TY - JOUR A1 - Tiitta, M. A1 - Tiitta, V. A1 - Gaal, Mate A1 - Heikkinen, J. A1 - Lappalainen, R. A1 - Tomppo, L. T1 - Air-coupled ultrasound detection of natural defects in wood using ferroelectret and piezoelectric sensors N2 - Air-coupled ultrasound was used for assessing natural defects in wood boards by through-transmission scanning measurements. Gas matrix piezoelectric (GMP) and ferroelectret (FE) transducers were studied. The study also included tests with additional bias voltage with the ferroelectret receivers. Signal analyses, analyses of the measurement dynamics and statistical analyses of the signal parameters were conducted. After the measurement series, the samples were cut from the measurement regions and the defects were analyzed visually from the cross sections. The ultrasound responses were compared with the results of the visual examination of the cross sections. With the additional bias voltage, the ferroelectret measurement showed increased signal-to-noise ratio, which is especially important for air-coupled measurement of high-attenuation materials like wood. When comparing the defect response of GMP and FE sensors, it was found that FE sensors had more sensitive dynamic range, resulting from better s/n ratio and short response pulse. Classification test was made to test the possibility of detecting defects in sound wood. Machine learning methods including decision trees, k-nearest neighbor and support vector machine were used. The classification accuracy varied between 72 and 77% in the tests. All the tested machine learning methods could be used efficiently for the classification. KW - Air-coupled transducers KW - Wood KW - Ultrasound KW - Ultrasonic imaging KW - Ferroelectret KW - Machine learning PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509503 DO - https://doi.org/10.1007/s00226-020-01189-y SP - 1 EP - 14 PB - Springer AN - OPUS4-50950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas T1 - Monitoring of bridges with coda waves - first steps towards an imaging strategy N2 - Monitoring of concrete structures is of utmost importance in maintenance and preservation of infrastructure. As a part of the DFG research group CoDA (Concrete Damage Assessment by Coda Waves), the works within this PhD project aim for identification of damage sensitive parameters extracted from ultrasonic measurements obtained with embedded sensors, the determination of environmental (reversible) influences on the signal and the localisation of damaged areas. The main technique used for the detection of changes in the monitored material is the so-called Coda Wave Interferometry (CWI). It uses the later part of the ultrasonic recording for the detection of small changes in the sensed area and the calculation of a relative velocity change. Using this technique we can show that we are able to detect changes in concrete temperature with ultrasound measurements. This enables temperature correction for ultrasound monitoring with embedded sensors. The crucial point for imaging and localisation with coda waves is the calculation of the so-called sensitivity kernels. We propose the application of numerical wave simulations for the kernel calculations instead of the commonly used diffusivity equation. Using finite-difference wave modelling code from our DFG project partners we are able to calculate those Kernels and first results are shown in this presentation. The major task for the second year will be the development and implementation of the inversion algorithm as well as the preparation of validation experiments. T2 - Doktorandenseminar BAM Abt. 8 CY - Berlin, Germany DA - 30.03.2020 KW - Ultrasound KW - Non-destructive testing KW - Numerical modelling KW - Structural health monitoring PY - 2020 AN - OPUS4-50624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Advances in ultrasonic testing and monitoring of concrete structures N2 - Recent years have seen extended use of ultrasonic techniques for concrete infrastructure assessement. They are applied for quality assurance and condition assessement at bridges, power plants, dams and other important objects. However, there are still a couple of significant limitations. They include, but are not limited to depth of penetration, imaging complex structures or early stage detections of distributed damage. The talk will give information on recent research in this area. Specifically, the application of the unique deep penetration system LAUS is shown. Ultrasonic monitoring using embedded transducers to check for subtle and sudden changes in the material is introduced as well. Comments on initiatives for validation, standardization and certification will be given. T2 - 341e Conférence CERES CY - Online meeting DA - 26.10.2020 KW - Concrete KW - Ultrasound KW - Imaging KW - Monitoring PY - 2020 AN - OPUS4-51463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bühling, Benjamin T1 - Entwicklung eines luftgekoppelten Ultraschall-Echo-Prüfverfahrens mittels fluidischer Anregung N2 - In vielen technischen Bereichen werden Ultraschallverfahren zur zerstörungsfreien Werkstoffprüfung (ZfP) eingesetzt um auf Basis der Signalstärke und der Laufzeit Einbauteile und Beschädigungen zu orten. Luftgekoppelter Ultraschall spielt bisher in kommerziellen Anwendungen vor Allem im Bauwesen eine untergeordnete Rolle, da die Differenz der akustischen Impedanzen von Luft und Festkörpern immense Verluste beim Übergang des Schallsignals hervorruft. Im Rahmen des Promotionsvorhabens soll die Eignung eines neuartigen Anregungsprinzip untersucht werden, mit dem ein Großteil dieser Verluste vermieden werden soll. Anstelle eines Festkörpers soll mit Hilfe einer fluidischen Düse Druckluft zur Signalerzeugung eingesetzt werden. Die Impedanzverluste zwischen Aktuatormembran und Umgebungsluft entfallen daher. Die gezielte Schallerzeugung durch einen pulsierenden Freistrahl ist weitgehend unerforscht. Es ist daher notwendig, den so erzeugten Schallpuls in der Interaktion mit dem transienten Strömungsfeld zu untersuchen. Das kompressible Medium Luft und die geringen räumlichen Dimensionen einer hochfrequenten Pulsdüse werfen darüber hinaus einige Herausforderungen hinsichtlich der eingesetzten Messtechnik auf. Hier sollen geeignete Verfahren weiterentwickelt und validiert werden, um die Eignung des fluidisch erzeugten Pulses zu überprüfen. In diesem Vortrag werden erste Messungen an einem fluidischen Schalter mit denen an einem kommerziellen Luftultraschallprüfkopf verglichen. T2 - Doktorandenseminar BAM Abt. 8 CY - Berlin, Germany DA - 17.02.2020 KW - ZfP KW - Ultraschall KW - NDT KW - Ultrasound KW - Air-coupled KW - Non-Contact KW - Luftgekoppelt KW - Kontaktlos PY - 2020 AN - OPUS4-51120 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bulling, Jannis T1 - A Combination of the Scaled Boundary Finite Element Method with the Mortar Method N2 - The simulation of ultrasonic waves in a linearly elastic body can be computationally intensive. The reason is the relatively short wavelength compared to the body size for high frequencies. One possible approach to counteract the high computational costs is to decompose the domain into small parts and strive for parallelization. The Mortar Method is a well-established approach for domain decomposition. A rather new approach to discretize the emerging subdomains is the Scaled Boundary Finite Element Method. This semi-analytical method has many attractive properties. Some of these properties are listed subsequently. The grid consists of polygonal elements, which leaves much freedom in the meshing process. A variety of material distributions, including anisotropic materials, can be considered. High-order shape functions can be used for optimal convergence properties. The approach treats singularities at crack tips and corners analytically. Especially in the frequency domain, the Scaled Boundary Finite Element Method reduces the dimension of the approximation because only degrees of freedom which are associated with the boundary of a polygonal element are necessary. Those desirable properties make the method particularly suitable for calculating the dynamic responses in bodies with cracks, as it is essential for many non-destructive testing and structural health monitoring applications. In this contribution, we present a combination of the Scaled Boundary Finite Element Method with the Mortar Method in two dimensions. The presentation starts with a theoretical overview of both approaches. Subsequently, numerical examples demonstrate the stability of the combination for the polygonal boundary of the elements. The numerical examples increase in complexity and are compared to results computed on non-divided domains with the Finite Element Method. T2 - WCCM-ECCOMAS CONGRESS CY - Online meeting DA - 11.01.2021 KW - Ultrasound KW - Numerical Simulation KW - Scaled Boundary Finite Element Method, Mortar Method PY - 2021 AN - OPUS4-52275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schweitzer, T. A1 - Hörmann, M. A1 - Bühling, Benjamin A1 - Bobusch, B. T1 - Switching Action of a Bistable Fluidic Amplifier for Ultrasonic Testing N2 - Air-coupled ultrasonic testing is widely used in the industry for the non-destructive testing of compound materials. It provides a fast and efficient way to inspect large concrete civil infrastructures for damage that might lead to catastrophic failure. Due to the large penetration depths required for concrete structures, the use of traditional piezoelectric transducer requires high power electric systems. In this study, a novel fluidic transducer based on a bistable fluidic amplifier is investigated. Previous experiments have shown that the switching action of the device produces a high-power broadband ultrasonic signal. This study will provide further insight into the switching behaviour of the fluidic switch. Therefore, parametric CFD simulations based on compressible supersonic RANS simulations were performed, varying the inlet pressure and velocity profiles for the control flow. Switching times are analyzed with different methods, and it was found that These are mostly independent of the slope of the velocity profile at the control port. Furthermore, it was found that an inversely proportional relationship exists between flow velocity in the throat and the switching time. The results agree with the theoretical background established by experimental studies that can be found in the literature. KW - Ultrasound KW - Non-destructive testing KW - Fluidic devices KW - Computational fluid dynamics KW - Concrete KW - Bistable fluidic amplifier PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525115 DO - https://doi.org/10.3390/fluids6050171 SN - 2311-5521 VL - 6 IS - 5 SP - 171 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zeipert, H. A1 - Claes, L. A1 - Johannesmann, S. A1 - Webersen, M. A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens A1 - Henning, B. T1 - Measurement and simulation of Lamb waves in adhesive-bonded multilayer systems N2 - Lamb waves are a common tool in the field of non-destructive testing and are widely used for materialcharacterisation. Further, the increasing computational capability of modern systems enables the Simulation of complex and detailed material models. This work demonstrates the possibility of simulating an adhesive-bonded multilayer system by characterising each layer individually, and introduces an Approach for determining the dispersive behaviour of acoustic waves in a multilayer system via real measurements. T2 - SMSI 2021 Conference – Sensor and Measurement Science International CY - Online meeting DA - 03.05.2021 KW - Adhesive bonds KW - Lamb waves KW - Elastic constants KW - Non-Destructive Testing KW - Ultrasound PY - 2021 DO - https://doi.org/10.5162/SMSI2021/A8.2 SP - 91 EP - 92 AN - OPUS4-52634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zeipert, H. T1 - Measurement and simulation of Lamb waves in adhesive-bonded multilayer systems N2 - Lamb waves are a common tool in the field of non-destructive testing and are widely used for material characterisation. Further, the increasing computational capability of modern systems enables the Simulation of complex and detailed material models. This work demonstrates the possibility of simulating an adhesive-bonded multilayer system by characterising each layer individually, and introduces an Approach for determining the dispersive behaviour of acoustic waves in a multilayer system via real measurements. T2 - SMSI 2021 Conference – Sensor and Measurement Science International CY - Online meeting DA - 03.05.2021 KW - Adhesive bonds KW - Lamb waves KW - Elastic constants KW - Non-Destructive Testing KW - Ultrasound PY - 2021 AN - OPUS4-52635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeipert, H. A1 - Claes, L. A1 - Johannesmann, S. A1 - Lugovtsova, Yevgeniya A1 - Nicolai, Marcel A1 - Prager, Jens A1 - Henning, Bernd ED - Jumar, U. T1 - An approach to adhesive bond characterisation using guided acoustic waves in multi-layered plates N2 - An approach for the non-destructive characterisation of adhesive bonds using guided ultrasonic waves is presented. Pulsed laser radiation is used to thermoacoustically excite broadband ultrasonic waves in a multi-layered sample, consisting of a metal plate adhesively joined to a polymeric layer using synthetic resin. The resulting signals are received by a purpose-built piezoelectric transducer. Varying the distance between excitation and detection yields spatio-temporal measurement data, from which the dispersive properties of the propagating waves can be inferred using a two-dimensional Fourier transform, assuming the plates to act as coupled waveguides. Coupled multi-layered waveguides show an effect referred to as mode repulsion, where the distance between certain modes in the frequency-wavenumber domain is assumed to be a measure of coupling strength. Measurements at different stages of curing of the adhesive layer are performed and evaluated. A comparison of the results shows changes in the dispersive properties, namely an increased modal bandwidth for the fully cured sample as well as an increased modal distance. KW - Adhesive bonding KW - Guided waves KW - Non-destructive testing KW - Ultrasound PY - 2021 DO - https://doi.org/10.1515/auto-2021-0089 VL - 69 IS - 11 SP - 962 EP - 969 PB - De Gruyter CY - Berlin/Boston AN - OPUS4-53762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine A1 - Oesch, T. A1 - Mielentz, Frank A1 - Meinel, Dietmar A1 - Spyridis, P. T1 - Non-Destructive Multi-Method Assessment of Steel Fiber Orientation in Concrete N2 - Integration of fiber reinforcement in high-performance cementitious materials has become widely applied in many fields of construction. One of the most investigated advantages of steel Fiber reinforced concrete (SFRC) is the deceleration of crack growth and hence its improved sustainability. Additional benefits are associated with its structural properties, as fibers can significantly increase the ductility and the tensile strength of concrete. In some applications it is even possible to entirely replace the conventional reinforcement, leading to significant logistical and environmental benefits. Fiber reinforcement can, however, have critical disadvantages and even hinder the Performance of concrete, since it can induce an anisotropic material behavior of the mixture if the fibers are not appropriately oriented. For a safe use of SFRC in the future, reliable non-destructive testing (NDT) methods need to be identified to assess the fibers’ orientation in hardened concrete. In this study, ultrasonic material testing, electrical impedance testing, and X-ray computed tomography have been investigated for this purpose using specially produced samples with biased or random Fiber orientations. We demonstrate the capabilities of each of these NDT techniques for fiber orientation measurements and draw conclusions based on these results about the most promising areas for future research and development. KW - Spectral induced polarization KW - Steel fiber reiniforced concrete KW - Fiber orientation KW - Non-destructive testing KW - Micro-computed tomography KW - Ultrasound PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543520 DO - https://doi.org/10.3390/app12020697 VL - 12 IS - 2 SP - 1 EP - 14 PB - MDPI CY - Basel Switzerland AN - OPUS4-54352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olino, M. A1 - Lugovtsova, Yevgeniya A1 - Memmolo, V. A1 - Prager, Jens T1 - Temperature Compensation Strategies for Lamb Wave Inspection using Distributed Sensor Networks N2 - The application of temperature compensation strategies is crucial in structural health monitoring approaches based on guided waves. Actually, the varying temperature influences the performance of the inspection system inducing false alarms or missed detection, with a consequent reduction of reliability. This paper quantitatively describes a method to compensate the temperature effect, namely the optimal baseline selection (OBS), extending its application to the case of distributed sensor networks (DSN). The effect of temperature separation between baseline time-traces in OBS are investigated considering multiple couples of sensors employed in the DSN. A combined strategy that uses both OBS and frequent value warning is considered. Theoretical results are compared, using data from two several experiments, which use different frequency analysis with either predominantly A0 mode or S0 mode data or both. The focus is given on the fact that different paths are available in a sensor network and several possible combination of results are available. Nonetheless, introducing a frequent value warning it is possible to increase the efficiency of the OBS approach making use of fewer signal processing algorithms. These confirm that the performance of OBS quantitatively agrees with predictions and also demonstrate that the use of compensation strategies improve detectability of damage. T2 - IEEE International Workshop on Metrology for AeroSpace CY - Pisa, Italy DA - 27.06.2022 KW - Ultrasound KW - Ultrasonic Guided Waves KW - Structural Health Monitoring PY - 2022 SN - 978-1-6654-1076-2 DO - https://doi.org/10.1109/MetroAeroSpace54187.2022.9856029 SP - 598 EP - 601 AN - OPUS4-55268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Prager, Jens T1 - Modeling guided waves interacting with arbitrarily shaped inhomogeneities using SBFEM in combination with an extruded quadtree decomposition for 3D plates N2 - For structural health monitoring systems or non-destructive testing, it is crucial to study the interactions of ultrasonic-guided waves with inhomogeneities or damage in structural components. Simulation of these interactions poses a challenge. After the wave-damage interaction, the numerical model must reproduce features like mode conversion or wave scattering. Mathematically, damages are discontinuities in a computational domain, and each wave interacts differently because of the geometrical features. We propose a quadtree-based meshing in the current contribution to capture these geometrical characteristics. This kind of discretisation approach requires special techniques to couple cells of different sizes since, after a quadtree decomposition, the problem of so-called hanging nodes may arise. Transition elements based on high-order transfinite shape functions are used to solve this issue. The advantage is that these elements allow the correct coupling of the cells while retaining a high-order interpolation. Moreover, the reuse of the dynamic stiffness matrices can be exploited based on the similarity of the cells. This procedure makes the approach very efficient. Examples show the scattering characteristics of different guided wave modes after interacting with inhomogeneities and discontinuities in a plate. T2 - DAGA 2023 CY - Hamburg, Germany DA - 06.03.2023 KW - SBFEM KW - Quadtree KW - Ultrasound PY - 2023 SP - 1035 EP - 1038 CY - Hamburg AN - OPUS4-59776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas T1 - Coda Measurements for monitoring infrastructure durability N2 - Presentation about the advancements in the DFG Research unit CoDA, with focus on Coda Wave Monitoring of Infrastructure. With some case studies, possibilities and challenges are discussed on the way towards infrastructural monitoring with CWI. T2 - PhD-Seminar Department 8.2 CY - Berlin, Germany DA - 07.09.2023 KW - CWI KW - Embedded Sensors KW - Ultrasound KW - Bridge Monitoring PY - 2023 AN - OPUS4-58196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hassenstein, Christian T1 - Automated adaptive TFM method for Gas turbine Testing in NDE 4.0 N2 - Nondestructive testing of gas turbine blades is essential for their maintenance and service process which is critical to ensure both safety and efficiency of these highly stressed parts. In this presentation, a novel ultrasonic testing method is explored in order to acquire part thickness information in the turbine blade’s airfoil. In established industry processes, the measurements are mainly carried out manually and only at a few specific positions of the inspected parts. The proposed method scans the part using a robot arm guiding an ultrasonic array sensor. For ultrasonic coupling to the complex-shaped surface geometry, the inspected part and sensor are immersed into water. A two-step TFM[1, 2] (Total Focusing Method) approach is used to reconstruct the outer and inner surfaces subsequently from the ultrasonic raw data, which are acquired using the FMC[3] (Full Matrix Capture) measurement principle. For each sensor position, the location and geometry of the outer surface is first identified and then used to create an image of an area inside the material. From that image, the inner surface is reconstructed. Finally, part thickness information is deducted from merging location data of inner and outer surface. The result is a high resolution, high precision mapping of the inspected part’s wall thickness. T2 - ECNDT 2023 CY - Lisbon, Portugal DA - 03.07.2023 KW - NDE KW - Gasturbines KW - Maintenance KW - Repair KW - Overhaul KW - Ultrasound PY - 2023 AN - OPUS4-59584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Alexander T1 - The AIFRI Project - Artificial Intelligence For Rail Inspection N2 - The rails of modern railways face an enormous wear and tear from ever increasing train speeds and loads. This necessitates diligent non-destructive testing for defects of the entire railway system. Non-destructive testing of rail tracks is carried out by rail inspection trains equipped with ultrasonic and eddy current test devices. However, the evaluation of the gathered data is mainly done manually with a strong focus on ultrasonic data, and defects are checked on-site using hand-held testing equipment. Maintenance measures are derived based on these on-site findings. The aim of the AIFRI project (Artificial Intelligence For Rail Inspection) is to - increase the degree of automation of the inspection process, from the evaluation of the data to the planning of maintenance measures, - increase the accuracy of defect detection, - automatically classify detected indications into risk classes. These aims will be achieved by training a neural network for defect detection and classification. Since the current testing data is unbalanced, insufficiently labeled and largely unverified we will supplement fused, simulated eddy current and ultrasonic testing data in form of a configurable digital twin. T2 - PostDoc Day 2022 CY - Berlin, Germany DA - 03.11.2022 KW - Non-destructive testing KW - Artificial intelligence KW - Simulation KW - Eddy current KW - Ultrasound PY - 2022 AN - OPUS4-57240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Memmolo, V. A1 - Lugovtsova, Yevgeniya A1 - Olino, M. A1 - Prager, Jens ED - Kundu, T. ED - Reis, H. ED - Ihn, J.-B. T1 - Application of Temperature Compensation Strategies for Ultrasonic Guided Waves to Distributed Sensor Networks N2 - Temperature compensation strategies play a key role in the implementation of guided wave based structural health monitoring approaches. The varying temperature influences the performance of the inspection system inducing false alarms or missed detection, with a consequent reduction of reliability. This paper quantitatively assesses two temperature compensation methods, namely the optimal baseline selection (OBS) and the baseline signal stretch (BSS), with the aim to extend their use to the case of distributed sensor networks (DSN). The effect of temperature separation between baseline time-traces in OBS and BSS are investigated considering multiple couples of sensors employed in the DSN. A decision strategy that uses frequent value warning to define the optimal baseline or stretching parameter is found to be effective analyzing data from two several experiments, which use different frequency analysis with either predominantly A0 mode or S0 mode data or both. The focus is given on the fact that different paths are available in a sensor network and several possible combinations of results are available. Nonetheless, introducing a frequent value warning it is possible to increase the efficiency of the OBS and BSS approach making use of fewer signal processing algorithms. In addition, the effectiveness of those approach is quantified using damage indicators as metric, which confirms that the performance of OBS and BSS quantitatively agree with predictions and also demonstrate that the use of compensation strategies improve detectability of damage with a higher reliability of the system. T2 - 2022 49th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE 2022) CY - San Diego, CA, USA DA - 25.07.2022 KW - Ultrasound KW - Elastic waves KW - Structural Health Monitoring KW - Environmental Effects KW - Damage Detection PY - 2022 SN - 978-0-7918-8659-5 DO - https://doi.org/10.1115/QNDE2022-98534 SP - 1 PB - The American Society of Mechanical Engineers (ASME) CY - 2 Park Avenue, New York, NY 10016, USA AN - OPUS4-57074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heckel, Thomas T1 - New Approaches for Mechanized Rail Testing N2 - The changes in the use and maintenance of track systems poses new challenges for the periodic mechanized in-service testing of rails using ultrasound and eddy current. The methods currently applied have been used since decades with only minor changes. To face the new challenges generated by modern drive systems, higher speeds, heavier loads adapted techniques have to be developed to detect new defect types and artefacts generated by new production methods. Especially the area where rolling contact fatigue takes place is under focus. Going beyond the standard conventional ultrasound setups used since the 1950 enables a more detailed detection and classification of rail defects and size estimation. Eddy current methods are applied for surface crack detection and head check depth quantification at the gauge corner of railway tracks. An extension of the tested zone to the running surface uncloses rail defect signal types other than head checks to be detected and estimated in type and size. For the automated evaluation of the recorded data algorithms based on artificial intelligence being trained based on simulation will be applied. Typically, the testing parameter vary depending on the track condition and the probe wear. To identify variables and parameters which have a significant influence on the overall performance of the test run modelling of the setup can be used. Actual developments will be presented in this talk T2 - WCNDT 2024 CY - Incheom, Korea DA - 27.05.2024 KW - Railway KW - Ultrasound KW - Simulation KW - Eddy current KW - Artificial intelligence PY - 2024 AN - OPUS4-61033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Imani, A. A1 - Niederleithinger, Ernst T1 - Nondestructive Evaluation of Bridges without Structural Plans for Load Rating Purposes N2 - According to the NBI database, more than 21,000 in-service U.S. bridges lack sufficient structural documentation necessary for analytical load rating. Among these are a significant proportion of older prestressed concrete bridges. Given the lack of documentation on the reinforcing layout, such structures cannot be load rated analytically and are often subject to engineering judgement as the basis for rating. Otherwise, the typical approach for load rating such bridges is to conduct costly proof load testing and destructive probing together with making conservative assumptions. Therefore, any improvement to current practices will benefit DOTs and taxpayers alike. Accurately reconstructed 3D images of the girders to reflect the internal reinforcement could mitigate the need for costly, if not impractical, destructive testing and proof load testing, and help reduce dependency on conservative assumptions. This study examines a comprehensive NDE approach using ultrasonic tomography and GPR to aid in gathering structural information for load rating purposes. Different types of AASHTO and hollow core girders were tested. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Radar KW - Bridges KW - Load rating PY - 2022 AN - OPUS4-56356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bühling, Benjamin A1 - Maack, Stefan A1 - Schönsee, Eric A1 - Schweitzer, Thorge A1 - Strangfeld, Christoph T1 - Acoustic and flow data of fluidic and piezoelectric ultrasonic transducers N2 - This data article presents characteristic acoustic and flow data of a fluidic ultrasonic transducer as well as acoustic data of a commercial piezoelectric ultrasonic transducer used in non-destructive testing for civil engineering. The flow data has been acquired using hot-wire anemometry and a Pitot tube. The three-dimensional acoustic data of both devices has been acquired using a calibrated microphone. The distribution of characteristic acoustic properties of both transducers are extracted and given in addition to the raw data. The data presented in the article will be a valuable source for reference and validation, both for developing fluidic and alternate ultrasound generation technologies. Furthermore, they will give additional insight into the acoustic-flow interaction phenomena of high speed switching devices. This article is accompanying the paper Experimental Analysis of the Acoustic Field of an Ultrasonic Pulse Induced by a Fluidic Switch (Bühling et al., 2021) published in The Journal of the Acoustical Society of America, where the data is interpreted in detail and the rationale for characteristic sound properties of the fluidic transducer are given. KW - Ultrasound KW - Non-destructive testing KW - Air-coupled ultrasound KW - Fluidics KW - Acoustic-flow interaction KW - Piezoelectric transducer PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531308 DO - https://doi.org/10.1016/j.dib.2021.107280 VL - 38 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Bühling, Benjamin T1 - Low-frequency ultrasound data (pulse-echo technique) with shear horizontal and longitudinal waves on the step-shaped concrete specimen “Pk050” N2 - This dataset contains raw data acquired in ultrasound measurements on a reference specimen made of concrete at Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin (Germany). The internal specimen identifier is “Pk050”. The measurements were conducted using the pulse-echo method. The upper surface of the specimen was defined as measuring area. The aim of the measurements is to determine the geometrical dimensions (thickness) of the specimen “Pk050”. In addition to this, a dataset of a second specimen with identifier “Pk266” has been acquired. Pk266 has the same geometrical dimensions and concrete recipe as Pk050, but contains tendons [Reference: https://doi.org/10.7910/DVN/NUU0WZ]. KW - Ultrasound KW - Pulse echo method KW - Synthetic Aperture Focusing Technique KW - Validation KW - Elastic wave PY - 2023 DO - https://doi.org/10.7910/DVN/9EID5D PB - Harvard College CY - Cambridge, MA, USA AN - OPUS4-57231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -