TY - CONF A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Mierschke, Vivien A1 - Bertschat, Anja Sophie T1 - Concepts from seismic interferometry transferred to sonic and ultrasonic concrete inspection and monitoring N2 - Seismic interferometry (SI) deals either with the sensible detection of changes in the subsurface or with the reconstruction of virtual signals between two receivers by crosscorrelation of signals from diffuse sources. These concepts can be applied in NDT in civil engineering for various purposes, e. g. to detect changes in bridges. Here it is demonstrated using data from a reference structure on our test site. Practical applications can be expected in the very near future. T2 - European Conference on Non-Destructive Testing (ECNDT) CY - Gothenburg, Sweden DA - 11.6.2018 KW - Ultrasound KW - Monitoring KW - Concrete KW - Interferometry KW - Coda PY - 2018 AN - OPUS4-46844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, T. A1 - Murtuz, A. K. M. G. A1 - Hafiz, A. A1 - Dusicka, P. A1 - Niederleithinger, Ernst ED - Gabrijel, I. ED - Grosse, C. ED - Skazlić, M. T1 - Post-earthquake damage evaluation of concrete structures using ultrasonic monitoring: A proof-of concept laboratory study N2 - In earthquake-prone regions such as the Pacific Northwest, damage assessment tools are needed to enable safety evaluations to support recovery. Currently, damage assessment is performed primarily by visual inspection and is often impossible for structural members that are inaccessible, such as deep foundations or interior members hidden by cladding. This study explores the possibility of using embedded ultrasonic transducers to monitor reinforced concrete members for damage progression under earthquake loading. A novel methodology is proposed where changes in the member condition due to an increase in the earthquake-type loading of a full-scale column-foundation specimen are correlated with changes in the recorded ultrasonic waveforms. The discussed preliminary analysis of the ultrasonic signals is based on wave propagation velocity, changes in the coda wave portion, and maximum amplitude of the signals. Three embedded transducers were used to continuously monitor the laboratory specimen during destructive testing. This paper provides an overview of the proposed methodology, outlines the laboratory experiment, and discusses some preliminary observations. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.3.2019 KW - Concrete KW - Monitoring KW - Ultrasound KW - earthquake PY - 2019 SN - 978-2-35158-227-5 DO - https://doi.org/10.1007/978-3-031-07258-1_84 SP - 112 EP - 119 PB - RILEM Publications S.A.R.L. CY - Paris, France AN - OPUS4-47679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic monitoring of structural concrete elements N2 - Ultrasonic transmission measurements are used to monitor concrete elements mostly on a laboratory scale since decades. Recently, coda wave interferometry, a technique adapted from seismology, has been introduced to civil engineering experiments. It can be used to reveal subtle changes in concrete samples and even large construction elements without having a transducer directly at the location where the change is taking place. The methodology works best with embedded transducers to avoid coupling issues or excessive environmental influence. These transducers can be used for newly built and existing structures. Recently, large concrete beams have been equipped with a network of transducers and loaded until failure. Using code wave interferometry, it was possible to visualize stress fields and damaged areas. This paper gives an overview of the state of the art, recent results achieved at BAM and a task list for further results and development. T2 - International Conference on Sustainable Materials, Systems and Structures (SMSS 2019) CY - Rovinj, Croatia DA - 20.03.2019 KW - Concrete KW - Ultrasound KW - Monitoring KW - coda wave interferometry PY - 2019 AN - OPUS4-47676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clauß, F. A1 - Epple, Niklas A1 - Ahrens, M. A. A1 - Niederleithinger, Ernst A1 - Mark, P. T1 - Correlation of Load-Bearing Behavior of Reinforced Concrete Members and Velocity Changes of Coda Waves N2 - The integral collection of information such as strains, cracks, or temperatures by ultrasound offers the best prerequisites to monitor structures during their lifetime. In this paper, a novel approach is proposed which uses the collected information in the coda of ultrasonic signals to infer the condition of a structure. This approach is derived from component tests on a reinforced concrete beam subjected to four-point bending in the lab at Ruhr University Bochum. In addition to ultrasonic measurements, strain of the reinforcement is measured with fiber optic sensors. Approached by the methods of moment-curvature relations, the steel strains serve as a reference for velocity changes of the coda waves. In particular, a correlation between the relative velocity change and the average steel strain in the reinforcement is derived that covers 90% of the total bearing capacity. The purely empirical model yields a linear function with a high level of accuracy (R 2 =0.99, R2=0.99, RMSE≈90μ RMSE≈90μ strain). KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Structural Health Monitoring KW - Reinforced Concrete KW - Embedded Sensors PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542316 DO - https://doi.org/10.3390/ma15030738 VL - 15 IS - 3 SP - 738 PB - MDPI AN - OPUS4-54231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Strangfeld, Christoph A1 - Maack, Stefan T1 - Entwicklung eines luftgekoppelten Ultraschall-Echo-Prüfverfahrens mittels fluidischer Anregung N2 - In vielen technischen Bereichen werden Ultraschallverfahren zur zer-störungsfreien Werkstoffprüfung eingesetzt. Dabei wird ein Schallpuls von einem Prüfkopf in ein Prüfobjekt eingebracht. Der Puls kann unter anderem durch Membra-nen oder Piezoelemente erzeugt werden und wird in der Regel durch direkten Kontakt oder über ein Koppelmittel an das Objekt übertragen. Luftgekoppelter Ultraschall spielt in kommerziellen Anwendungen bisher eine untergeordnete Rolle, da die Dif-ferenz der akustischen Impedanzen von Luft und Festkörpern immense Verluste beim Übergang des Schallsignals hervorruft. In diesem Beitrag soll ein neuartiges Anregungsprinzip vorgestellt werden, mit dem ein Großteil dieser Verluste vermieden wird. Anstelle eines Festkörpers soll mit Hilfe einer fluidischen Düse Druckluft zur Signalerzeugung eingesetzt werden. In die-ser Düse wird eine selbsterhaltende Strömungsinstabilität erzeugt, die einen Schall-puls von bis zu 100 kHz hervorruft, sodass der Impedanzverlust in die Umgebungsluft entfällt. Da die charakteristische Frequenz eines fluidisch generierten Pulses maßgeb-lich von der Bauform der Düse und dem anliegenden Druck abhängt, lässt sich mittels einer geeigneten Strömungsregelung ein breiter Frequenzbereich zur Abtastung nut-zen. Die so emittierten Pulse werden auf das Prüfobjekt gerichtet und die reflektierten Signale mit einem Laservibrometer an der Oberfläche des Objekts im Echo-Verfahren abgetastet. Von drei signalmindernden Materialübergängen bei gewöhnlichem luftge-koppeltem Ultraschall bleibt in dem hier vorgeschlagenen Messystem lediglich die Grenzfläche von Luft zu Prüfkörper, sodass eine höhere Signalausbeute als bisher er-wartet werden kann. T2 - DACH-Jahrestagung 2019 CY - Friedrichshafen, Germany DA - 27.05.2019 KW - Ultraschall KW - Ultrasound KW - Air-coupled KW - Luftgekoppelt KW - Fluidic oscillator KW - Fluidischer Oszillator KW - Laser-Doppler-Vibrometer KW - Refraktovibrometrie KW - Refracto-vibrometry KW - NDT KW - ZfP PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481207 VL - 2019 SP - 1 EP - 8 PB - DGZfP Deutsche Gesellschaft für Zerstörungsfreie Prüfung AN - OPUS4-48120 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Niederleithinger, Ernst ED - Rizzo, P. ED - Milazzo, A. T1 - Towards Monitoring of Concrete Structures with Embedded Ultrasound Sensors and Coda Waves – First Results of DFG for CoDA N2 - Due to the importance of reinforced concrete structures for modern society, damage assessment during the entire life-cycle of such structures has become a special interest in non-destructive testing. Using embedded ultrasound sensors in combination with other measurement methods, numerical modeling and self-made data collectors, tailored specifically for monitoring tasks, the German research group DFG FOR CoDA aims to investigate and develop novel methods for damage detection and rapid model updating in reinforced concrete structures. In the first stage of the project, besides the development of custom-built, low-cost data collectors, ultrasonic transducers are embedded in a large, reinforced concrete specimen on a BAM test site near Berlin. In this experiment, the influence of changing environmental conditions (mainly temperature) on the ultrasound signal is investigated using coda-wave interferometry. The results show a correlation between changes in temperature and ultrasonic velocity. Such changes must be taken into consideration in a long-term monitoring setup to distinguish between reversible and permanent changes. By correcting the data using a linear relation between concrete temperature and velocity change to remove the seasonal trends and by low-pass filtering the data to remove daily variations can remove most of the temperature influence on the ultrasound measurements. KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Embedded sensors KW - Structural health monitoring PY - 2021 SN - 978-3-030-64593-9 SN - 978-3-030-64594-6 DO - https://doi.org/10.1007/978-3-030-64594-6_27 VL - 127 SP - 266 EP - 275 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-52012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Niederleithinger, Ernst T1 - Monitoring of Concrete with Embedded Ultrasound Sensors, Coda Waves and a Novel Measurement Device N2 - Using embedded ultrasound (US) sensors in civil engineering structures and Coda Wave Interferometry (CWI), DFG research group CoDA aims for developing methods of concrete damage assessment by combination of Micro and macro scale simulations and experiments. BAMs goal within the project is the provision of small and durable measurement equipment on the one hand, and the investigation of damage sensitive parameters and development of an imaging algorithm on the other hand. In this study we focus on the development of the measurement system and the influence of temperature variations on the measurements. T2 - Summer School DFG FOR CoDA CY - Berchtesgaden, Germany DA - 27.09.2020 KW - Ultrasound KW - Coda Wave Interferometry KW - Structural Health Monitoring PY - 2020 AN - OPUS4-51382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Hau, Julia A1 - Niederleithinger, Ernst ED - Cunha, A. ED - Caetano, E. T1 - Accounting for Long Term Environmental Influences on Ultrasonic Monitoring Measurements of Reinforced Concrete Constructions with Embedded Transducers N2 - Ultrasound measurements in concrete are a well-known technique in civil engineering and non-destructive testing. For consistent monitoring of a concrete structure, the common techniques, using external sensors can often not provide the appropriate degree of repeatability, as the surface of structures changes, and comparable coupling conditions cannot be guaranteed when a measurement is repeated after some time. By embedding ultrasound transducers in concrete, we aim to develop a strategy for long-term monitoring of infrastructure, especially bridges, as a supplement and extension to other techniques. Applying the so-called coda wave interferometry to these measurements we can detect subtle changes in the medium far beyond the Resolution limit of traditional time of flight methods. A smart sensor layout enables cost-efficient sensing of the entire area of interest. Embedding the transducers might remove uncertainties like coupling or positioning changes, while other challenges remain. Temperature and moisture content influence the structure and the transducers. These drifts need to be recorded and removed and good coupling must be ensured while not being able to visually inspect the sensor. In a multidisciplinary research group funded by the German Research Foundation, we aim to solve these problems on the way towards an ultrasound monitoring system for reinforced concrete structures. In various experiments in the lab and field, we determine the influence of temperature variations on the measurements and the equipment. As the monitoring task is the detection of irreversible damages - not reversible changes - a smart system requires a smart way of discrimination between permanent damages and reversible changes. With the data collected in these experiments, we present an approach to an environmental correction to ultrasound data to avoid a misinterpretation of these environmental changes as damage indicators. T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Porto, Portugal DA - 30.06.2021 KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Structural Health Monitoring KW - Embedded Sensors PY - 2021 SP - 1 EP - 7 AN - OPUS4-54007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Schweitzer, Thorge A1 - Maack, Stefan A1 - Strangfeld, Christoph T1 - Influence of Operating Conditions on the Fluidic Ultrasonic Transducer Signal N2 - Motivation: • Air-coupled ultrasound (AC-US) enables faster measurements in non-destructive testing for civil engineering • Current state of the art: piezo and capacitive transducers are mostly used for AC US • Currently >99.9% sound intensity loss due to impedance mismatches Innovation: • Fluidic transducers generate US (30-60 kHz) by rapid switching of a supersonic jet • Fluidic transducers rely on external components such as solenoid valves and tubing --> How do repetition time and tube length influence the signal? T2 - DAGA 2021 CY - Vienna, Austria DA - 15.08.2021 KW - Ultrasound KW - Non-destructive testing KW - Fluidic devices PY - 2021 AN - OPUS4-53408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bühling, Benjamin T1 - Acoustic and flow data of an ultrasonic fluidic switch and an ultrasonic piezoelectric transducer N2 - This dataset contains acoustic and flow data of an ultrasonic fluidic switch, which have been acquired using a microphone, a hot-wire anemometer and a pitot tube. Furthermore, acoustic data of a commercial piezoelectric transducer is provided. KW - Fluidics KW - Air-coupled ultrasound KW - Ultrasound KW - Non-destructive testing KW - Acoustic-flow interaction KW - Piezoelectric transducer PY - 2020 DO - https://doi.org/10.7910/DVN/OQYPC9 PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-52392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -