TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - Improving onset picking in ultrasonic testing by using a spectral entropy criterion JF - The Journal of the Acoustical Society of America N2 - In ultrasonic testing, material and structural properties of a specimen can be derived from the time-of-flight (ToF). Using signal features, such as the first peak or envelope maximum, to calculate the ToF is error-prone in multipath arrangements or dispersive and attenuating materials, which is not the case for the signal onset. Borrowing from seismology, researchers used the Akaike information criterion (AIC) picker to automatically determine onset times. The most commonly used formulation, Maeda's AIC picker, is reassessed and found to be based on inappropriate assumptions for signals often used in ultrasonic testing and dependent on arbitrary parameters. Consequently, an onset picker for ultrasonic through-transmission measurements is proposed, based on a spectral entropy criterion (SEC) to model the signal using the AIC framework. This SEC picker takes into account the spectral properties of the ultrasonic signal and is virtually free of arbitrary parameters. Synthetic and experimental data are used to compare the performance of SEC and AIC pickers. It is shown that the accuracy of onset picking is improved for densely sampled data. KW - Akaike information criterion picker KW - Nondestructive testing KW - Ultrasound KW - Time of flight PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594284 UR - https://pubs.aip.org/asa/jasa/article/155/1/544/3061576/Improving-onset-picking-in-ultrasonic-testing-by DO - https://doi.org/10.1121/10.0024337 SN - 0001-4966 VL - 155 IS - 1 SP - 544 EP - 554 PB - AIP Publishing CY - Melville, NY, USA AN - OPUS4-59428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Büttner, Christoph A1 - Roumia, Nzeeh A1 - Niederleithinger, Ernst T1 - Potential of 3D matrix ultrasonic measurements to image complex concrete structures N2 - Ultrasonic echo testing is a well-established non-destructive testing technique used to investigate the interior of concrete structures in civil engineering. For the reconstruction of internal features, methods similar to seismic imaging are applied. To improve the ultrasonic imaging capabilities, we investigate the potential of a newly available 3D matrix mode measurement device in combination with advanced imaging techniques. Commonly used ultrasonic array measurement devices rely on several ultrasonic transducers coupled to act as one transducer that transmits or receives transversal ultrasound waves. Although this approach is well suited to detect elongated structures such as pipes and rebars, it has limitations if 3D embedded objects are present. Hence, the ultrasonic device MiraA1040Pro used here is designed to measure the ultrasonic wavefield on a 4 by 16 matrix of individual transducers. For testing, we used laboratory specimens with linear and spheric embedded structures first. Both linear and matrix mode measurements were conducted and analysed using the Synthetic Aperture Focusing Technique (SAFT) which is similar to Kirchhoff migration. Second, we used a data set from Teutschenthal mine at a shotcrete specimen constructed to simulate engineered barriers tailored for nuclear waste repositories. Ultrasonic measurements were investigated as a tool for quality assurance of these structures. The specimen contains both artificial 3D artifacts as well as naturally occurring defects such as a delamination. To make use of the advanced data acquisition, focusing 3D imaging techniques are applied to further improve the imaging quality. Generally, the reconstructed images from the 3D matrix mode data have a lower level of Signal-to-Noise-Ratio than the 2D linear mode because the source signal is weaker compared to the linear mode. Moreover, complex wave conversions of the SH-transversal wave occur that are reduced in the 2D linear scenario. However, clearer images can be achieved at non-linear features, particularly with focusing imaging methods. Thus, combining 3D data acquisition techniques with advanced imaging methods improves the success in imaging complex concrete structures. This is of particular interest for thick concrete structures in nuclear barrier systems or foundations. Additionally, we demonstrate opportunities to use well-constrained test laboratory scenarios from non-destructive testing as a practical test case for geophysical methods. T2 - Jahrestagung der Deutschen Geophysikalischen Gesellschaft (DGG) CY - Jena, Germany DA - 11.03.2024 KW - Ultrasound KW - Imaging KW - Quality assurance PY - 2024 AN - OPUS4-59729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin T1 - Low-frequency ultrasound data (pulse-echo technique) with shear horizontal and longitudinal waves on the step-shaped concrete specimen “Pk050” N2 - This dataset contains raw data acquired in ultrasound measurements on a reference specimen made of concrete at Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin (Germany). The internal specimen identifier is “Pk050”. The measurements were conducted using the pulse-echo method. The upper surface of the specimen was defined as measuring area. The aim of the measurements is to determine the geometrical dimensions (thickness) of the specimen “Pk050”. In addition to this, a dataset of a second specimen with identifier “Pk266” has been acquired. Pk266 has the same geometrical dimensions and concrete recipe as Pk050, but contains tendons [Reference: https://doi.org/10.7910/DVN/NUU0WZ]. KW - Ultrasound KW - Pulse echo method KW - Synthetic Aperture Focusing Technique KW - Validation KW - Elastic wave PY - 2023 DO - https://doi.org/10.7910/DVN/9EID5D PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-57231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, U. A1 - Pudovikov, S. A1 - Herrmann, H.-G. A1 - Wiggenhauser, H. A1 - Prabhakara, Prathik A1 - Niederleithinger, Ernst T1 - Using the Corner Reflection for Depth Evaluation of Surface Breaking Cracks in Concrete by Ultrasound JF - Journal of Nondestrctive Evaluation N2 - The corner echo is a well-known effect in ultrasonic testing, which allows detection of surface breaking cracks with predominantly perpendicular orientation to the surface as, for example, corrosion cracks in metal pipes or shafts. This echo is formed by two planes, the surface of the crack and the surface which the crack breaks. It can also be classified as a half-skip method, since a reflection of the pulse occurs on the backwall before the reflection at the defect takes place. In combination with the diffraction from the crack tip, the corner echo also allows crack sizing. As shown in this paper, the corner reflection can be used in civil engineering for nondestructive inspection of concrete. Commercially available low frequency ultrasonic arrays with dry point contact sources generate SH transversal waves with sufficient divergence of the sound field in order to detect corner reflections. Ultrasonic line-scans and area-scans were acquired with a linear array on flat concrete specimens, and the data were reconstructed by the Synthetic aperture focusing technique. If the angles and the area of reconstruction are chosen accordingly, the corner echo reflection can be distinguished from other ultrasonic information. The corner echo can thus be used as a method for deciding whether a crack is a partial-depth crack or a full-depth crack and thus for obtaining a statement about crack depth. This paper presents corresponding experimental results obtained on concrete specimens with artificial test defects and cracks induced under controlled conditions. KW - Ultrasound KW - Crack depth KW - Concrete KW - Corner echo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574631 DO - https://doi.org/10.1007/s10921-023-00956-8 SN - 0195-9298 VL - 42 IS - 2 SP - 1 EP - 19 PB - Springer Nature AN - OPUS4-57463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, S. A1 - Büttner, C. T1 - Application of Elastic P-SV Reverse Time Migration to Synthetic Ultrasonic Echo Data from Concrete Members JF - Journal of Nondestructive Evaluation N2 - The ultrasonic echo technique is frequently used in non-destructive testing (NDT) of concrete structures for thickness measurements, geometry determinations as well as localization of built-in components. To improve ultrasonic imaging of complex structures in concrete, we transferred a geophysical imaging technique, the reverse time migration (RTM), to NDT in civil engineering. In contrast to the conventionally used synthetic aperture focusing technique (SAFT) algorithms, RTM is a wavefield continuation method in time and uses the full wave equation. Thus, RTM can handle complicated wave propagations in any direction without dip limitation. In this paper, we focused on the application and evaluation of a two-dimensional (2D) elastic RTM algorithm considering compressional waves, vertically polarized shear waves, and Rayleigh waves. We tested the elastic RTM routine on synthetic ultrasonic echo data generated with a 2D concrete model consisting of several steps and circular air inclusions. As these complex structures can often be found in real-world NDT use cases, their imaging is especially important. By using elastic RTM, we were able to clearly reproduce vertical reflectors and lower edges of circular air voids inside our numerical concrete model. Such structures cannot be imaged with conventional SAFT algorithms. Furthermore, the used elastic RTM approach also yielded a better reconstruction of a horizontal reflector and upper boundaries of circular air inclusions. Our encouraging results demonstrate that elastic RTM has the potential to significantly improve the imaging of complex concrete structures and, thus, is a step forward for detailed, high-quality ultrasonic NDT in civil engineering. KW - Concrete KW - Ultrasound KW - Imaging KW - Reverse time migration KW - Elastic PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580680 DO - https://doi.org/10.1007/s10921-023-00962-w SN - 0195-9298 VL - 42 IS - 3 SP - 1 EP - 18 PB - Springer Nature AN - OPUS4-58068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Introduction to BAM and ultrasonics (and GPR) in civil engineering N2 - This presentation gives anoverview about BAM, its department 8 and in particular its division 8.2 "NDT methods for civil engineering". The focus is on methods and applications with a geoscientific context, such as methods adopted from geophysics or NDT method applied in a geological environment. T2 - GTK (Geological Survey of Finland) Semninar CY - Espoo, Finland DA - 20.01.2023 KW - NDT KW - Ultrasound KW - Radar KW - Geophysics KW - Concrete PY - 2023 AN - OPUS4-56911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Prabhakara, Prathik A1 - Mielentz, Frank A1 - Johann, Sergej A1 - Fritsch, Tobias A1 - Stamm, Michael A1 - Kühne, Hans-Carsten A1 - Niederleithinger, Ernst T1 - Material research and multi-sensory monitoring for concrete sealing structure in rock salt underground repositories N2 - Within the project SealWasteSafe, we advance construction materials and non-destructive monitoring concepts of sealing structures applied for underground disposal of nuclear waste. As these engineered barriers have high demands regarding structural integrity, an innovative alkali-activated material (AAM) that is highly suitable for the application in salt as a host rock is improved and tested on two laboratory scales. This AAM has a low heat evolution due to the reaction mechanism in comparison to common salt concretes based on Portland cement or magnesium oxychloride binders. Hence, crack formation due to thermally induced stress during the hardening process is reduced. After successful laboratory tests with small specimens (height ~5 cm), comparably manufactured large cubic (edge length 70 cm) and cylindrical specimens (height 120 cm, diameter 40 cm) are equipped with sensing technologies to demonstrate the sensors´ technical capabilities. A comprehensive multi-sensory monitoring scheme is developed and investigated to characterize and compare the different material behaviour during the setting and hardening process of two materials: (1) the newly developed AAM-based mortars with salt aggregate, and (2) a blended Portland cement-based salt concrete as reference. The analysed parameters include temperature and humidity of the material, acoustic emissions, and strain variations recorded by fiber optic cables. Passive sensor systems based on radiofrequency identification technology (RFID) embedded in the concrete provide an interface for the wireless readout of various sensors. In parallel to the embedded RFID sensors, conventional cabled systems to read out the temperature and humidity measurements are installed for comparison. Additionally, a detailed inspection of the two large cubic specimens after a monitoring period of more than six months has been undertaken. Active thermography and ultrasonic echo measurements are used to reveal potentially occurring inner cracks from the surface. To verify the non-invasive results, a core sample (diameter 2 cm) was extracted from each of the investigated cubic specimens and analysed in detail with X-ray computed tomography. Furthermore, ultrasonic methods are used for quality assurance to detect obstacles, cracks, and delamination at in-situ scale sealing structures. Experimental layout and applied imaging techniques are optimised to enhance the image quality for measurements from the front side of the engineered barrier. To characterize the inside of the test sealing structure and to improve the detection of potentially existing cracks, an ultrasonic borehole probe using the phased array technique is developed. First analyses at a half-spherical specimen coincide with modelling results and prove the reliability of the directional response caused by the phased array technique of the newly constructed ultrasonic borehole probe. Overall, the project SealWasteSafe helps to characterize construction materials and improves multi-sensory monitoring concepts and ultrasonic equipment for the sake of quality assurance. Particularly for salt as a host rock, this will help to design safe sealing structures for nuclear waste disposal. T2 - EGU General Assembly 2023 CY - Vienna, Austria DA - 23.04.2023 KW - SealWasteSafe KW - Engineered barriers KW - Salt concrete KW - Quality assurance KW - Ultrasound KW - CT KW - Thermography PY - 2023 DO - https://doi.org/10.5194/egusphere-egu23-11582 AN - OPUS4-57500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin T1 - Low-frequency ultrasound data (pulse-echo technique) with shear horizontal and longitudinal waves on the step-shaped concrete specimen “Pk266” with tendons T2 - Harvard Dataverse Repository N2 - This dataset contains raw data acquired in ultrasound measurements on a reference specimen made of concrete at Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin (Germany). The internal specimen identifier is “Pk266”. The measurements were conducted using the pulse-echo method. The upper surface of the specimen was defined as measuring area. The aim of the measurements is to determine both the geometrical dimensions (thickness) and the position of tendons to the measuring area. In addition to this, a second dataset of a second specimen with identifier is existing named “Pk050” has been acquired. Pk050 has the same geometrical dimensions and concrete recipe as Pk266 recipe but does not contain tendons [Reference: https://doi.org/10.7910/DVN/9EID5D]. KW - Ultrasound KW - Pulse echo method KW - Synthetic Aperture Focusing Technique KW - Validation KW - Elastic wave PY - 2023 DO - https://doi.org/10.7910/DVN/NUU0WZ PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-57232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Büttner, Christoph A1 - Buske, Stefan A1 - Niederleithinger, Ernst T1 - Advanced analysis of ultrasonic investigations at sealing structures N2 - Engineering barrier systems are a crucial part of the safe underground disposal of radioactive waste, particularly in salt as a host rock. Sealing structures made of tailored concrete are under test at various sites in Germany. To characterise the material properties of the concrete and potentially also the bonding to the host rock as part of the necessary subsurface structures, we apply non-destructive testing making use of advanced geophysical imaging methods. Ultrasonic investigations have been carried out at underground concrete structures in the Teutschenthal mine in Germany. Here, we show results from two distinct constructions produced in a shotcrete procedure. Our goal is to analyse the performance of ultrasonics to be used as quality assurance for sealing structures made from shotcrete. First, a ~10 m long shotcrete structure is investigated with the help of a unique Large Aperture Ultrasonic System (LAUS) allowing for depth penetration of > 9 m. We perform measurements at the front and from the side of the construction. Second, we obtain results from a 1 m thick shotcrete body containing several artificial defects (width up to 8 cm). Ultrasonic testing data were acquired using a commercial multi-static device. Additionally, a new device measuring with 3D mode instead of line mode is applied and preliminary results will be shown. Generally, the acquired ultrasonic data are analysed by the Synthetic Aperture Focusing Technique that is commonly applied in non-destructive testing. As a result, reflectors in the analysed shotcrete structures are imaged. Individual reflections from internal features and particularly the opposite wall are identified. An unexpected delamination wider than 30 cm is clearly imaged and later verified by boreholes. Thus, the method is – in general – suitable to serve as a quality measure. However, particularly the small and deep artificial defects can hardly be identified in the resulting images. Thus, we use advanced geophysical imaging methods to further enhance the quality of the obtained images. The recorded ultrasonic energy is focused to the physically reflective origin in the analysed volume. First results clearly show that we successfully improve the image quality regarding noise level and artifacts and hence facilitate the detection of objects. In total, we present a valuable experiment under realistic conditions for underground sealing structures made from shotcrete, where the locations of artificial reflectors are partly known. This experiment serves as a unique basis to analyse the performance of advanced analysis methods to obtain high-quality images of the structure’s interior. Hence, the developed ultrasonic testing and analysis schemes can serve as a part of quality assurance that will help to enable safe sealing structures for nuclear waste disposal. T2 - SafeND2023: Interdisciplinary research symposium on the safety of nuclear disposal practices CY - Berlin, Germany DA - 13.09.2023 KW - Ultrasound KW - Imaging KW - Engineered barrier systems KW - Shotcrete PY - 2023 DO - https://doi.org/10.5194/sand-2-67-2023 AN - OPUS4-58497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Epple, Niklas T1 - ridge Monitoring by Ultrasonic Coda Wave Interferometry N2 - The built infrastructure ages and requires regular inspection and, when in doubt, monitoring. To ensure that older concrete bridges showing signs of deterioration can be used safely, several innovative monitoring tools have been introduced, including but not limited to optical, fiber-optic, or acoustic emission techniques. However, there are gaps in the portfolio. A sensing technique that covers a wide range of damage scenarios and larger volumes, while still being sensitive and specific, would be beneficial. For about 15 years, research has been conducted on ultrasonic monitoring of concrete structures that goes beyond the traditional ultrasonic pulse velocity test (PV test), mostly using a very sensitive data evaluation technique called coda wave interferometry. At BAM we have developed sensors and instrumentation specifically for this method. We have instrumented a 70-year-old, severely damaged prestressed concrete bridge in Germany in addition to a commercial monitoring system. We have now collected data for almost 3 years. We can show that we can provide information about the stress distribution in the bridge. We have also been able to confirm that there has been no significant additional damage to the bridge since the installation. T2 - ISNT NDE 2023 CY - Pune, India DA - 07.12.2023 KW - Coda wave interferometry KW - Structural health monitoring KW - Ultrasound KW - Concrete KW - Bridges PY - 2023 AN - OPUS4-59346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -