TY - CONF A1 - Hakim, I. A1 - Schumacher, David A1 - Sundar, V. A1 - Donaldson, S. A1 - Creuz, A. A1 - Schneider, R. A1 - Keller, J. A1 - Browning, C. A1 - May, D. A1 - Abo Ras, M. A1 - Meyendorf, N. ED - Chimenti, D. E. ED - Bond, L. J. T1 - Volume imaging NDE and serial sectioning of carbon fiber composites T2 - AIP Conference Proceedings N2 - A composite material is a combination of two or more materials with very different mechanical, thermal and electrical properties. The various forms of composite materials, due to their high material properties, are widely used as structural materials in the aviation, space, marine, automobile, and sports industries. However, some defects like voids, delamination, or inhomogeneous fiber distribution that form during the fabricating processes of composites can seriously affect the mechanical properties of the composite material. In this study, several imaging NDE techniques such as: thermography, high frequency eddy current, ultrasonic, x-ray radiography, x-ray laminography, and high resolution x-ray CT were conducted to characterize the microstructure of carbon fiber composites. Then, a 3D analysis was implemented by the destructive technique of serial sectioning for the same sample tested by the NDE methods. To better analyze the results of this work and extract a clear volume image for all features and defects contained in the composite material, an intensive comparison was conducted among hundreds of 3D-NDE and multi serial sections’ scan images showing the microstructure variation. T2 - 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION CY - Provo, Utah, USA DA - 16.07.2017 KW - Carbon fiber reinforced polymers KW - Non-destructive testing KW - Thermography KW - Eddy current KW - Ultrasound KW - X-ray radiography KW - X-ray laminography KW - X-ray computed tomography KW - Serial sectioning PY - 2018 DO - https://doi.org/10.1063/1.5031590 VL - 1949 SP - 120003-1 EP - 120003-10 PB - AIP Publishing AN - OPUS4-45173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabhakara, Prathik A1 - Mielentz, Frank A1 - Stolpe, Heiko A1 - Behrens, Matthias A1 - Lay, Vera A1 - Niederleithinger, Ernst T1 - Validation of novel ultrasonic phased array borehole probe by using simulation and measurement JF - Sensors N2 - Low-frequency ultrasonic testing is a well-established non-destructive testing (NDT) method in civil engineering for material characterization and the localization of cracks, reinforcing bars and delamination. A novel ultrasonic borehole probe is developed for in situ quality assurance of sealing structures in radioactive waste repositories using existing research boreholes. The aim is to examine the sealing structures made of salt concrete for any possible cracks and delamination and to localize built-in components. A prototype has been developed using 12 individual horizontal dry point contact (DPC) shear wave transducers separated by equidistant transmitter/receiver arrays. The probe is equipped with a commercially available portable ultrasonic flaw detector used in the NDT civil engineering industry. To increase the sound pressure generated, the number of transducers in the novel probe is increased to 32 transducers. In addition, the timed excitation of each transducer directs a focused beam of sound to a specific angle and distance based on the previously calculated delay time. This narrows the sensitivity of test volume and improves the signal-to-noise ratio of the received signals. In this paper, the newly designed phased array borehole probe is validated by beam computation in the CIVA software and experimental investigations on a half-cylindrical test specimen to investigate the directional characteristics. In combination with geophysical reconstruction methods, it is expected that an optimised radiation pattern of the probe will improve the signal quality and thus increase the reliability of the imaging results. This is an important consideration for the construction of safe sealing structures for the safe disposal of radioactive or toxic waste. KW - Ultrasound KW - Phased array KW - Concrete KW - Borehole PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565722 DO - https://doi.org/10.3390/s22249823 SN - 1424-8220 VL - 22 IS - 24 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, U. A1 - Pudovikov, S. A1 - Herrmann, H.-G. A1 - Wiggenhauser, H. A1 - Prabhakara, Prathik A1 - Niederleithinger, Ernst T1 - Using the Corner Reflection for Depth Evaluation of Surface Breaking Cracks in Concrete by Ultrasound JF - Journal of Nondestrctive Evaluation N2 - The corner echo is a well-known effect in ultrasonic testing, which allows detection of surface breaking cracks with predominantly perpendicular orientation to the surface as, for example, corrosion cracks in metal pipes or shafts. This echo is formed by two planes, the surface of the crack and the surface which the crack breaks. It can also be classified as a half-skip method, since a reflection of the pulse occurs on the backwall before the reflection at the defect takes place. In combination with the diffraction from the crack tip, the corner echo also allows crack sizing. As shown in this paper, the corner reflection can be used in civil engineering for nondestructive inspection of concrete. Commercially available low frequency ultrasonic arrays with dry point contact sources generate SH transversal waves with sufficient divergence of the sound field in order to detect corner reflections. Ultrasonic line-scans and area-scans were acquired with a linear array on flat concrete specimens, and the data were reconstructed by the Synthetic aperture focusing technique. If the angles and the area of reconstruction are chosen accordingly, the corner echo reflection can be distinguished from other ultrasonic information. The corner echo can thus be used as a method for deciding whether a crack is a partial-depth crack or a full-depth crack and thus for obtaining a statement about crack depth. This paper presents corresponding experimental results obtained on concrete specimens with artificial test defects and cracks induced under controlled conditions. KW - Ultrasound KW - Crack depth KW - Concrete KW - Corner echo PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574631 DO - https://doi.org/10.1007/s10921-023-00956-8 SN - 0195-9298 VL - 42 IS - 2 SP - 1 EP - 19 PB - Springer Nature AN - OPUS4-57463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasound: From Imaging to Monitoring N2 - Review of ultrasonic echo imaging and ultrasonic monitoring techniques applied to concrete structures, especially bridges. Includes newest research results from BAM. T2 - Transport Research Board Annual Meeting, Workshop 1647 CY - Washington, DC, USA DA - 6.1.2018 KW - Ultrasound KW - Imaging KW - Monitoring KW - Concrete KW - Bridges PY - 2018 AN - OPUS4-44587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Bulling, Jannis A1 - Prager, Jens T1 - Ultrasonic sensor based on phononic crystals T2 - Proceedings of the ICA 2019 AND EAA EUROREGIO N2 - An essential task in many industries, e.g. food, petrol or chemical industry, is the precise and accurate characterization of liquids. Therefore, the development of innovative in-line sensors is of great interest. New concepts based on periodic structures, so-called phononic crystals (PnCs), are an interesting idea for the design of innovative sensors. A PnC-based sensor can be designed by introducing a resonance inside a bandgap, a frequency region where no wave propagation is allowed. High-Q measurement systems using PnCs are already reported in the literature. However, existing designs cannot be implemented into a piping system directly, but need special fittings, openings or by-passes to be in contact with the liquid. To circumvent this issue, we develop a new sensor based on PnCs, which can be directly implemented as part of the piping system. For this purpose, we use a PnC consisting of hollow cylinders with a periodic change of the outer diameter. A bandgap could be found for the described geometry without fluid in simulation and measurement. However, simulations show, that a bandgap for fluid-filled cylinders can only be obtained for quasi-longitudinal modes. Hence, we propose a mode selective excitation for the sensor. T2 - ICA 2019 CY - Aachen, Germany DA - 09.09.2019 KW - Phononic crystal KW - Ultrasound PY - 2019 SN - 978-3-939296-15-7 SN - 2226-7808 SN - 2415-1599 SP - 969 EP - 976 AN - OPUS4-48860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas A1 - Boehm, Rainer A1 - Mook, G. T1 - Ultrasonic rail inspection with array probes T2 - Railway Engineering 2019 N2 - For more than 60 years ultrasonic rail inspection is used as non-destructive testing method to ensure the safe operation of rail tracks. Constantly increasing traffic density and heavy loads have been the motor for the development of new test equipment from handheld devices to rail inspection trains. (Krull 2003)Up to the present most of the system solutions feature conventional ultrasonic transducers housed in wheel-type and slide-type probes. Different tasks have to be carried out during an in-service inspection for flaws in the rail head, rail web and rail foot as well as rolling contact fatigue (Heckel 2018). The more tasks the inspection system has to perform, the more probes are needed. Compared against standard ultrasonic testing methods the application of array probes offers advantages and flexibility by the electronic steering possibilities to control the transmitted and received sound fields. This allows to increase functionality by software while decreasing the number of probes needed in hardware in parallel. One drawback in application of phased array probes is that the repetition frequency of the subsequent measurements will be reduced by the number of virtual probe functions each phased array probe has to perform. This may limit the range of use for phased array probes in high speed applications. To overcome these limits special designs for array probes and signal processing are necessary. T2 - Railway Engineering 2019 CY - Edinburgh, UK DA - 03.07.2019 KW - High speed KW - Ultrasound KW - Rail inspection KW - Phased array probes PY - 2019 VL - 2019 SP - 1 EP - 3 AN - OPUS4-49680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas A1 - Boehm, Rainer A1 - Mook, G. T1 - Ultrasonic Rail inspection with array Probes N2 - For more than 60 years ultrasonic rail inspection is used as non-destructive testing method to ensure the safe operation of rail tracks. Constantly increasing traffic density and heavy loads have been the motor for the development of new test equipment from handheld devices to rail inspection trains. (Krull 2003)Up to the present most of the system solutions feature conventional ultrasonic transducers housed in wheel-type and slide-type probes. Different tasks have to be carried out during an in-service inspection for flaws in the rail head, rail web and rail foot as well as rolling contact fatigue (Heckel 2018). The more tasks the inspection system has to perform, the more probes are needed. Compared against standard ultrasonic testing methods the application of array probes offers advantages and flexibility by the electronic steering possibilities to control the transmitted and received sound fields. This allows to increase functionality by software while decreasing the number of probes needed in hardware in parallel. One drawback in application of phased array probes is that the repetition frequency of the subsequent measurements will be reduced by the number of virtual probe functions each phased array probe has to perform. This may limit the range of use for phased array probes in high speed applications. To overcome these limits special designs for array probes and signal processing are necessary. T2 - Railway Engineering 2019 CY - Edinburgh, UK DA - 03.07.2019 KW - High speed KW - Ultrasound KW - Rail inspection KW - Phased array probes PY - 2019 AN - OPUS4-49681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Kudla, W. T1 - Ultrasonic quality assurance for underground salt shotcrete sealing structures in Teutschenthal mine, Germany T2 - International Symposium Non-Destructive Testing in Civil Engineering (NDTCE 2022) N2 - Underground sealing structures are necessary to seal radioactive or toxic waste in underground repositories. A special version of MgO concrete is used in the mine in Teutschenthal and applied at a large-scale test with the aim to provide a low permeability barrier. The test structures (up to 10 m long) were created by shotcreting. Besides destructive tests, non-destructive ultrasonic measurements have been evaluated for quality assurance to monitor potential anomalies such as cracks, concrete inhomogeneities, and delamination. We show results of ultrasonic measurements with a multi-transducer system used at the front and from the side of the concrete structure. Images are obtained by synthetic aperture focusing techniques. The boundaries between concreting sections are not visible in the ultrasonic images systematically so that a successful concreting is assumed, which is confirmed by the low permeabilities observed. Several reflectors up to a depth of 1.2 m are identified and interpreted as potential damages in the concrete. Phase analysis of prominent reflectors reveal a negative impedance contrast thus indicating air filled voids, cracks or delamination. Boreholes through some of the identified reflectors are used to verify the results from ultrasonic measurements. Additionally, an experiment with incorporated artificial defects was undertaken to analyse the reliability of the applied methods. Overall, the conducted tests show the potential of ultrasonic measurements to detect critical anomalies. Despite challenges at small-scale structures (cm-order), large-scale anomalies can be identified. Consequently, implementing ultrasonic monitoring during and after the construction of concrete sealing structures has shown its potential as a tool for quality assurance, but needs further development and validation. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Ultrasonic imaging KW - Magnesia shotcrete KW - Underground KW - Engineered barrier systems PY - 2022 UR - https://www.ndt.net/events/proceedings/topic.php?eventID=292&TopicID=27209 SP - 1 EP - 4 PB - NDT.net AN - OPUS4-55824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Kudla, W. T1 - Ultrasonic quality assurance for underground salt shotcrete sealing structures in Teutschenthal mine, Germany N2 - Underground sealing structures are necessary to seal radioactive or toxic waste in underground repositories. Particularly developed MgO concrete is used in the mine in Teutschenthal and applied at a large-scale test with the aim to provide concrete with low permeabilities. The test structures (up to 10 m long) were created with the help of a shotcrete procedure. Besides destructive tests, non-destructive ultrasonic measurements are used for quality assurance to monitor potential anomalies such as cracks, concrete inhomogeneities, and delamination. We show results of ultrasonic measurements with a multi-transducer system used at the front site of the concrete structure. Images are obtained by synthetic aperture focusing techniques. Concreting sections are not systematically imaged so that a successful concreting is assumed as also indicated by observed low permeabilities. Several reflectors up to a depth of 1.2 m are identified and interpreted as potential damages in the concrete. Phase analysis of prominent reflectors reveal a negative impedance contrast thus indicating air filled voids, cracks or delamination. Boreholes through some of the identified reflectors are used to verify the results from ultrasonic measurements. Additionally, an experiment with incorporated defects is undertaken to analyse the reliability of the applied methods. Overall, the conducted tests show the great potential of ultrasonic measurements to detect critical anomalies. Despite challenges at small-scale structures (cm-order), large-scale anomalies can be identified. Implementing ultrasonic monitoring during and after the construction of concrete sealing structures is recommended as a tool for quality assurance. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Ultrasonic imaging KW - Magnesia shotcrete KW - Underground KW - Engineered barrier systems PY - 2022 AN - OPUS4-55825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Hofmann, M. A1 - Kudla, W. T1 - Ultrasonic quality assurance at magnesia shotcrete sealing structures JF - Sensors N2 - Engineered barriers are a key element to enable safe nuclear waste disposal. One method currently under research for their construction is magnesia concrete applied in a shotcrete procedure. In this study, the ultrasonic echo method is evaluated as a means for quality assurance. Imaging of internal structures (backwall, boreholes) and defects, such as delamination, has successfully been achieved in the shotcrete. Additionally, detailed information about the potential cause of selected reflectors are obtained by phase analysis. In several test blocks of various sizes, no consistent concrete section boundaries have been found by ultrasonic imaging, which was verified by subsequent drilling and complementary tests. An experiment with artificial defects imitating cracks, air-filled voids, and material with lower density has been challenging and shows the limitations of the current methods. Although significant defects, such as a large delamination, are reliably identified, several smaller defects are not identified. Generally, ultrasonic imaging provides a suitable base as a mean for quality assurance during and after the construction of sealing structures. However, further developments are required to enhance the reliability of the method and a full validation is still pending. Still, the method has potential to increase the safety of nuclear waste repositories. KW - Ultrasound KW - Imaging KW - Engineered barrier systems KW - Underground KW - Shotcrete PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563170 DO - https://doi.org/10.3390/s22228717 SN - 1424-8220 VL - 22 IS - 22 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -