have demonstrated that stress changes in structures can be captured or damage detected in a very early stage. The use of this technique for pre-warning before failure are currently under investigation, as well as detailed research on the physical causes and the connection between ultrasonic wave properties and materi-al/structural behavior. Recently, several of large-scale laboratory and real structures have been instrumented with embedded ultrasonic transducers to gather experience and evidence on how to use this technology in re-al-world applications. Preliminary results from installations on a new bridge, an existing bridge, a tunnel, a la-boratory earthquake test as well as a historic stadium in Germany, Poland, and the United States, respectively, are presented. Environmental influences (mainly temperature) and validation by load tests are discussed. KW - Coda wave interferometry KW - Structural health monitoring KW - Ultrasound KW - Concrete KW - Bridges PY - 2021 SN - 978-0-367-23278-8 DO - https://doi.org/10.1201/9780429279119-345 SP - 2525 EP - 2531 PB - Taylor & Francis CY - London, UK AN - OPUS4-54168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera T1 - SealWasteSafe: materials technology, monitoring techniques, and quality assurance for safe sealing structures in underground repositories N2 - Within the project SealWasteSafe, we advance construction materials and monitoring concepts of sealing structures applied for underground disposal of nuclear or toxic waste. As these engineered barriers have high demands concerning integrity, an innovative alkali-activated material (AAM) is improved and tested on various laboratory scales. This AAM has low reaction kinetics related to a preferential slow release of the heat of reaction in comparison to alternative salt concretes based on Portland cement or magnesium oxychloride cements. Hence, crack formation due to thermally induced strain is reduced. After successful laboratory scale analysis (Sturm et al., 2021), the AAM is characterised on a larger scale by manufacturing test specimens (100–300 L). Conventional salt concrete (DBE, 2004) and the newly developed AAM are compared using two specimen geometries, i.e. cylindrical and cuboid. A comprehensive multisensor monitoring scheme is developed to compare the setting process of AAM and salt concrete for these manufactured specimens. The analysed parameters include temperature and humidity of the material, acoustic emissions, and strain variations. Passive sensor systems based on radiofrequency identification technology (RFID) embedded in the concrete, enable wireless access to temperature and humidity measurements and are compared to conventional cabled systems. Additionally, fibre-optic sensors (FOS) are embedded to record strain, but also have potential to record temperature and moisture conditions. Part of this project aims at demonstrating the high reliability of sensors and also their resistance to highly alkaline environments and to water intrusion along cables or at sensor locations. Further technical improvements were implemented so that first results clearly show the scalability of the setting process from previous small-scale AAM experiments and particularly the high potential of the newly developed approaches. Furthermore, ultrasonic methods are used for quality assurance to detect obstacles, potential cracks and delamination. On the one hand, both active and passive ultrasonic measurements complement the results obtained from the multisensor monitoring scheme for the produced specimens. On the other hand, the unique large aperture ultrasonic system (LAUS) provides great depth penetration (up to nearly 10 m) and can thus be applied at in situ sealing structures built as a test site in Morsleben by the Federal Company for Radioactive Waste Disposal (Bundesgesellschaft für Endlagerung, BGE) as shown by Effner et al. (2021). An optimised field lay-out identified from forward modelling studies and advanced imaging techniques applied to the measured data will further improve the obtained results. To characterise the inside of the test engineered barrier and achieve a proof-of-concept, an ultrasonic borehole probe is developed to enable phased arrays that can further improve the detection of potential cracks. Modelling results and first analysis of semispherical specimens confirmed the reliability of the directional response caused by the phased arrays of the newly constructed ultrasonic borehole probe. Overall, the project SealWasteSafe improves the construction material, multisensor monitoring concepts and ultrasonics for quality assurance. This will help to develop safe sealing structures for nuclear waste disposal. The outcomes are particularly valuable for salt as a host rock but partly also transferrable to alternative conditions. T2 - Safe ND Interdisciplinary research symposium on the safety of nuclear disposal practices CY - Berlin, Germany DA - 10.11.2021 KW - Borehole probe KW - SealWasteSafe KW - Engineered barrier KW - Materials technology KW - AAM KW - Monitoring KW - Ultrasound PY - 2021 AN - OPUS4-53919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera T1 - Material research and multi-sensory monitoring for concrete sealing structure in rock salt underground repositories N2 - Within the project SealWasteSafe, we advance construction materials and non-destructive monitoring concepts of sealing structures applied for underground disposal of nuclear waste. As these engineered barriers have high demands regarding structural integrity, an innovative alkali-activated material (AAM) that is highly suitable for the application in salt as a host rock is improved and tested on two laboratory scales. This AAM has a low heat evolution due to the reaction mechanism in comparison to common salt concretes based on Portland cement or magnesium oxychloride binders. Hence, crack formation due to thermally induced stress during the hardening process is reduced. After successful laboratory tests with small specimens (height ~5 cm), comparably manufactured large cubic (edge length 70 cm) and cylindrical specimens (height 120 cm, diameter 40 cm) are equipped with sensing technologies to demonstrate the sensors´ technical capabilities. A comprehensive multi-sensory monitoring scheme is developed and investigated to characterize and compare the different material behaviour during the setting and hardening process of two materials: (1) the newly developed AAM-based mortars with salt aggregate, and (2) a blended Portland cement-based salt concrete as reference. The analysed parameters include temperature and humidity of the material, acoustic emissions, and strain variations recorded by fiber optic cables. Passive sensor systems based on radiofrequency identification technology (RFID) embedded in the concrete provide an interface for the wireless readout of various sensors. In parallel to the embedded RFID sensors, conventional cabled systems to read out the temperature and humidity measurements are installed for comparison. Additionally, a detailed inspection of the two large cubic specimens after a monitoring period of more than six months has been undertaken. Active thermography and ultrasonic echo measurements are used to reveal potentially occurring inner cracks from the surface. To verify the non-invasive results, a core sample (diameter 2 cm) was extracted from each of the investigated cubic specimens and analysed in detail with X-ray computed tomography. Furthermore, ultrasonic methods are used for quality assurance to detect obstacles, cracks, and delamination at in-situ scale sealing structures. Experimental layout and applied imaging techniques are optimised to enhance the image quality for measurements from the front side of the engineered barrier. To characterize the inside of the test sealing structure and to improve the detection of potentially existing cracks, an ultrasonic borehole probe using the phased array technique is developed. First analyses at a half-spherical specimen coincide with modelling results and prove the reliability of the directional response caused by the phased array technique of the newly constructed ultrasonic borehole probe. Overall, the project SealWasteSafe helps to characterize construction materials and improves multi-sensory monitoring concepts and ultrasonic equipment for the sake of quality assurance. Particularly for salt as a host rock, this will help to design safe sealing structures for nuclear waste disposal. T2 - EGU General Assembly 2023 CY - Vienna, Austria DA - 23.04.2023 KW - SealWasteSafe KW - Engineered barriers KW - Salt concrete KW - Quality assurance KW - Ultrasound KW - CT KW - Thermography PY - 2023 DO - https://doi.org/10.5194/egusphere-egu23-11582 AN - OPUS4-57500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Hau, Julia A1 - Niederleithinger, Ernst ED - Cunha, A. ED - Caetano, E. T1 - Accounting for Long Term Environmental Influences on Ultrasonic Monitoring Measurements of Reinforced Concrete Constructions with Embedded Transducers N2 - Ultrasound measurements in concrete are a well-known technique in civil engineering and non-destructive testing. For consistent monitoring of a concrete structure, the common techniques, using external sensors can often not provide the appropriate degree of repeatability, as the surface of structures changes, and comparable coupling conditions cannot be guaranteed when a measurement is repeated after some time. By embedding ultrasound transducers in concrete, we aim to develop a strategy for long-term monitoring of infrastructure, especially bridges, as a supplement and extension to other techniques. Applying the so-called coda wave interferometry to these measurements we can detect subtle changes in the medium far beyond the Resolution limit of traditional time of flight methods. A smart sensor layout enables cost-efficient sensing of the entire area of interest. Embedding the transducers might remove uncertainties like coupling or positioning changes, while other challenges remain. Temperature and moisture content influence the structure and the transducers. These drifts need to be recorded and removed and good coupling must be ensured while not being able to visually inspect the sensor. In a multidisciplinary research group funded by the German Research Foundation, we aim to solve these problems on the way towards an ultrasound monitoring system for reinforced concrete structures. In various experiments in the lab and field, we determine the influence of temperature variations on the measurements and the equipment. As the monitoring task is the detection of irreversible damages - not reversible changes - a smart system requires a smart way of discrimination between permanent damages and reversible changes. With the data collected in these experiments, we present an approach to an environmental correction to ultrasound data to avoid a misinterpretation of these environmental changes as damage indicators. T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Porto, Portugal DA - 30.06.2021 KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Structural Health Monitoring KW - Embedded Sensors PY - 2021 SP - 1 EP - 7 AN - OPUS4-54007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -