TY - CONF A1 - Schneider, Ronald T1 - Towards predictive maintenance of bridges N2 - Key features of predictive maintenance of structural systems are discussed and demonstrated in two examples. Challenges and needs for further research are discussed. T2 - Workshop Bridge Maintenance CY - Online Meeting DA - 09.04.2021 KW - Predictive maintenance KW - Deterioration KW - Structural systems PY - 2021 AN - OPUS4-52768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Straub, D. ED - Matos, J.C. ED - Lourenço, P.B. ED - Oliveira, D.V. ED - Branco, J. ED - Proske, D. ED - Silva, R.A. ED - Sousa, H.S. T1 - Cumulative Failure Probability of Deteriorating Structures: Can It Drop? N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic Engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th International Probabilistic Workshop (IPW 2020) CY - Online meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 DO - https://doi.org/10.1007/978-3-030-73616-3_18 VL - 153 SP - 253 EP - 264 PB - Springer CY - Cham, Switzerland AN - OPUS4-52769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Cumulative failure probability of deteriorating structures: Can it drop? N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th Internatinoal Probabilistic Workshop (IPW 2020) CY - Online Meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 AN - OPUS4-52770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straub, D. A1 - Schneider, Ronald A1 - Bismut, E. A1 - Kim, H.-J. T1 - Reliability analysis of deteriorating structural systems N2 - Reliability analysis of deteriorating structural systems requires the solution of time-variant reliability problems. In the general case, both the capacity of and the loads on the structure vary with time. This analysis can be approached by approximation through a series of time-invariant reliability problems, which is a potentially effective strategy for cases where direct solutions of the time-variant reliability problem are challenging, e.g. for structural systems with many elements or arbitrary load processes. In this contribution, we thoroughly Review the formulation of the equivalent time-invariant reliability problems and extend this approximation to structures for which inspection and monitoring data is available. Thereafter, we present methods for efficiently evaluating the reliability over time. In particular, we propose the combination of sampling-based methods with a FORM (first-order reliability method) approximation of the series system reliability problem that arises in the computation of the lifetime reliability. The framework and algorithms are demonstrated on a set of numerical examples, which include the computation of the reliability conditional on inspection data. KW - Monitoring KW - Reliability KW - Deterioration KW - Structural systems KW - Bayesian analysis KW - Inspection PY - 2020 DO - https://doi.org/10.1016/j.strusafe.2019.101877 VL - 82 SP - Paper 101877, 1 PB - Elsevier Ltd. AN - OPUS4-48952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - A risk-based framework for optimizing inspection and maintenance of deteriorating structures monitored by vibration-based monitoring systems N2 - In this presentation, a framework for integrating vibration-based structural health monitoring data into the optimization of inspection and maintenance of deteriorating structural systems is presented. The framework is demonstrated in an illustrative example considering a steel frame subject to fatigue. T2 - EERA JP Wind WORKSHOP on Ongoing research in offshore wind structures CY - Online meeting DA - 16.09.2021 KW - Structural Health Monitoring KW - Inspection KW - Maintenance KW - Deterioration KW - Vibration KW - Structural Systems PY - 2021 AN - OPUS4-53749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Überwachung von Brücken mit digitalen Methoden N2 - Brücken werden durch Inspektionen und teilweise durch Monitoring überwacht, um Daten und Informationen über den Zustand und die Einwirkungen zu sammeln. Auf deren Grundlage werden Entscheidungen hinsichtlich Maßnahmen zur Gewährleistung der Sicherheit und Verfügbarkeit getroffen. In diesem Vortrag werden die Potentiale der Digitalisierung zur Unterstützung und Verbesserung der Brückenüberwachung diskutiert. Insbesondere werden die Bereiche Datenmanagement, Brückenmodellierung und Entscheidungsfindung betrachtet. T2 - BVPI Arbeitstagung 2022 CY - Berlin, Germany DA - 16.09.2022 KW - Entscheidungsfindung KW - Brücken KW - Überwachung KW - Digitalisierung KW - Datenmanagement KW - Modellierung PY - 2022 AN - OPUS4-55770 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald T1 - Von der Datenerfassung bis zur Entscheidungsfindung: Jede Brücken-Überwachung bedarf einer Gesamtmethodik N2 - Brücken müssen laufend überwacht werden, damit die Unsicherheiten hinsichtlich ihres Zustands, ihrer Beanspruchung und ihrer Leistungsfähigkeit verringert werden können. Diese Aufgabe soll künftig mit digitalen Methoden erleichtert werden. Im folgenden Beitrag werden deshalb die digitale Bauwerksmodellierung und die Entscheidungsfindung beleuchtet. Dazu wird gezeigt, wie Zustandsdiagnosen und -prognosen digital ermöglicht werden und wie durch diagnostische und prognostische Modelle eine wissenschaftliche Basis für risikobasierte Entscheidungen über Erhaltungsmaßnahmen und für den Übergang vom reaktiven zum vorausschauenden Brückenmanagement gebildet werden kann. Dabei wird klar: Jede Brücken-Überwachung bedarf einer Gesamtmethodik, ihre wichtigsten Elemente sind: Datenerfassung, Datenmanagement, Datenanalyse, Bauwerksmodellierung, Bauwerksbewertung und die letztendlichen Entscheidungen über notwendige Erhaltungsmaßnahmen. KW - Prädiktive Instandhaltung KW - Brücken KW - Erhaltungsmanagement KW - Digitale Zwillinge PY - 2023 IS - 62 SP - 76 EP - 83 AN - OPUS4-57811 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Structural integrity management research at BAM N2 - This presentation provides an overview on the structural integrity management research at BAM. In addition, a framework for monitoring and risk-informed inspection and maintenance planning for offshore steel structures is presented. T2 - Structural Health Monitoring Using Statistical Pattern Recognition CY - Berlin, Germany DA - 20.03.2023 KW - Structural integrity KW - Monitoring KW - Maintenance KW - Inspeciton KW - Bridges KW - Offshore wind PY - 2023 AN - OPUS4-57864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lesny, K. A1 - Arnold, P. A1 - Sorgatz, J. A1 - Schneider, Ronald T1 - Wie sicher sind unsere Bauwerke? - Strukturpapier des Arbeitskreises 2.15 der DGGT „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ N2 - Der zukünftige Eurocode 7 wird ausdrücklich die Nutzung zuverlässigkeitsbasierter Methoden in der geotechnischen Planung und Bemessung erlauben. In Deutschland gibt es bisher kaum Erfahrung in der praktischen Anwendung derartiger Verfahren und entsprechend sind die Vorbehalte gegenüber diesen Methoden oft groß. Der neue DGGT-Arbeitskreis (AK) 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ hat sich zum Ziel gesetzt, durch praxisorientierte Anleitungen und Empfehlungen sowie begleitende Aus- und Weiterbildungsangebote den praktischen Zugang zu diesen Verfahren zu unterstützen. Ziel ist es, Möglichkeiten und Grenzen zu verdeutlichen sowie vor allem ihre Potenziale zu erschließen. In dem vorliegenden Beitrag werden allgemeine Grundlagen und die zukünftigen Arbeitsfelder des AK 2.15 vorgestellt. Ausgehend von der Einführung relevanter Fachbegriffe wird zunächst die Einbettung zuverlässigkeitsbasierter Verfahren in den aktuellen Normungs- und Regelungskontext aufgezeigt. Anschließend werden anhand des Lebenszyklus eines geotechnischen Bauwerks die Unsicherheiten in den geotechnischen Prognosen und Bewertungen beschrieben. Daran anknüpfend wird aufgezeigt, an welchen Stellen zuverlässigkeitsbasierte Methoden als mögliches Werkzeug sinnvoll genutzt werden können, um Ingenieur:innen, Bauherr:innen und Prüfer:innen in Nachweis- und Entscheidungsprozessen zu unterstützen. Zu den sich daraus ableitenden Arbeitsthemen werden durch den AK 2.15 zukünftig Empfehlungen erarbeitet und sukzessive veröffentlicht KW - Brückensicherheit KW - Sicherheit KW - Wahrscheinlichkeit KW - Zuverlässigkeit KW - Bemessung KW - Bewertung KW - Offshore Wind PY - 2023 DO - https://doi.org/10.1002/gete.202300014 VL - 46 IS - 3 SP - 153 EP - 164 PB - Ernst & Sohn GmbH CY - Berlin AN - OPUS4-58208 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Impulsvortrag: Ermüdungslebensdauerbewertung mittels Informationen aus Monitoring und Inspektionen N2 - Kontext: Ermüdungsbeanspruchte Tragstrukturen von Windenergieanlagen, Bestimmung der Ermüdungsbeanspruchungen und -zuverlässigkeit auf der Grundlage von Simulationen aus dem Design unter Berücksichtigung von Modellunsicherheiten, Aktualisierung der Ermüdungsbeanspruchungen und -zuverlässigkeit auf der Grundlage von globalen Monitoring- und lokalen Inspektionsinformationen aus dem Betrieb unter Berücksichtigung von Modell- und Messunsicherheiten T2 - 3. Verbundtreffen ReNEW CY - Berlin, Germany DA - 05.09.2024 KW - Modellunsicherheiten KW - Windenergie KW - Ermüdungslebensdauer KW - Tragstrukturen KW - Monitoring KW - Inspektionen PY - 2024 AN - OPUS4-61427 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Modeling in support of offshore wind farm end-of-life decision making N2 - The EU member states have set out ambitious long-term goals for deploying offshore wind energy. The installed offshore wind capacity is set to increase from 14.6 GW in 2021 to around 320 GW in 2050. This signifies the role of offshore wind energy as a major contributor to reaching the EU’s climate and energy goals. To ensure that the defined targets are met, a significant number of new wind farms has to be installed and existing wind farms reaching the end of their planned life need to be reused efficiently. Some of the relevant reuse alternatives are lifetime extension, repowering based on the existing support structures and repowering with new turbines. As a basis of the decision-making regarding the reuse of existing offshore wind farm, the expected utility of each relevant option should be determined based on the associated expected rewards, costs and risks. The optimal concept maximizes the utility of the decision-maker and fulfills the existing constraints and requirements. To facilitate such a quantitative decision-making, models and methods have to be developed. In particular, models are required that enable predictions of (a) the condition and performance of the turbines and support structures and (b) the renumeration, costs and consequences of adverse events. These predictions have to consider (a) the governing uncertainties, (b) the available information from the planning, construction, installation and operating phase, (b) potential repair, retrofitting and strengthening schemes and (c) possible monitoring, inspection and maintenance regimes for the future operating phase. Over the past years, several models, methods and tools have been developed at the Bundesanstalt für Materialforschung und -prüfung (BAM) to support the structural integrity management of offshore wind turbine substructures. These include: (a) a prototype for reliability-based, system-wide, adaptive planning of inspections of welded steel structures in offshore wind farms, (b) a method for monitoring and risk-informed optimization of inspection and maintenance strategies for jacket structures subject to fatigue, and (c) a probabilistic cost model of inspection and maintenance of welded steel structures in offshore wind farms. This contribution provides an overview on these works and discusses how they can be adapted and extended to support the decision-making regarding lifetime extensions and repowering of offshore wind farms. T2 - 12th International Forum on Engineering Decision Making (12th IFED) CY - Stoos, Switzerland DA - 05.12.2023 KW - Windenergie KW - Offshore Wind KW - Lifetime Extension KW - Repowering PY - 2023 AN - OPUS4-60430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Zuverlässigkeitsbasierte Bemessung und Monte Carlo Simulation N2 - Am 19. und 20.11.2024 veranstaltete die BAM und der DGGT AK 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ in Zusammenarbeit mit der DGGT-Akademie einen zweitägigen Workshop zur Einführung in die zuverlässigkeitsbasierte Bemessung. Am ersten Tag wurden in einem Short Course die Grundlagen der Zuverlässigkeitsanalyse in der Geotechnik vermittelt, wobei den Teilnehmenden die Möglichkeit geboten wurde, unter Anleitung Aufgaben mit Hilfe geeigneter Software am PC selbstständig zu bearbeiten. In diesem Vortrag wurde die Grundlagen der zuverlässigkeitsbasierten Bemessung und die Monte Carlo Simulation zur Abschätzung der Versagenswahrscheinlichkeit dargestellt. T2 - 2. Workshop des DGGT AK 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ CY - Berlin, Germany DA - 19.11.2024 KW - Zuverlässigkeitsanalyse KW - Geotechnik KW - Monte Carlo Simulation PY - 2024 AN - OPUS4-61905 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Schwiersch, Niklas T1 - Betrieb und Planung - Ausgewählte Vorteile von Risikoanalysen im Ingenieur- und Wasserbau N2 - Am 19. und 20.11.2024 veranstaltete die BAM und der DGGT AK 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ in Zusammenarbeit mit der DGGT-Akademie einen zweitägigen Workshop zur Einführung in die zuverlässigkeitsbasierte Bemessung. Im Rahmen der Vortragsveranstaltung am zweiten Tag wurden zum einen die unterschiedlichen Sicherheits- und Bemessungsphilosophien nach dem bewährten Teilsicherheitskonzept sowie nach dem zuverlässigkeitsbasierten Konzept vorgestellt. Zum anderen werden verschiedene Anwendungen zuverlässigkeitsbasierter Verfahren aus der Ingenieurpraxis und Wissenschaft präsentiert. In diesem Vortrag wurden aus Sicht des Ingenieur- und Wasserbaus Vorteile von Risikoanalysen u. a. für die Planung von Inspektionszyklen, die Ursachenforschung im Versagensfall und die Konzeption von Hochwasserrisikomanagement-Maßnahmen präsentiert. T2 - 2. Workshop des DGGT AK 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ CY - Berlin, Germany DA - 19.11.2024 KW - Risikoanalyse KW - Offshore-Strukturen KW - Hochwasserschutz PY - 2024 AN - OPUS4-61906 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Pitters, S. A1 - Wedel, F. A1 - Hindersmann, I. T1 - Developing a guideline for structural health monitoring of road bridges in Germany N2 - In recent years, Structural Health Monitoring (SHM) has become a useful and increasingly widely used tool for supporting lifetime extensions of existing bridges with known structural deficiencies or indications of potentially critical damages or damage processes. At the same time, methods and tools are emerging, which enable monitoring-informed predictive maintenance of new and existing bridges based on digital twins. The monitoring process – starting from the definition of monitoring actions and ending with decisions based on monitoring outcomes – is complex and requires expertise in structural engineering, operation and maintenance of bridges, metrology, and data analytics. To support German road authorities, engineering consultancies, building contractors and other stakeholders of the bridge management, the Federal Highway Research Institute (BASt) has initiated the development of a new guideline for applying SHM as part of the management of road bridges. The guideline will present various use cases and for each identified use case, it will propose a proven monitoring scheme. In addition, the guideline will provide guidance on assessing the benefits of SHM as well as a common approach to managing monitoring data as a systematic basis for integrating monitoring data in the bridge management. This contribution discusses the motivation, objectives, and scope of the guideline, describes its use case centric structure and outlines the proposed data management. T2 - IABMAS 2024 CY - Kopenhagen, Danmark DA - 24.06.2024 KW - Guideline KW - Structural health monitoring KW - Road bridges KW - Infrastructure PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613947 SN - 978-1-032-77040-6 DO - https://doi.org/10.1201/9781003483755-236 SP - 2009 EP - 2017 PB - CRC Press AN - OPUS4-61394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wedel, F. A1 - Pitters, S. A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Hindersmann, I. T1 - Guideline for the strategic application of monitoring of road bridges in Germany N2 - Engineering structures are an important part of our transport infrastructure. Their failure is associated with high safety risks and economic damage. Ensuring the availability of these constructions and guaranteeing their operational safety are thus important tasks. Currently, maintenance of engineering structures is a reactive process and therefore not yet a predictive process. Every 3 to 6 years, the structures are visually inspected, all damages are documented and a condition grade is assigned to the structure based on the detected damages. Continuous data-providing methods such as monitoring are used only very occasionally. With the help of monitoring, condition data about the structures are continuously collected, which can be used for a better assessment of the structures. On the one hand, this would increase safety of engineering structures, and on the other hand, it makes the shift towards predictive maintenance management based on real-time data and predictions, where the onset of damage is detected before it occurs, possible in the first place. Monitoring plays therefore an important role in the management of the infrastructure. It is a crucial a step towards the digitalisation of our infrastructure and existing processes. Although there are many use cases for monitoring that have already been successfully implemented, monitoring is not yet widely used by German road authorities due to several challenges that were also identified within the scope of the project. Therefore, a guide has been developed in which the current obstacles related to monitoring are identified and possibilities for integrating monitoring into existing processes are offered. To ensure optimal alignment with the needs of road authorities, both an online survey and a workshop have been conducted. The results are summarised in a brochure that is made available to authorities to improve the use of monitoring in Germany. This paper presents the guideline and the brochure. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Verkehrsinfrastrukturen KW - Engineering Structures KW - Bridges KW - Structural Health Monitoring KW - Guideline PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612821 UR - https://www.ndt.net/search/docs.php3?id=29582 DO - https://doi.org/10.58286/29582 SN - 1435-4934 VL - 29 IS - 7 SP - 1 EP - 8 PB - NDT.net GmbH & Co. KG CY - Mayen AN - OPUS4-61282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Pitters, S. A1 - Ramasetti, Eshwar Kumar A1 - Schneider, Ronald A1 - Wedel, F. A1 - Hindersmann, I. ED - Rogge, Andreas ED - Meng, Birgit T1 - Föderiertes Datenmanagement von Monitoringdaten aus Structural Health Monitoring Anwendungen und daraus gewonnenen Trainingsdaten bei Spannbetonbrücken N2 - Beim Structural Health Monitoring entstehen eine Vielzahl von Daten, Metadaten und Modellen mit hohem Wert für die Beurteilung des Bauwerkszustands und der Prognose von Veränderungen. Kontinuierlich anwachsende Datenbestände müssen nachhaltig geteilt, genutzt und über die Bauwerkslebensdauer archiviert werden. Dabei stellen die Vielfalt der Messaufgaben, die Heterogenität der Daten, die dezentrale Erfassung und z. T. der Umfang eine Herausforderung für die beteiligten Akteure dar. Für den Datentransfer der Monitoringdaten zwischen der Straßenbauverwaltung und den Monitoringausführenden wird ein flexibles Abstimmungsverfahren vorgeschlagen und ein Lösungskonzept für ein föderiertes Datenmanagement skizziert. Eine weitere Herausforderung stellt die bauwerksübergreifende Zusammenstellung von Trainingsdaten für konkrete KI-Anwendungen dar. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Structural Health Monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612902 SN - 978-3-9818564-7-7 SP - 178 EP - 185 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61290 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Pitters, S. A1 - Hindersmann, I. A1 - Schneider, Ronald A1 - Wedel, F. ED - Rogge, Andreas ED - Meng, Birgit T1 - Leitfaden für den strategischen Einsatz von Monitoring an Straßenbrücken N2 - Für die Anwendung von Structural Health Monitoring (SHM) im Rahmen des Managements von Straßenbrü-cken wurde zur Unterstützung von Straßenbauverwaltungen, Ingenieurbüros, Bauunternehmen und weiteren Akteuren die Erstellung eines Leitfadens initiiert. Dieser Leitfaden stellt typische Anwendungsfälle für Monito-ring vor und schlägt für diese bewährte Herangehensweisen vor. Darüber hinaus bietet der Leitfaden Empfeh-lungen für Ausschreibung und Vergabe von Monitoringleistungen, eine Anleitung zur Bewertung des wirt-schaftlichen Nutzens von SHM, Hinweise zur optimal einsetzbaren Messtechnik sowie einen Ansatz für das Datenmanagement zur Integration der Monitoringdaten in das Brückenmanagement. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Leitfaden KW - Monitoring KW - Straßenbrücke PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612931 SN - 978-3-9818564-7-7 SP - 186 EP - 191 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61293 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Baeßler, Matthias T1 - Bestandteile Digitaler Zwillinge im Erhaltungsmanagement von Verkehrsbrücken T1 - Components of digital twins in the operation and maintenance management of traffic bridges N2 - Digitale Zwillinge werden zukünftig ein integraler Bestandteil des Erhaltungsmanagements von Verkehrsbrücken sein. In diesem Beitrag wird argumentiert, dass sie nicht nur als digitale Abbilder physikalischer Bauwerke verstanden werden sollten, sondern als eine umfassende digitale Methode, die durch die Integration von Datenerfassung, Erhaltungsmaßnahmen, Datenmanagement, Bauwerksbewertung und Entscheidungsunterstützung die Bauwerksüberwachung und ‐erhaltung verbessert. In diesem Zusammenhang wird betont, dass der Übergang von der reaktiven zur prädiktiven Erhaltung durch den Einsatz von Digitalen Zwillingen nur dann realisierbar ist, wenn neben den erforderlichen diagnostischen und prognostischen Zustandsanalysen auch Methoden zur Optimierung von Entscheidungen über Datenerfassung und Erhaltungsmaßnahmen implementiert werden. Zur Veranschaulichung der Diskussion werden in diesem Beitrag exemplarisch zwei Bestandteile eines Digitalen Zwillings für das Erhaltungsmanagement von Verkehrsbrücken am Beispiel einer Eisenbahnbrücke demonstriert. Dabei wird zum einen gezeigt, wie Monitoringdaten mittels eines Datenmanagementsystems strukturiert verwaltet und für angeknüpfte Analysen bereitgestellt werden. Zum anderen erfolgt im Rahmen einer bauwerksspezifischen Einwirkungsermittlung eine Zugidentifikation anhand von gemessenen Schwellenschwingungen. N2 - Digital twins will become an integral part of the operation and maintenance management of traffic bridges in the future. This paper argues that they should not only be understood as digital representations of physical structures but as a digital methodology that enhances the operation and maintenance of bridges through the integration of data collection, maintenance actions, data management, structural assessment, and decision support. In this context, it is emphasized that the transition from reactive to predictive maintenance using digital twins can only be achieved if, in addition to the necessary diagnostic and prognostic condition analyses, methods for optimizing decisions on data collection and maintenance actions are also implemented. To illustrate this discussion, two key components of a digital twin for the operation and maintenance management of traffic bridges are demonstrated using a railway bridge as an example. First, it is shown how monitoring data can be systematically managed and made available for subsequent analyses through a data management system. Second, train identification based on measured sleeper vibrations is conducted as part of an object-specific load assessment. KW - Digitale Zwillinge KW - Erhaltung KW - Inspektion KW - Monitoring KW - Brücken PY - 2025 DO - https://doi.org/10.1002/bate.202400101 SN - 1437-0999 SP - 1 EP - 11 PB - Ernst & Sohn CY - Berlin AN - OPUS4-62837 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Helmrich, M. A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Lorelli, S. A1 - Morgenthal, G. T1 - Maintalbrücke Gemünden: Bauwerksmonitoring und -identifikation aus einem Guss T1 - Maintalbrücke Gemünden – Integrated structural health monitoring and UAS diagnostics N2 - Die Infrastruktursysteme der Industriestaaten erfordern heute und in Zukunft ein effizientes Management bei alternder Bausubstanz, steigenden Lasten und gleichbleibend hohem Sicherheitsniveau. Digitale Technologien bieten ein großes Potenzial zur Bewältigung der aktuellen und künftigen Herausforderungen im Infrastrukturmanagement. Im BMBF-geförderten Projekt Bewertung alternder Infrastrukturbauwerke mit digitalen Technologien (AISTEC) wird untersucht, wie unterschiedliche Technologien und deren Verknüpfung gewinnbringend eingesetzt werden können. Am Beispiel der Maintalbrücke Gemünden werden ein sensorbasiertes Bauwerksmonitoring, bildbasierte Inspektion mit durch Kameras ausgestatteten Drohnen (UAS) und die Verknüpfung digitaler Bauwerksmodelle umgesetzt. Die aufgenommenen Bilder dienen u. a. als Grundlage für spätere visuelle Anomaliedetektionen und eine 3D-Rekonstruktion, welche wiederum für die Kalibrierung und Aktualisierung digitaler Tragwerksmodelle genutzt werden. Kontinuierlich erfasste Sensordaten werden ebenfalls zur Kalibrierung und Aktualisierung der Tragwerksmodelle herangezogen. Diese Modelle werden als Grundlage für Anomaliedetektionen und perspektivisch zur Umsetzung von Konzepten der prädiktiven Instandhaltung verwendet. Belastungsfahrten und historische Daten dienen in diesem Beitrag der Validierung von kalibrierten Tragwerksmodellen. N2 - Infrastructure systems of industrialised countries today and in the future require efficient management with an ageing stock, increasing loads while simultaneously maintaining a high level of safety. Digital technologies offer great potential for the current and future challenges in infrastructure management. The BMBF-funded project AISTEC is investigating how the individual technologies and their interconnection can be used beneficially. With the Maintalbrücke in Gemünden as an exemplary application, sensor-based structural monitoring, image-based inspection using unmanned aircraft systems (UAS) equipped with cameras and the integration of digital structural models are being implemented. The recorded images serve, among others, as basis for subsequent anomaly detection and a 3D reconstruction, which in turn are used for updating digital structural models. Continuously recorded sensor data is used to update the parameters of the structural models, which in turn provide the basis for predictive maintenance. Load tests are used to validate the models. KW - Bauwerksüberwachung KW - Strukturmonitoring KW - Structural Health Monitoring KW - Modell-Update KW - UAS KW - Belastungstest KW - Structural system identification KW - Structural health monitoring KW - Model update KW - UAS KW - Load tests PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554924 DO - https://doi.org/10.1002/bate.202100102 SN - 0932-8351 VL - 99 IS - 3 SP - 163 EP - 172 PB - Ernst & Sohn CY - Berlin AN - OPUS4-55492 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Vibration-based system identification of a large steel box girder bridge N2 - The Bundesanstalt für Materialforschung und -prüfung (BAM) collaborates with TNO to develop a software framework for automated calibration of structural models based on monitoring data. The ultimate goal is to include such models in the asset management process of engineering structures. As a basis for developing the framework, a multi-span road bridge consisting of ten simply supported steel box girders was selected as a test case. Our group measured output-only vibration data from one box girder under ambient conditions. From the data, we determined eigenfrequencies and mode shapes. In parallel, we developed a preliminary structural model of the box girder for the purpose of predicting its modal properties. In this contribution, we provide an overview of the measurement campaign, the operational modal analysis, the structural modeling and qualitatively compare the identified with the predicted modes. As an outlook, we discuss the further steps in the calibration process and future applications of the calibrated model. T2 - XII International Conference on Structural Dynamics (EURODYN 2023) CY - Delft, The Netherlands DA - 02.07.2023 KW - Verkehrsinfrastukturen KW - SHM KW - Model updating KW - System identification KW - Operational modal analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605041 DO - https://doi.org/10.1088/1742-6596/2647/18/182039 SN - 1742-6596 VL - 2647 IS - 18 SP - 1 EP - 9 PB - IOP Publishing CY - Bristol AN - OPUS4-60504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -