TY - CONF A1 - Niederleithinger, Ernst A1 - Sodeikat, C. A1 - Epple, Niklas A1 - Liao, Chun-Man A1 - Hindersmann, I. T1 - Acoustic emission and ultrasonic monitoring of a prestressed concrete bridge in its final years N2 - Many European bridges built in the 1950s, 60s and 70s must be re-placed in the next decade due to structural deficiencies, insufficient load capacity or other issues. However, the existing bridges must be used for another couple of years even if flaws and damages already have been detected. In Germany, several prestressed concrete bridges have been instrumented with acoustic emission detection systems to detect wire breaks and to provide early warning signs before failure. To evaluate and interpret the consequences of wire breaks additional instrumentation and accompanying measures as finite element modeling are required. At a bridge in southern Germany we have complemented such a system with active ultrasonic monitoring. Repeated ultrasonic measurements are evaluated with a very sensible algorithm called coda wave interferometry. This method, inspired by seismology, has been shown to deliver early warning signs in lab experiments. Large volumes of concrete can be monitored with a limited network of ultrasonic transducers. We will report on the installation, capabilities, and lim-itations as well as first results. T2 - 1st Conference of the European Association on Quality Control of Bridges and Structures (Eurostruct) CY - Padua, Italy DA - 29.08.2021 KW - Bridge KW - Concrete KW - Acoustic emission KW - Ultrasound KW - Monitoring PY - 2021 AN - OPUS4-54160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Baensch, Franziska A1 - Johann, Sergej A1 - Sturm, Patrick A1 - Mielentz, Frank A1 - Prabhakara, Prathik A1 - Hofmann, Detlef A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten T1 - SealWasteSafe: materials technology, monitoring techniques, and quality assurance for safe sealing structures in underground repositories N2 - Within the project SealWasteSafe, we advance construction materials and monitoring concepts of sealing structures applied for underground disposal of nuclear or toxic waste. As these engineered barriers have high demands concerning integrity, an innovative alkali-activated material (AAM) is improved and tested on various laboratory scales. This AAM has low reaction kinetics related to a preferential slow release of the heat of reaction in comparison to alternative salt concretes based on Portland cement or magnesium oxychloride cements. Hence, crack formation due to thermally induced strain is reduced. After successful laboratory scale analysis (Sturm et al., 2021), the AAM is characterised on a larger scale by manufacturing test specimens (100–300 L). Conventional salt concrete (DBE, 2004) and the newly developed AAM are compared using two specimen geometries, i.e. cylindrical and cuboid. A comprehensive multisensor monitoring scheme is developed to compare the setting process of AAM and salt concrete for these manufactured specimens. The analysed parameters include temperature and humidity of the material, acoustic emissions, and strain variations. Passive sensor systems based on radiofrequency identification technology (RFID) embedded in the concrete, enable wireless access to temperature and humidity measurements and are compared to conventional cabled systems. Additionally, fibre-optic sensors (FOS) are embedded to record strain, but also have potential to record temperature and moisture conditions. Part of this project aims at demonstrating the high reliability of sensors and also their resistance to highly alkaline environments and to water intrusion along cables or at sensor locations. Further technical improvements were implemented so that first results clearly show the scalability of the setting process from previous small-scale AAM experiments and particularly the high potential of the newly developed approaches. Furthermore, ultrasonic methods are used for quality assurance to detect obstacles, potential cracks and delamination. On the one hand, both active and passive ultrasonic measurements complement the results obtained from the multisensor monitoring scheme for the produced specimens. On the other hand, the unique large aperture ultrasonic system (LAUS) provides great depth penetration (up to nearly 10 m) and can thus be applied at in situ sealing structures built as a test site in Morsleben by the Federal Company for Radioactive Waste Disposal (Bundesgesellschaft für Endlagerung, BGE) as shown by Effner et al. (2021). An optimised field lay-out identified from forward modelling studies and advanced imaging techniques applied to the measured data will further improve the obtained results. To characterise the inside of the test engineered barrier and achieve a proof-of-concept, an ultrasonic borehole probe is developed to enable phased arrays that can further improve the detection of potential cracks. Modelling results and first analysis of semispherical specimens confirmed the reliability of the directional response caused by the phased arrays of the newly constructed ultrasonic borehole probe. Overall, the project SealWasteSafe improves the construction material, multisensor monitoring concepts and ultrasonics for quality assurance. This will help to develop safe sealing structures for nuclear waste disposal. The outcomes are particularly valuable for salt as a host rock but partly also transferrable to alternative conditions. T2 - Safe ND Interdisciplinary research symposium on the safety of nuclear disposal practices CY - Berlin, Germany DA - 10.11.2021 KW - Borehole probe KW - SealWasteSafe KW - Engineered barrier KW - Materials technology KW - AAM KW - Monitoring KW - Ultrasound PY - 2021 AN - OPUS4-53919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bulling, Jannis A1 - Gravenkamp, Hauke T1 - A Combination of the Scaled Boundary Finite Element Method with the Mortar Method N2 - The simulation of ultrasonic waves in a linearly elastic body can be computationally intensive. The reason is the relatively short wavelength compared to the body size for high frequencies. One possible approach to counteract the high computational costs is to decompose the domain into small parts and strive for parallelization. The Mortar Method is a well-established approach for domain decomposition. A rather new approach to discretize the emerging subdomains is the Scaled Boundary Finite Element Method. This semi-analytical method has many attractive properties. Some of these properties are listed subsequently. The grid consists of polygonal elements, which leaves much freedom in the meshing process. A variety of material distributions, including anisotropic materials, can be considered. High-order shape functions can be used for optimal convergence properties. The approach treats singularities at crack tips and corners analytically. Especially in the frequency domain, the Scaled Boundary Finite Element Method reduces the dimension of the approximation because only degrees of freedom which are associated with the boundary of a polygonal element are necessary. Those desirable properties make the method particularly suitable for calculating the dynamic responses in bodies with cracks, as it is essential for many non-destructive testing and structural health monitoring applications. In this contribution, we present a combination of the Scaled Boundary Finite Element Method with the Mortar Method in two dimensions. The presentation starts with a theoretical overview of both approaches. Subsequently, numerical examples demonstrate the stability of the combination for the polygonal boundary of the elements. The numerical examples increase in complexity and are compared to results computed on non-divided domains with the Finite Element Method. T2 - WCCM-ECCOMAS CONGRESS CY - Online meeting DA - 11.01.2021 KW - Ultrasound KW - Numerical Simulation KW - Scaled Boundary Finite Element Method, Mortar Method PY - 2021 AN - OPUS4-52275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Bühling, Benjamin A1 - Maack, Stefan T1 - Adaption of fluidic devices for SHM of hydrogen tanks N2 - Frequency analysis of the tank during every filling Passive actuator is integrated inside filling nozzle/ pressure vessel Frequency from 5 kHz to 150 kHz Frequency sweep (Chirp) can be performed Works with every fluid: air, hydrogen, oxygen, argon, water. T2 - H2Safety Kompetenzzentrum CY - BAM Berlin, Germany DA - 07.07.2021 KW - Fluidic device KW - Structural health monitoring KW - Hydrogen tank KW - Ultrasound PY - 2021 AN - OPUS4-52930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zeipert, H. A1 - Claes, L. A1 - Johannesmann, S. A1 - Webersen, M. A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens A1 - Henning, B. T1 - Measurement and simulation of Lamb waves in adhesive-bonded multilayer systems N2 - Lamb waves are a common tool in the field of non-destructive testing and are widely used for material characterisation. Further, the increasing computational capability of modern systems enables the Simulation of complex and detailed material models. This work demonstrates the possibility of simulating an adhesive-bonded multilayer system by characterising each layer individually, and introduces an Approach for determining the dispersive behaviour of acoustic waves in a multilayer system via real measurements. T2 - SMSI 2021 Conference – Sensor and Measurement Science International CY - Online meeting DA - 03.05.2021 KW - Adhesive bonds KW - Lamb waves KW - Elastic constants KW - Non-Destructive Testing KW - Ultrasound PY - 2021 AN - OPUS4-52635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Fontoura Barroso, Daniel A1 - Niederleithinger, Ernst A1 - Hindersmann, I. A1 - Sodeikat, C. A1 - Groschup, R. T1 - Monitoring of a German Road Bridge Using Embedded Ultrasonic Transducers and Coda Waves N2 - The ‘G¨anstorbr¨ucke’ bridge between the cities of Ulm and Neu-Ulm is one of the best-monitored bridges all over Germany. In addition to an already active bride monitoring system, we have equipped the bridge with 30 ultrasonic transducers to explore the monitoring possibilities at an in-service large-scale reinforced concrete structure with continuous active ultrasonic measurements. The monitoring system is based on the detection of small changes in the entire signal, especially the multiply scattered parts of the recording, the so-called coda. Applying Coda Wave Interferometry (CWI), subtle changes in the signal can be detected and related to changing velocities in the area between source and receiver. A comparison of the results from coda wave interferometry with the strain measurements of the permanent monitoring system shows a correlation between strain measurements and CWI results. We discuss the challenges of changing environmental conditions, pose for interpretation of the results, and highlight the advantages of embedded versus externally attached ultrasonic transducers in permanent bridge monitoring, especially when coda wave interferometry is applied. T2 - EWSHM 2022 CY - Palermo, Italy DA - 04.07.2022 KW - Bridge monitoring KW - Ultrasound KW - Embedded sensors KW - Coda wave interferometry PY - 2022 AN - OPUS4-55383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Ultrasound: From Imaging to Monitoring N2 - Review of ultrasonic echo imaging and ultrasonic monitoring techniques applied to concrete structures, especially bridges. Includes newest research results from BAM. T2 - Transport Research Board Annual Meeting, Workshop 1647 CY - Washington, DC, USA DA - 6.1.2018 KW - Ultrasound KW - Imaging KW - Monitoring KW - Concrete KW - Bridges PY - 2018 AN - OPUS4-44587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Alternative imaging conditions for reverse time migration N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 AN - OPUS4-44873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin T1 - Entwicklung eines luftgekoppelten Ultraschall-Echo-Prüfverfahrens mittels fluidischer Anregung N2 - In vielen technischen Bereichen werden Ultraschallverfahren zur zerstörungsfreien Werkstoffprüfung (ZfP) eingesetzt um auf Basis der Signalstärke und der Laufzeit Einbauteile und Beschädigungen zu orten. Luftgekoppelter Ultraschall spielt bisher in kommerziellen Anwendungen vor Allem im Bauwesen eine untergeordnete Rolle, da die Differenz der akustischen Impedanzen von Luft und Festkörpern immense Verluste beim Übergang des Schallsignals hervorruft. Im Rahmen des Promotionsvorhabens soll die Eignung eines neuartigen Anregungsprinzip untersucht werden, mit dem ein Großteil dieser Verluste vermieden werden soll. Anstelle eines Festkörpers soll mit Hilfe einer fluidischen Düse Druckluft zur Signalerzeugung eingesetzt werden. Die Impedanzverluste zwischen Aktuatormembran und Umgebungsluft entfallen daher. Die gezielte Schallerzeugung durch einen pulsierenden Freistrahl ist weitgehend unerforscht. Es ist daher notwendig, den so erzeugten Schallpuls in der Interaktion mit dem transienten Strömungsfeld zu untersuchen. Das kompressible Medium Luft und die geringen räumlichen Dimensionen einer hochfrequenten Pulsdüse werfen darüber hinaus einige Herausforderungen hinsichtlich der eingesetzten Messtechnik auf. Hier sollen geeignete Verfahren weiterentwickelt und validiert werden, um die Eignung des fluidisch erzeugten Pulses zu überprüfen. In diesem Vortrag werden erste Messungen an einem fluidischen Schalter mit denen an einem kommerziellen Luftultraschallprüfkopf verglichen. T2 - Doktorandenseminar BAM Abt. 8 CY - Berlin, Germany DA - 17.02.2020 KW - ZfP KW - Ultraschall KW - NDT KW - Ultrasound KW - Air-coupled KW - Non-Contact KW - Luftgekoppelt KW - Kontaktlos PY - 2020 AN - OPUS4-51120 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas T1 - Monitoring of bridges with coda waves - first steps towards an imaging strategy N2 - Monitoring of concrete structures is of utmost importance in maintenance and preservation of infrastructure. As a part of the DFG research group CoDA (Concrete Damage Assessment by Coda Waves), the works within this PhD project aim for identification of damage sensitive parameters extracted from ultrasonic measurements obtained with embedded sensors, the determination of environmental (reversible) influences on the signal and the localisation of damaged areas. The main technique used for the detection of changes in the monitored material is the so-called Coda Wave Interferometry (CWI). It uses the later part of the ultrasonic recording for the detection of small changes in the sensed area and the calculation of a relative velocity change. Using this technique we can show that we are able to detect changes in concrete temperature with ultrasound measurements. This enables temperature correction for ultrasound monitoring with embedded sensors. The crucial point for imaging and localisation with coda waves is the calculation of the so-called sensitivity kernels. We propose the application of numerical wave simulations for the kernel calculations instead of the commonly used diffusivity equation. Using finite-difference wave modelling code from our DFG project partners we are able to calculate those Kernels and first results are shown in this presentation. The major task for the second year will be the development and implementation of the inversion algorithm as well as the preparation of validation experiments. T2 - Doktorandenseminar BAM Abt. 8 CY - Berlin, Germany DA - 30.03.2020 KW - Ultrasound KW - Non-destructive testing KW - Numerical modelling KW - Structural health monitoring PY - 2020 AN - OPUS4-50624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -