TY - JOUR A1 - Lapiro, I. A1 - Mezhov, Alexander A1 - Kovler, K. T1 - Performance of corrosion inhibitors in reinforced concrete elements under electrical voltage JF - Construction and Building Materials N2 - The current paper develops a novel accelerated corrosion test method based on Faraday’s law to investigate the performance of different inhibitors in reinforced concrete elements under electrical voltage. Using the proposed method two commercially available and three lab-made inhibitors were tested. Lab-made inhibitors based on potassium fluorosilicate and amine carboxylate showed the best performance over others. Furthermore, it is found that under an electrical potential environment beyond 3.6 V, the higher the concrete strength, the more efficient is the corrosion inhibition. Based on experimental results, a novel model describing the corrosion evolution in reinforced concrete was proposed. KW - Steel corrosion KW - Reinforced concrete KW - Accelerated test KW - Corrosion inhibitor KW - Stray current PY - 2022 DO - https://doi.org/10.1016/j.conbuildmat.2022.127656 SN - 0950-0618 VL - 342 IS - 342 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-58249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezhov, Alexander A1 - Ben Shir, I. A1 - Schmidt, A. A1 - Kovler, K. A1 - Diesendruck, Ch. E. T1 - Retardation mechanism of cement hydration by a comb polyphosphate superplasticizer JF - Construction and Building Materials N2 - The retardation mechanism of cement hydration as imparted by the addition of polyphosphate comb superplasticizer to model cement containing C3S, C3A and calcium sulfate hemihydrate is studied using XRD, ss NMR and calorimetry. Our findings show the retardation effect caused by the direct addition of polyphosphate comb superplasticizer differs significantly to that of conventional polycarboxylate superplasticizers. Conversely to polycarboxylates, polyphosphates, at a low dosage, inhibits the silicate reaction without affecting the aluminate reaction and formation of ettringite. Yet, at high doses, both reactions are hampered, and the induction period extended, followed by accelerated aluminate and silicate reactions. KW - Superplasticizer KW - Polyphosphate KW - Retardation KW - Cement hydration PY - 2022 DO - https://doi.org/10.1016/j.conbuildmat.2022.128698 SN - 0950-0618 VL - 352 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-58246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -