TY - CONF A1 - Geburtig, Anja A1 - Wachtendorf, Volker T1 - Digitale Umweltsimulation am Beispiel der Photooxidation von Polymeren N2 - Die Umweltwirkungen auf ein Material werden als Überlapp der Funktionskurven von Materialempfindlichkeit und einwirkenden Umweltparametern betrachtet. Wenn entweder die Empfindlichkeit oder die Beanspruchungen Null sind, ergibt sich auch keine Umweltwirkung und bei beidseitig Werten größer Null das jeweilige Produkt der beiden. Die Akkumulation der nicht-reversiblen Effekte über die Zeit und allen Eigenschaftsänderungen entspricht der Alterung des Materials für den jeweiligen Expositionszeitraum. Die digitale Umweltsimulation gliedert sich hier in drei Teilaspekte. Ein erster, rein materialwissenschaftlicher Teil hat die Aufgabe, alle relevanten Materialempfindlichkeiten experimentell zu quantifizieren. Ein zweiter – unter Umständen numerischer Teil – hat die Aufgabe, das Bauteil und seine Einbaulage zu digitalisieren und aus den makroskopischen Umgebungsbedingungen die relevanten mikroklimatischen Umweltparameter für alle Oberflächen- oder Volumenelemente zu bestimmen. In einem dritten Teil werden die Einwirkungen über den betrachteten Zeitraum berechnet und kumuliert. Dieses Konzept, das auf den so genannten Expositions-Reaktions-Funktionen (ERF) basiert, wird an Beispielen der Photoxidation erläutert. Dieses Vorgehen wurde schon beim ViPQuali-Projekt als Numerische Umweltsimulation umgesetzt. Überprüft werden muss das Modell unbedingt an einer realitätsnahen Validierungsbeanspruchung. Hier werden die ermittelten ERFs mit über den kompletten Beanspruchungszeitraum geloggten Umweltparametern gekoppelt, um die berechnete mit der experimentell erfahrenen Alterungswirkung zu vergleichen. Nur so kann sichergestellt sein, dass alle für die Anwendungsumgebung relevanten Materialempfindlichkeiten einbezogen wurden. T2 - 52. Jahrestagung der GUS CY - Blankenloch, Germany DA - 26.03.2024 KW - Polymer 3R KW - UV KW - Bestrahlung KW - Bewitterung PY - 2024 AN - OPUS4-59831 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Simon A1 - Benner, Philipp A1 - Vogel, Kristin A1 - Hofmann-Böllinghaus, Anja T1 - Ein Modell zur Ausbreitung von Waldbränden - schnellere Vorhersagen durch den Einsatz von maschinellem Lernen, Fernerkundung und Copernicus-Daten N2 - Weltweit stellen Waldbrände eine große Bedrohung für Umwelt, Wirtschaft und menschliches Leben dar. Der fortschreitende Klimawandel verstärkt Trockenheit und Dürre, wodurch die Größe und Intensität von Waldbränden sowie das daraus resultierende Gefahrenpotential zusätzlich erhöht werden. Um im Risikofall eine schnelle und effektive Waldbrandbekämpfung zu gewährleisten, sollen Einsatzkräfte in Zukunft von KI-basierten Ausbreitungsmodellen unterstützt werden. Der Einsatz von maschinellem Lernen ermöglicht dabei schnelle und zielgerichtete Ausbreitungsvorhersagen in Echtzeit, die in den Prozess der Brandbekämpfung als zusätzliche Information einfließen können. Im Rahmen des durch das EU-Förderprogram Horizon 2020 finanzierte Projekt TREEADS wird ein solches Modell für Europa entwickelt. Dazu wird mit verschiedenen Satellitendaten des Copernicus-Programms und der NASA ein auf räumlicher und zeitlicher Ebene aufgelöster Datensatz zu europäischen Waldbränden aufgebaut. Zu den erfassten Waldbränden werden wichtigen Faktoren, die Einfluss auf die Brandausbreitung haben, ergänzt. Dazu gehören das von Copernicus bereitgestellte, digitale Geländemodell Europas und verschiedene, von Sentinel-2 Messungen abgeleitete Informationen zu Vegetation und Landnutzung. Dieser 2D-Trainingsdatensatz zu realen Waldbränden wird durch die zeitlich hochaufgelösten, meteorologischen Reanalyse-Produkte – Copernicus European Regional ReAnalysis (CERRA) und ERA5-Land – vervollständigt und ist die Grundlage für ein Modell zur Ausbreitungsvorhersage von Waldbränden. Methoden des Maschinellen Lernens können komplexe Muster in den gesammelten Daten erkennen und so zu einer verbesserten Vorhersage der Brandausbreitung beitragen. Die vielfältigen, von Copernicus bereitgestellten Daten sind dabei ein unabdingbarer Bestandteil des Modells, mit dem den Einsatzkräften ein zusätzliches Tool für den effizienten Einsatz ihrer limitierten Ressourcen zur Verfügung steht. T2 - Nationales Forum für Fernerkundung und Copernicus 2024 CY - Berlin, Germany DA - 19.03.2024 KW - Maschinelles Lernen KW - Waldbrand KW - Geoinformatik KW - Fernerkundung PY - 2024 AN - OPUS4-59840 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hofmann-Böllinghaus, Anja A1 - Klippel, Andrea T1 - Waldbrandforschung im EU-Projekt TREEADS N2 - Die Präsentation gibt einen Überblick über die Arbeiten im German Pilot des EU-Projekts TREEADS. Es werden klein-, mittel- und großskalige Versuche an Waldboden mit einheimischer Vegetation durchgeführt. Begleitend werden numerische Untersuchungen durchgeführt, die eine Variation der Parameter, wie Bodenfeuchte, Temperaturen und Wind über die Experimente hinaus erlauben. Die gemessenen Materialparameter dienen als Input für die numerischen Berechnungen. Die numerischen Modelle werden mit den mittel- und großskaligen Experimenten validiert. T2 - Magdeburger-Köthener Brandschutz- und Sicherheitstagung CY - Magdeburg, Germany DA - 14.03.2024 KW - Waldbrand PY - 2024 AN - OPUS4-59897 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jauregui Rozo, Maria A1 - Sunder, Sruthi A1 - Schartel, Bernhard A1 - Ruckdäschel, Holger T1 - Weaving through fire and force: Fire behavior, fire stability and modes of action between epoxy resin and glass-fiber composites N2 - Several investigation groups have studied the flame-retardancy modes of action and properties of epoxy resins in the past; nevertheless, the selection of suitable flame retardants for epoxy resins remains challenging, and the transfer to fiber composites is difficult. The addition of flame retardants and glass fibers (GFs) to a polymeric system in a fire scenario changes the polymer's pyrolytic path and burning characteristics, reduces the heat released in the combustion, and suppresses the modes of action in the condensed and gas phase. In this study, the thermal analysis, flammability, fire behavior, residue analysis, fire stability, and quantification of modes of action of three different systems with three halogen-free flame retardants (melamine polyphosphate (MPP), ammonium polyphosphate (APP), and silane ammonium polyphosphate (SiAPP)) and three different types of GFs (unidirectional (UD), bidirectional (BD), and woven roving (WR)) will be compared with pure epoxy resin as a reference. T2 - Fire & Polymers CY - New Orleans, LA, USA DA - 12.05.2024 KW - Glass-fiber-composites KW - Epoxy Resins KW - Flame Retardancy KW - Fire Stability KW - Bench-scale Fire Resistance Test PY - 2024 AN - OPUS4-60150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Bhatia, Riya A1 - Dey, Rohit A1 - Ullrich, Matthias S. A1 - Schartel, Bernhard T1 - Phosphor-enriched wastewater products as sustainable flame retardant in PLA N2 - Revolutionizing our polymer industry for adaption to a sustainable carbon circular economy has become one of today’s most demanding challenges. Exploiting renewable resources to replace fossil-fuel—based plastics with biopolymers such as poly(lactic acid) (PLA) is inevitable while using waste streams as a raw material resource at least is promising. When it comes to using PLA as technical polymer, its high flammability must be addressed by flame retardants compatible with the thermoplastic processing of PLA and its compostability. This study proposes microalgae enriched with phosphorus from wastewater (P-Algae) as an elegant way towards a kind of sustainable organophosphorus flame retardant. The concept is demonstrated by investigating the processing, pyrolysis, flammability, and fire behavior of PLA/P-Algae, while varying the P-Algae content and comparing P-Algae with four alternative bio-fillers (phosphorylated lignin, biochar, thermally treated sewage sludge, and metal phytate) with different P-contents as meaningful benchmarks. T2 - EcoFRam2024 CY - Valencia, Spain DA - 22.05.2024 KW - PLA KW - Flame retardancy KW - Phosphorylated algae KW - Wastewater flame retardants KW - Zink phytate KW - Phosphorylated lignin KW - Thermally treated sludge PY - 2024 AN - OPUS4-60142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - More than the sum of its parts – synergistic FR-combinations N2 - Efficient flame retardancy is often achieved only when applying synergistic multicomponent systems. Flame retardants are combined or used together with adjuvants or synergists to enhance their efficiency, reduce the amount required, or reduce the costs; fibers and fillers contribute to fire properties crucially. Although the main flame-retardant modes of action are known, the detailed scientific understanding usually falls short, when it comes to complex synergistic multicomponent systems, the important tiny optimizations, or quantifying in terms of specific fire properties. This paper tries to illuminate the concept of synergistic flame retardants. The need for the multicomponent approach and the main phenomena are described. Thought-provoking impulses are delivered on how the understanding of multicomponent systems promotes the evidence-based development of future flame retardant polymeric materials. Multicomponent systems are discussed in their capacity as general powerful strategy for achieving and optimizing flame retardant polymeric materials. This paper is based mainly on the overall conclusions and concrete results of several projects performed in the group of the author. Thanks to my (former) students and co-operation partners in these projects. Thanks for financing to DFG (Scha 730/8-1 Scha 730/8-2, Br 3376/1-1, Scha 730/19-1), AiF IGF (438 ZN, 17833N/2, 19078 N/2), and BMBF (03X0111C, 01DN16040). T2 - Fire & Polymers CY - New Orleans, LA, US DA - 12.05.2024 KW - Flame retardants KW - Synergy KW - Composites KW - Adjuvants PY - 2024 AN - OPUS4-60082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -