TY - JOUR A1 - Anderson, J. A1 - Boström, L. A1 - Chiva, R. A1 - Guillaume, E. A1 - Colwell, S. A1 - Hofmann-Böllinghaus, Anja A1 - Toth, P. T1 - European approach to assess the fire performance of façades JF - Fire and materials N2 - Several attempts have been made in the past to develop a European harmonized testing and assessment method for façades before the European commission decided to publish a call for tender on the topic. A project consortium from five countries (Sweden, UK, France, Germany and Hungary) applied to the call for tender and was contracted to develop a European approach to assess the fire performance of façades. 24 sub-contractors and 14 stakeholder entities were part of the project. The objective of the European project was to address a request from the Standing Committee of Construction (SCC) to provide EC Member States regulators with a means to regulate the fire performance of façade systems based on a European Approach agreed by SCC. The initial stages of this Project were focused on establishing a Register of the regulatory requirements in all Member States in relation to the fire Performance of façade systems, and to identify those Member States who have regulatory requirements for the fire performance façade systems which go beyond the current EN 13501 (reaction to fire and fire resistance) classification systems and to collate the details of these additional requirements. After having confirmed the regulatory needs a testing and classification methodology based on BS 8414 and DIN 4102-20 was developed to address the identified key performance and classification characteristics. This paper is a short overview of results the two-year development work, which Final Report published by the European Commission in 2018. KW - Facade KW - Regulation KW - Testing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530501 DO - https://doi.org/10.1002/fam.2878 SN - 1099-1018 VL - 45(5) IS - Special issue: Facade fire safety SP - 598 EP - 608 PB - Wiley CY - Oxford AN - OPUS4-53050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hofmann-Böllinghaus, Anja A1 - Boström, L. A1 - Anderson, J. A1 - Chiva, R. A1 - Guillaume, E. A1 - Colwell, S. A1 - Toth, P. T1 - European approach to assess the fire performance of façades T2 - Proceedings Interflam 2019 N2 - Several attempts have been made in the past to develop a European harmonized testing and assessment method for façades before the European commission decided to publish a call for tender on the topic. A project consortium from five countries (Sweden, UK, France, Germany and Hungary) applied to the call for tender and was contracted to develop a European approach to assess the fire performance of façades. 24 sub-contractors and 14 stakeholder entities were part of the project. The objective of the European project was to address a request from the Standing Committee of Construction (SCC) to provide EC Member States regulators with a means to regulate the fire performance of façade systems based on a European approach agreed by SCC. In addressing this objective, the project team was asked to consider a number of issues which are presented and discussed. T2 - Interflam 2019 CY - London, UK DA - 01.07.2019 KW - Facade KW - European KW - Fire scenario KW - Testing PY - 2019 SP - 213 EP - 227 PB - Interscience AN - OPUS4-48428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El Houssami, M. A1 - Försth, M. A1 - Fredriksson, H. A1 - Drean, V. A1 - Guillaume, E. A1 - Hofmann-Böllinghaus, Anja A1 - Sandinge, A. T1 - Fire safety of interior materials of buses JF - Fire and Materials N2 - This study provides an analysis on the fire safety of passengers and the fire protection of coaches and buses. A brief review of major bus fire incidents, an overview of current regulations in Europe, and their limitations are presented. The study finds that the current small-scale fire test methods described in UN ECE Reg No. 118 need to be replaced by test methods that can assess the reaction to fire of materials when exposed to ignition sources of varying sizes. To address these shortcomings, the study proposed an expert recommendation to update the material fire safety requirements and testing for buses. Additional measures are proposed, derived from objectives and strategies applied in other transport sectors, and can be tested through existing European and international standards, which are widely used by several industries. These measures aim to extend the time with tenable conditions for a safe evacuation in case of fire, reduce the degree of damage to buses, reduce the risk for fast and excessive thermal exposure on modern energy carriers needed for a more sustainable transport sector. KW - Fire KW - Bus interior materials KW - Rregulations PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575700 DO - https://doi.org/10.1002/fam.3134 SN - 1099-1018 SP - 1 EP - 15 PB - Wiley CY - London AN - OPUS4-57570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manes, M. A1 - El Houssami, M. A1 - Campbell, R. A1 - Sauca, A. A1 - Rush, D. A1 - Hofmann-Böllinghaus, Anja A1 - Andersson, P. A1 - Wagner, P. A1 - Veeneklaas, J. A1 - van Hees, P. A1 - Guillaume, E. T1 - Closing Data Gaps and Paving the Way for Pan-European Fire Safety Efforts: Part I—Overview of Current Practices for Fire Statistics JF - Fire Technology N2 - The analysis of the current state of fire statistics and data collection in Europe and other countries is needed to increase awareness of how fire incidents affect buildings and to support pan-European fire prevention and fire mitigation measures. The terminology and data collected regarding fire incidents in buildings in the EU Member States were mapped to obtain meaningful datasets to determine common terminology, collection methodology, and data interpretation system. An extensive literature review showed that fire data collection systems have been instrumental in informing firefighting strategies, evidence-based planning, prevention, and educational programmes. Differences and similarities between fire data collection systems were also investigated. The amount and quality of the information in fire statistical recording systems appear to be influenced by the complexity and structure with which the data are collected. The analysis also examined the existing fire statistics in the EU Member States and a few other countries. Finally, a detailed investigation of the number of fires, fire deaths, and injuries from 2009 to 2018 in several countries was examined based on data from a report by CTIF. The trends showed differences attributable to the existing fire statistical practices in terms of terminology and data collection, and interpretation. Part II proposes a common terminology for selected fire statistical variables. The results provide relevant information regarding fire safety at the European level and should be used to guide the development of more uniform fire statistics across Europe. KW - Fire statistics KW - European project PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575711 DO - https://doi.org/10.1007/s10694-023-01415-6 SN - 1572-8099 SP - 1 EP - 44 PB - Springer CY - Heidelberg AN - OPUS4-57571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manes, M. A1 - Sauca, A. A1 - El Houssami, M. A1 - Andersson, P. A1 - McIntyre, C. A1 - Campbell, R. A1 - Rush, D. A1 - Hofmann-Böllinghaus, Anja A1 - Wagner, P. A1 - Leene, M. A1 - Oberhagemann, D. A1 - Jomaas, G. A1 - Grone, F. A1 - Guillaume, E. T1 - Closing Data Gaps and Paving the Way for Pan-European Fire Safety Efforts: Part II—Terminology of Fire Statistical Variables JF - Fire Technology N2 - A well-defined terminology of fire-related variables is important for correct analyses and supporting knowledge-based decisions regarding the evaluation of building fires at the European level. After developing an overview of current practices for fire statistics in Part I, the terminology used and the data collected by the EU Member States and eight other countries regarding fire incidents, property damage and human losses were mapped to increase awareness of their practice and support a comprehensive assessment of several fire statistical datasets. A questionnaire was distributed to relevant authorities responsible for the collection, elaboration/analysis, and fire statistical data publications to define and select the essential variables for an appropriate fire assessment and fire incident description. Based on the results of the questionnaire able to identify the essential fire statistical variables and a detailed analysis of current definitions adopted in the fire statistics of the EU Member States and other countries, a common terminology is proposed to collect the necessary data in the EU Member States and obtain meaningful datasets based on standardised terms and definitions. The results will generate essential outputs to move towards harmonised fire statistics at the EU level and contribute to an appropriate analysis able to improve fire prevention and fire mitigation in building fires. KW - Fire statistics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575725 DO - https://doi.org/10.1007/s10694-023-01408-5 SN - 1572-8099 SP - 1 EP - 32 PB - Springer CY - Heidelberg AN - OPUS4-57572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -