TY - CONF A1 - Emamverdi, Farnaz A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular mobility and gas transport properties of mixed matrix membranes based on PIM-1 and POF fillers N2 - Especially now in times of the energy revolution, the demand for energy-efficient separation processes promotes the advancement of new high-performance materials for use as highly selective separation membranes. Polymers with intrinsic microporosity (PIMs) are of high interest in the field of gas separation membranes. Currently the application of PIMs for membrane technology is still restrained by their strong tendency to physical aging involving a significant loss of their good gas separation properties. Physical aging phenomenon is related to the molecular mobility of PIMs which was investigated by broadband dielectric spectroscopy (BDS) previously [1]. In this work, covalent phosphinine-based framework (Eto-CPSF) was used as a nanofiller (0-10 wt %) in a PIM-1 matrix to potentially enhance the gas transport properties and prevent physical aging. Since molecular mobility is a fundamental parameter determining gas transport as well as physical aging in such a material, our study includes dielectric investigations by BDS of pure PIM-1 and PIM-1/Eto-CPSF mixed matrix membranes to establish a correlation between molecular mobility and gas transport properties. In addition, gas permeability was determined by the time-lag method (0-10 bar pressure) at 35 °C for N2, O2, CH4 and CO2 for all MMMs. The dielectric behavior of the polymeric films and their response upon heating were measured by isothermal frequency scans during different heating/cooling cycles in a broad temperature range up to 250 °C. Multiple dielectric processes following Arrhenius behavior were observed. Local fluctuations, Maxwell-Wagner-Sillars (MWS) polarization and structural relaxations were discussed correlating to structural-properties of PIM-1. As main result for MMMs, the permeability of PIM-1 for CH4 and CO2 gases were increased significantly with only 5 wt% of nanofiller within the polymer matrix. However, this is not observed for Eto-CPSF concentrations higher than ca. 7 wt% probably due to a microphase separated morphology of the nanocomposite system. Furthermore, the permselectivity of membranes for pair gases O2/N2 and CO2/N2 show enhancement up to a concentration of about 7 wt% Eto-CPSF filler. T2 - 11th BDS conference CY - San Sebastian, Spain DA - 04.09.2022 KW - Gas transport KW - BDS KW - Mixed Matrix Membrane KW - Nanocomposite PY - 2022 AN - OPUS4-55752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emamverdi, Farnaz A1 - Yin, Huajie A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular Mobility and Physical Aging of Polymers with Intrinsic Microporosity (PIM-1) Revisited: A Big Glassy World N2 - Polymeric membranes represent a cost- and energy-efficient solution for gas separation. Recently Polymers of Intrinsic Microporosity (PIMs) have been in a great interest because of their outstanding BET surface area larger than 700m2/g and pore size smaller than 1 nm. PIMs are a promising candidate in gas separation with high permeability and appealing selectivity due to their inefficient packing derived from a combination of ladder-like rigid segments with sites of contortion. However, it is recognized this class of polymers suffer from decrease in performance with time due to physical aging. The initial microporous structures approach a denser state via local chain rearrangements, leading to a dramatic reduction in permeability. As chain packing during film casting and physical aging are the key factors determine the performance in separation applications, characterization of the molecular mobility in these materials has been proved to provide valuable information. In recent research on PIM-1 the archetypal PIM, a molecular relaxation process with high activation energy together with a significant conductivity in the glassy state has been found and explained with the formation of local intermolecular agglomerates due to interaction of π-electrons in aromatic moieties of the polymer backbone. In this work, the dielectric behavior of the polymeric films and their response upon heating (aging) were measured by isothermal frequency scans during different heating/cooling cycles in a broad temperature range down to 133K for the first time. Multiple dielectric processes following Arrhenius behavior were observed. Local fluctuations, Maxwell-Wagner-Sillars (MWS) polarization and structural relaxations were discussed correlating to structural-properties of PIM-1. Up to now, no other work has studied the role of porosity and thermal history of PIM-1 film in dielectric processes. The goal is by eliminating thermal history and considering storing conditions provide better understanding on aging and plasticizing in high free volume glassy polymer PIM-1. T2 - IDS Online Meeting CY - Berlin, Germany DA - 06.09.2021 KW - Physical Aging KW - BDS KW - Microporous structure KW - Permeation PY - 2021 AN - OPUS4-55766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -