TY - CONF A1 - Epple, Niklas A1 - Niederleithinger, Ernst A1 - Fontoura Barroso, Daniel T1 - Coda Wave Interferometry for Monitoring Bridges with Embedded Ultrasonic Transducers – Lessons Learned at the Gänstorbrücke Bridge Ulm, Germany N2 - Ultrasonic Coda Wave interferometry has the potential to detect minute changes in scattering materials like concrete. By permanently installing ultrasonic transducers in concrete, DFG Research unit CoDA aims to develop methods for concrete damage assessment in Germany's aging infrastructure. To test the methods developed in simulations and laboratory experiments on a large scale, we have implemented several ultrasonic transducers at the Gänstorbrücke Ulm, one of Germany's most monitored road bridges. Since fall 2020 we are monitoring parts of the center of the Bridge, as well as an abutment, and compare the results to the commercial monitoring system. All data is recorded with a self-made data collection device, the so-called W-Box, and analyzed with different coda wave-based algorithms to detect signal and volumetric velocity changes. The long-term measurements show that the influence of temperature changes on strains and therefore ultrasound velocity changes calculated with coda waves can be monitored. The capabilities and limitations of the coda wave-based monitoring system are tested in a controlled experiment. Static loading using a truck with varying loads at several positions allows the calibration of the system to improve the detectability of possibly damaging loads and changes induced by this loading. A map of velocity change analyzing data from this load experiment shows that the influence of load on the material and strain distribution can be detected with array measurements. T2 - NDT-CE 2022 - The International Symposium on Nondestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Coda Wave Interferometry KW - Ultrasound KW - Embedded sensors KW - Bridge Monitoring KW - Load Experiment PY - 2022 AN - OPUS4-56454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Mielentz, Frank A1 - Effner, Ute A1 - Maack, Stefan A1 - Scott, David A1 - Villalobos, Salvador T1 - Ultrasonic methods for quality assurance and condition assessment in nuclear concrete structures – lessons learned N2 - Ultrasonic non-destructive testing methods have found various applications in quality assurance and condition assessment of nuclear concrete structures. This includes but is not limited to the localization of construction features (thickness measurements, reinforcement, tendon ducts, and others) and damage detection (e. g. corrosion or cracks). However, there are still limitations, e. g. limited penetration depth and resolution, issues when testing hybrid steel/concrete structures as well as absence of standards and regulations. This presentation will show progress in some of these issues and will focus on advanced instrumentation and validation of ultrasonic NDT for concrete structures. Ultrasonic echo testing has been limited to a penetration depth of less than one meter in reinforced concrete. The development of the LAUS (Large Aperture Ultrasonic System), using a large array of ultrasonic transducers and wider offsets between transmitter and receiver, allows to reach up to 5 m in reinforced concrete and 9 m in unreinforced concrete. This capability has been demonstrated by collecting data from an engineered salt concrete barrier in an underground nuclear waste storage facility. Due to an increasingly competitive environment, commercial manufacturers will continue to develop equipment with enhanced penetration and/or increased resolution. To quantify the capabilities and reliability of ultrasonic tests, validation mockups with engineered flaws are required. EPRI and BAM have built a large-scale mockup at a test site close to Berlin (BAM-TTS, Horstwalde) using a design which is repeated at other places. This presentation will also cover the methods deployed on engineered flaws and the repeatability of the test results. T2 - NDE in Nuclear CY - Charlotte, NC, USA DA - 25.7.2019 KW - Concrete KW - Nuclear Structures KW - Ultrasound PY - 2019 AN - OPUS4-48690 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasonic methods for concrete: To boldly see, what we have not seen before N2 - This keynote talk at NDE 2019 discusses specific progress in ultrasonic testing of concrete structures. A deep penetration instrument (LAUS) is introduced as well as advanced imaging methods adopted from geophysics and new approaches to ultrasonic monitoring. T2 - NDE 2019 CY - Bangalore, India DA - 05.12.2019 KW - NDT KW - Concrete KW - Ultrasound KW - Imaging KW - Monitoring PY - 2019 AN - OPUS4-50170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Introduction to BAM and ultrasonics (and GPR) in civil engineering N2 - This presentation gives anoverview about BAM, its department 8 and in particular its division 8.2 "NDT methods for civil engineering". The focus is on methods and applications with a geoscientific context, such as methods adopted from geophysics or NDT method applied in a geological environment. T2 - GTK (Geological Survey of Finland) Semninar CY - Espoo, Finland DA - 20.01.2023 KW - NDT KW - Ultrasound KW - Radar KW - Geophysics KW - Concrete PY - 2023 AN - OPUS4-56911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Prabhakara, Prathik A1 - Mielentz, Frank A1 - Johann, Sergej A1 - Fritsch, Tobias A1 - Stamm, Michael A1 - Kühne, Hans-Carsten A1 - Niederleithinger, Ernst T1 - Material research and multi-sensory monitoring for concrete sealing structure in rock salt underground repositories N2 - Within the project SealWasteSafe, we advance construction materials and non-destructive monitoring concepts of sealing structures applied for underground disposal of nuclear waste. As these engineered barriers have high demands regarding structural integrity, an innovative alkali-activated material (AAM) that is highly suitable for the application in salt as a host rock is improved and tested on two laboratory scales. This AAM has a low heat evolution due to the reaction mechanism in comparison to common salt concretes based on Portland cement or magnesium oxychloride binders. Hence, crack formation due to thermally induced stress during the hardening process is reduced. After successful laboratory tests with small specimens (height ~5 cm), comparably manufactured large cubic (edge length 70 cm) and cylindrical specimens (height 120 cm, diameter 40 cm) are equipped with sensing technologies to demonstrate the sensors´ technical capabilities. A comprehensive multi-sensory monitoring scheme is developed and investigated to characterize and compare the different material behaviour during the setting and hardening process of two materials: (1) the newly developed AAM-based mortars with salt aggregate, and (2) a blended Portland cement-based salt concrete as reference. The analysed parameters include temperature and humidity of the material, acoustic emissions, and strain variations recorded by fiber optic cables. Passive sensor systems based on radiofrequency identification technology (RFID) embedded in the concrete provide an interface for the wireless readout of various sensors. In parallel to the embedded RFID sensors, conventional cabled systems to read out the temperature and humidity measurements are installed for comparison. Additionally, a detailed inspection of the two large cubic specimens after a monitoring period of more than six months has been undertaken. Active thermography and ultrasonic echo measurements are used to reveal potentially occurring inner cracks from the surface. To verify the non-invasive results, a core sample (diameter 2 cm) was extracted from each of the investigated cubic specimens and analysed in detail with X-ray computed tomography. Furthermore, ultrasonic methods are used for quality assurance to detect obstacles, cracks, and delamination at in-situ scale sealing structures. Experimental layout and applied imaging techniques are optimised to enhance the image quality for measurements from the front side of the engineered barrier. To characterize the inside of the test sealing structure and to improve the detection of potentially existing cracks, an ultrasonic borehole probe using the phased array technique is developed. First analyses at a half-spherical specimen coincide with modelling results and prove the reliability of the directional response caused by the phased array technique of the newly constructed ultrasonic borehole probe. Overall, the project SealWasteSafe helps to characterize construction materials and improves multi-sensory monitoring concepts and ultrasonic equipment for the sake of quality assurance. Particularly for salt as a host rock, this will help to design safe sealing structures for nuclear waste disposal. T2 - EGU General Assembly 2023 CY - Vienna, Austria DA - 23.04.2023 KW - SealWasteSafe KW - Engineered barriers KW - Salt concrete KW - Quality assurance KW - Ultrasound KW - CT KW - Thermography PY - 2023 DO - https://doi.org/10.5194/egusphere-egu23-11582 AN - OPUS4-57500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Advances in ultrasonic testing and monitoring of concrete structures N2 - Recent years have seen extended use of ultrasonic techniques for concrete infrastructure assessement. They are applied for quality assurance and condition assessement at bridges, power plants, dams and other important objects. However, there are still a couple of significant limitations. They include, but are not limited to depth of penetration, imaging complex structures or early stage detections of distributed damage. The talk will give information on recent research in this area. Specifically, the application of the unique deep penetration system LAUS is shown. Ultrasonic monitoring using embedded transducers to check for subtle and sudden changes in the material is introduced as well. Comments on initiatives for validation, standardization and certification will be given. T2 - 341e Conférence CERES CY - Online meeting DA - 26.10.2020 KW - Concrete KW - Ultrasound KW - Imaging KW - Monitoring PY - 2020 AN - OPUS4-51463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Current Trends in SHM of German Prestressed Concrete Road bridges N2 - Due to increasing ageing, deterioration and loading , several prestressed concrete bridges bulit in the 1950ies and 1960ies need monitoring. Recently several bridges have sucesssfully equipped with acoustic emission sensing system. BAM works together with several universities on an add onn: Active ultrasonic monitoring combined with coda wave interferometry will help to detect subtle changes and precursors fo failure earlier than other methods. T2 - TRB 100th Annual Meeting, Subcommittee AKT40(3) CY - Online meeting DA - 05.01.2021 KW - Bridges KW - Monitoring KW - Acoustic emission KW - Ultrasound KW - Coda wave interferometry PY - 2021 AN - OPUS4-51972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Büttner, Christoph A1 - Roumia, Nzeeh A1 - Niederleithinger, Ernst T1 - Potential of 3D matrix ultrasonic measurements to image complex concrete structures N2 - Ultrasonic echo testing is a well-established non-destructive testing technique used to investigate the interior of concrete structures in civil engineering. For the reconstruction of internal features, methods similar to seismic imaging are applied. To improve the ultrasonic imaging capabilities, we investigate the potential of a newly available 3D matrix mode measurement device in combination with advanced imaging techniques. Commonly used ultrasonic array measurement devices rely on several ultrasonic transducers coupled to act as one transducer that transmits or receives transversal ultrasound waves. Although this approach is well suited to detect elongated structures such as pipes and rebars, it has limitations if 3D embedded objects are present. Hence, the ultrasonic device MiraA1040Pro used here is designed to measure the ultrasonic wavefield on a 4 by 16 matrix of individual transducers. For testing, we used laboratory specimens with linear and spheric embedded structures first. Both linear and matrix mode measurements were conducted and analysed using the Synthetic Aperture Focusing Technique (SAFT) which is similar to Kirchhoff migration. Second, we used a data set from Teutschenthal mine at a shotcrete specimen constructed to simulate engineered barriers tailored for nuclear waste repositories. Ultrasonic measurements were investigated as a tool for quality assurance of these structures. The specimen contains both artificial 3D artifacts as well as naturally occurring defects such as a delamination. To make use of the advanced data acquisition, focusing 3D imaging techniques are applied to further improve the imaging quality. Generally, the reconstructed images from the 3D matrix mode data have a lower level of Signal-to-Noise-Ratio than the 2D linear mode because the source signal is weaker compared to the linear mode. Moreover, complex wave conversions of the SH-transversal wave occur that are reduced in the 2D linear scenario. However, clearer images can be achieved at non-linear features, particularly with focusing imaging methods. Thus, combining 3D data acquisition techniques with advanced imaging methods improves the success in imaging complex concrete structures. This is of particular interest for thick concrete structures in nuclear barrier systems or foundations. Additionally, we demonstrate opportunities to use well-constrained test laboratory scenarios from non-destructive testing as a practical test case for geophysical methods. T2 - Jahrestagung der Deutschen Geophysikalischen Gesellschaft (DGG) CY - Jena, Germany DA - 11.03.2024 KW - Ultrasound KW - Imaging KW - Quality assurance PY - 2024 AN - OPUS4-59729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Epple, Niklas T1 - ridge Monitoring by Ultrasonic Coda Wave Interferometry N2 - The built infrastructure ages and requires regular inspection and, when in doubt, monitoring. To ensure that older concrete bridges showing signs of deterioration can be used safely, several innovative monitoring tools have been introduced, including but not limited to optical, fiber-optic, or acoustic emission techniques. However, there are gaps in the portfolio. A sensing technique that covers a wide range of damage scenarios and larger volumes, while still being sensitive and specific, would be beneficial. For about 15 years, research has been conducted on ultrasonic monitoring of concrete structures that goes beyond the traditional ultrasonic pulse velocity test (PV test), mostly using a very sensitive data evaluation technique called coda wave interferometry. At BAM we have developed sensors and instrumentation specifically for this method. We have instrumented a 70-year-old, severely damaged prestressed concrete bridge in Germany in addition to a commercial monitoring system. We have now collected data for almost 3 years. We can show that we can provide information about the stress distribution in the bridge. We have also been able to confirm that there has been no significant additional damage to the bridge since the installation. T2 - ISNT NDE 2023 CY - Pune, India DA - 07.12.2023 KW - Coda wave interferometry KW - Structural health monitoring KW - Ultrasound KW - Concrete KW - Bridges PY - 2023 AN - OPUS4-59346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wiggenhauser, Herbert T1 - The LAUS: First applications of a new system for ultrasonic imaging of very concrete structures N2 - The LAUS (Large Aperture Ultrasonic System) has been developed to image very thick concrete structures, which are not accessible for commercial systems. The device and the corresponding software is the result of joint research of BAM, an ultrasonic instrument manufacturer and University of Kassel, Germany. It consists of 12 separate arrays of 32 point-contact shear wave transducers each, which can be deployed in flexible configurations. Each array is combined with battery and transmitter, receiver and wireless communication electronics. Three case histories are presented. First the system was deployed on a 5-m thick heavily reinforced foundation slab. The reflection of the slab’s bottom was imaged clearly. In addition, a multiple reflection was registered, thus giving hope that even thicker elements might be imaged by the instrument. Second, the LAUS was used to investigate a massive bridge girder where a heavy rainstorm during concreting had led to imperfections that were visible after removing the formwork was removed. The LAUS could image tendon ducts in 1.8m depth and the backwall closely behind them. Some limited areas showed blurred reflections and were checked by drill holes; these areas were affected by diffuse damage which could be repaired by injections. Third, a large retaining wall was checked for thickness. Meanwhile, the LAUS has been used in underground waste deposits (nuclear and other) for quality assurance of sealing plugs. A confirmed penetration depth of about 7 m has been reached. T2 - ASNT SMT/NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.8.2018 KW - LAUS KW - Ultrasound KW - Imaging KW - Concrete PY - 2018 AN - OPUS4-45828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Non-destructive Evaluation for Nuclear Power Plant concrete infrastructure N2 - The ageing and decommissioning of nuclear concrete infrastructure (e. g. safety containments) as well as the building and closure of waste repositories gives new challenges to non-destructive testing. For example, the quality assurance of very thick concrete structures is beyond the limitations of commercial ultrasonic instrumentation. The presentation introduces typical testing tasks and the application of state of the art NDT techniques. In addition, it describes some new developments in ultrasonic testing and monitoring. Specifically, the application of the unique deep penetration system LAUS is shown. Ultrasonic monitoring using embedded transducers to check for subtle and sudden changes in the material is introduced as well. T2 - Aalto University Special Guest Seminar CY - Espoo, Finland DA - 25.10.2018 KW - Ultrasound KW - Concrete KW - Nuclear PY - 2018 AN - OPUS4-46425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin A1 - Strangfeld, Christoph A1 - Maack, Stefan T1 - Entwicklung eines luftgekoppelten Ultraschall-Echo-Prüfverfahrens mittels fluidischer Anregung N2 - In vielen technischen Bereichen werden Ultraschallverfahren zur zerstörungsfreien Werkstoffprüfung eingesetzt. Dabei wird ein Schallpuls von einem Prüfkopf in ein Prüfobjekt eingebracht. Der Puls kann unter anderem durch Membranen oder Piezoelemente erzeugt werden und wird in der Regel durch direkten Kontakt oder über ein Koppelmittel an das Objekt übertragen. Luftgekoppelter Ultraschall spielt in kommerziellen Anwendungen bisher eine untergeordnete Rolle, da die Differenz der akustischen Impedanzen von Luft und Festkörpern immense Verluste beim Übergang des Schallsignals hervorruft. In diesem Beitrag soll ein neuartiges Anregungsprinzip vorgestellt werden, mit dem ein Großteil dieser Verluste vermieden wird. Anstelle eines Festkörpers soll mit Hilfe einer fluidischen Düse Druckluft zur Signalerzeugung eingesetzt werden. In dieser Düse wird eine selbsterhaltende Strömungsinstabilität erzeugt, die einen Schallpuls von bis zu 100 kHz hervorruft, sodass der Impedanzverlust in die Umgebungsluft entfällt. Da die charakteristische Frequenz eines fluidisch generierten Pulses maßgeblich von der Bauform der Düse und dem anliegenden Druck abhängt, lässt sich mittels einer geeigneten Strömungsregelung ein breiter Frequenzbereich zur Abtastung nutzen. Die so emittierten Pulse werden auf das Prüfobjekt gerichtet und die reflektierten Signale mit einem Laservibrometer an der Oberfläche des Objekts im Echo-Verfahren abgetastet. Von drei signalmindernden Materialübergängen bei gewöhnlichem luftgekoppeltem Ultraschall bleibt in dem hier vorgeschlagenen Messystem lediglich die Grenzfläche von Luft zu Prüfkörper, sodass eine höhere Signalausbeute als bisher erwartet werden kann. T2 - Akustisches Seminar der TU Berlin CY - Berlin, Germany DA - 24.06.2019 KW - Luftgekoppelter Ultraschall KW - Ultrasound KW - Vibrometer PY - 2019 AN - OPUS4-48303 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Hau, Julia A1 - Niederleithinger, Ernst T1 - Accounting for Long Term Environmental Influences on Ultrasonic Monitoring Measurements of Reinforced Concrete Constructions with Embedded Transducers N2 - Ultrasound measurements in concrete are a well-known technique in civil engineering and non-destructive testing. For consistent monitoring of a concrete structure, the common techniques, using external sensors can often not provide the appropriate degree of repeatability, as the surface of structures changes, and comparable coupling conditions cannot be guaranteed when a measurement is repeated after some time. By embedding ultrasound transducers in concrete, we aim to develop a strategy for long-term monitoring of infrastructure, especially bridges, as a supplement and extension to other techniques. Applying the so-called coda wave interferometry to these measurements we can detect subtle changes in the medium far beyond the resolution limit of traditional time of flight methods. A smart sensor layout enables cost-efficient sensing of the entire area of interest. Embedding the transducers might remove uncertainties like coupling or positioning changes, while other challenges remain. Temperature and moisture content influence the structure and the transducers. These drifts need to be recorded and removed and good coupling must be ensured while not being able to visually inspect the sensor. In a multidisciplinary research group funded by the German Research Foundation, we aim to solve these problems on the way towards an ultrasound monitoring system for reinforced concrete structures. In various experiments in the lab and field, we determine the influence of temperature variations on the measurements and the equipment. As the monitoring task is the detection of irreversible damages - not reversible changes - a smart system requires a smart way of discrimination between permanent damages and reversible changes. With the data collected in these experiments, we present an approach to an environmental correction to ultrasound data to avoid a misinterpretation of these environmental changes as damage indicators. T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Porto, Portugal DA - 30.06.2021 KW - Coda Wave Interferometry KW - Embedded sensors KW - Long-term monitoring KW - Ultrasound KW - Temperature Influence PY - 2021 AN - OPUS4-53404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - NDT CE from simple detectors to deep insight and quantitative structural assessment N2 - Non-destructive testing methods are available in civil engineering for decades to estimate concrete properties or to detect flaws and features. But recently we have seen the dawn of next-generation tools, methods, and applications. Some of them will be discussed in the web talk: – Better tools: deeper and more detailed insight into concrete constructions – Better methods: Quantitative use in probabilistic structural assessment – Better rules: Towards standardization, qualification, and certification – Better application: Digitalization and Elimination of the boundaries between NDT, SHM, and BIM: NDT-CE 4.0 Not enough? I might show, how cosmic rays might become a game-changer in NDT-CE. This live webinar record was provided by https://eurostruct.org T2 - Eurostruct Live Talk CY - Online meeting DA - 12.05.2021 KW - NDT-CE KW - Concrete KW - Ultrasound KW - Muons PY - 2021 AN - OPUS4-54158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lozano Duarte, Daniel Hernando A1 - Bulling, Jannis T1 - Octree Meshes for Ultrasonic Guided Waves: Mortar coupling combined with the Scaled Boundary Finite Element Method in Prismatic Structures N2 - Ultrasonic guided waves interacting with complex geometrical features are of high interest in the SHM field. For example, investigations into the extent to which a small change in defect geometry affects wave propagation have applications in Probability of Detection and defect reconstruction. These fields have to be supported by numerical tools aiming to retrieve accurate and reliable results and, thus, more realistic modeling. Due to the short wavelengths of ultrasonic waves and the relatively large domains in which the waves propagate, fine grid resolution for the entire domain is usually not possible due to limited computational resources. One solution is to partition the domain into different subdomains and use a specific, efficient approach for each subdomain. This contribution shows a combination of methods that aims to study these wave defect interactions in an elastic media. Firstly we introduce high-order 3D meshes that can resolve very fine geometrical details and are based on an Octree discretisation technique that employs special transition shape functions to resolve the hanging nodes that may appear due to the nature of the method. Afterward, the Octree mesh is embedded in a prismatic wave-guide based on the semi-analytical formulation of the SBFEM in 3D. To couple the different domains, we employ the mortar method, which enforces the continuity of the wave field across the internal boundaries of the domains. Examples show the power of the approach especially when it comes to parametric analysis. T2 - YIC23 CY - Porto, Portugal DA - 19.06.2023 KW - Octrees KW - Sbfem KW - Ultrasound KW - Mortar method PY - 2023 AN - OPUS4-59662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hassenstein, Christian A1 - Heckel, Thomas A1 - Tomasson, Ingimar A1 - Vöhringer, Daniel A1 - Tkatchenko, Viktoria A1 - Kern, René A1 - Berendt, Torsten A1 - Wassermann, Jonas A1 - Prager, Jens T1 - Automated adaptive TFM method for Gas turbine Testing in NDE 4.0 N2 - Nondestructive testing of gas turbine blades is essential for their maintenance and service process which is critical to ensure both safety and efficiency of these highly stressed parts. In this presentation, a novel ultrasonic testing method is explored in order to acquire part thickness information in the turbine blade’s airfoil. In established industry processes, the measurements are mainly carried out manually and only at a few specific positions of the inspected parts. The proposed method scans the part using a robot arm guiding an ultrasonic array sensor. For ultrasonic coupling to the complex-shaped surface geometry, the inspected part and sensor are immersed into water. A two-step TFM[1, 2] (Total Focusing Method) approach is used to reconstruct the outer and inner surfaces subsequently from the ultrasonic raw data, which are acquired using the FMC[3] (Full Matrix Capture) measurement principle. For each sensor position, the location and geometry of the outer surface is first identified and then used to create an image of an area inside the material. From that image, the inner surface is reconstructed. Finally, part thickness information is deducted from merging location data of inner and outer surface. The result is a high resolution, high precision mapping of the inspected part’s wall thickness. T2 - ECNDT 2023 CY - Lisbon, Portugal DA - 03.07.2023 KW - NDE KW - Gasturbines KW - Maintenance KW - Repair KW - Overhaul KW - Ultrasound PY - 2023 AN - OPUS4-59584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas T1 - Coda Measurements for monitoring infrastructure durability N2 - Presentation about the advancements in the DFG Research unit CoDA, with focus on Coda Wave Monitoring of Infrastructure. With some case studies, possibilities and challenges are discussed on the way towards infrastructural monitoring with CWI. T2 - PhD-Seminar Department 8.2 CY - Berlin, Germany DA - 07.09.2023 KW - CWI KW - Embedded Sensors KW - Ultrasound KW - Bridge Monitoring PY - 2023 AN - OPUS4-58196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Alexander A1 - Heckel, Thomas A1 - Casperson, Ralf A1 - Zhang, Tianyun A1 - Olm, G. A1 - Islam, A. A1 - Simroth, A. T1 - The AIFRI Project - Artificial Intelligence For Rail Inspection N2 - The rails of modern railways face an enormous wear and tear from ever increasing train speeds and loads. This necessitates diligent non-destructive testing for defects of the entire railway system. Non-destructive testing of rail tracks is carried out by rail inspection trains equipped with ultrasonic and eddy current test devices. However, the evaluation of the gathered data is mainly done manually with a strong focus on ultrasonic data, and defects are checked on-site using hand-held testing equipment. Maintenance measures are derived based on these on-site findings. The aim of the AIFRI project (Artificial Intelligence For Rail Inspection) is to - increase the degree of automation of the inspection process, from the evaluation of the data to the planning of maintenance measures, - increase the accuracy of defect detection, - automatically classify detected indications into risk classes. These aims will be achieved by training a neural network for defect detection and classification. Since the current testing data is unbalanced, insufficiently labeled and largely unverified we will supplement fused, simulated eddy current and ultrasonic testing data in form of a configurable digital twin. T2 - PostDoc Day 2022 CY - Berlin, Germany DA - 03.11.2022 KW - Non-destructive testing KW - Artificial intelligence KW - Simulation KW - Eddy current KW - Ultrasound PY - 2022 AN - OPUS4-57240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -