TY - CONF A1 - Schneider, Ronald T1 - Towards predictive maintenance of bridges N2 - Key features of predictive maintenance of structural systems are discussed and demonstrated in two examples. Challenges and needs for further research are discussed. T2 - Workshop Bridge Maintenance CY - Online Meeting DA - 09.04.2021 KW - Predictive maintenance KW - Deterioration KW - Structural systems PY - 2021 AN - OPUS4-52768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Straub, D. ED - Matos, J.C. ED - Lourenço, P.B. ED - Oliveira, D.V. ED - Branco, J. ED - Proske, D. ED - Silva, R.A. ED - Sousa, H.S. T1 - Cumulative Failure Probability of Deteriorating Structures: Can It Drop? N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic Engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th International Probabilistic Workshop (IPW 2020) CY - Online meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 DO - https://doi.org/10.1007/978-3-030-73616-3_18 VL - 153 SP - 253 EP - 264 PB - Springer CY - Cham, Switzerland AN - OPUS4-52769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Cumulative failure probability of deteriorating structures: Can it drop? N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th Internatinoal Probabilistic Workshop (IPW 2020) CY - Online Meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 AN - OPUS4-52770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straub, D. A1 - Schneider, Ronald A1 - Bismut, E. A1 - Kim, H.-J. T1 - Reliability analysis of deteriorating structural systems N2 - Reliability analysis of deteriorating structural systems requires the solution of time-variant reliability problems. In the general case, both the capacity of and the loads on the structure vary with time. This analysis can be approached by approximation through a series of time-invariant reliability problems, which is a potentially effective strategy for cases where direct solutions of the time-variant reliability problem are challenging, e.g. for structural systems with many elements or arbitrary load processes. In this contribution, we thoroughly Review the formulation of the equivalent time-invariant reliability problems and extend this approximation to structures for which inspection and monitoring data is available. Thereafter, we present methods for efficiently evaluating the reliability over time. In particular, we propose the combination of sampling-based methods with a FORM (first-order reliability method) approximation of the series system reliability problem that arises in the computation of the lifetime reliability. The framework and algorithms are demonstrated on a set of numerical examples, which include the computation of the reliability conditional on inspection data. KW - Monitoring KW - Reliability KW - Deterioration KW - Structural systems KW - Bayesian analysis KW - Inspection PY - 2020 DO - https://doi.org/10.1016/j.strusafe.2019.101877 VL - 82 SP - Paper 101877, 1 PB - Elsevier Ltd. AN - OPUS4-48952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - A risk-based framework for optimizing inspection and maintenance of deteriorating structures monitored by vibration-based monitoring systems N2 - In this presentation, a framework for integrating vibration-based structural health monitoring data into the optimization of inspection and maintenance of deteriorating structural systems is presented. The framework is demonstrated in an illustrative example considering a steel frame subject to fatigue. T2 - EERA JP Wind WORKSHOP on Ongoing research in offshore wind structures CY - Online meeting DA - 16.09.2021 KW - Structural Health Monitoring KW - Inspection KW - Maintenance KW - Deterioration KW - Vibration KW - Structural Systems PY - 2021 AN - OPUS4-53749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Überwachung von Brücken mit digitalen Methoden N2 - Brücken werden durch Inspektionen und teilweise durch Monitoring überwacht, um Daten und Informationen über den Zustand und die Einwirkungen zu sammeln. Auf deren Grundlage werden Entscheidungen hinsichtlich Maßnahmen zur Gewährleistung der Sicherheit und Verfügbarkeit getroffen. In diesem Vortrag werden die Potentiale der Digitalisierung zur Unterstützung und Verbesserung der Brückenüberwachung diskutiert. Insbesondere werden die Bereiche Datenmanagement, Brückenmodellierung und Entscheidungsfindung betrachtet. T2 - BVPI Arbeitstagung 2022 CY - Berlin, Germany DA - 16.09.2022 KW - Entscheidungsfindung KW - Brücken KW - Überwachung KW - Digitalisierung KW - Datenmanagement KW - Modellierung PY - 2022 AN - OPUS4-55770 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald T1 - Von der Datenerfassung bis zur Entscheidungsfindung: Jede Brücken-Überwachung bedarf einer Gesamtmethodik N2 - Brücken müssen laufend überwacht werden, damit die Unsicherheiten hinsichtlich ihres Zustands, ihrer Beanspruchung und ihrer Leistungsfähigkeit verringert werden können. Diese Aufgabe soll künftig mit digitalen Methoden erleichtert werden. Im folgenden Beitrag werden deshalb die digitale Bauwerksmodellierung und die Entscheidungsfindung beleuchtet. Dazu wird gezeigt, wie Zustandsdiagnosen und -prognosen digital ermöglicht werden und wie durch diagnostische und prognostische Modelle eine wissenschaftliche Basis für risikobasierte Entscheidungen über Erhaltungsmaßnahmen und für den Übergang vom reaktiven zum vorausschauenden Brückenmanagement gebildet werden kann. Dabei wird klar: Jede Brücken-Überwachung bedarf einer Gesamtmethodik, ihre wichtigsten Elemente sind: Datenerfassung, Datenmanagement, Datenanalyse, Bauwerksmodellierung, Bauwerksbewertung und die letztendlichen Entscheidungen über notwendige Erhaltungsmaßnahmen. KW - Prädiktive Instandhaltung KW - Brücken KW - Erhaltungsmanagement KW - Digitale Zwillinge PY - 2023 IS - 62 SP - 76 EP - 83 AN - OPUS4-57811 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Structural integrity management research at BAM N2 - This presentation provides an overview on the structural integrity management research at BAM. In addition, a framework for monitoring and risk-informed inspection and maintenance planning for offshore steel structures is presented. T2 - Structural Health Monitoring Using Statistical Pattern Recognition CY - Berlin, Germany DA - 20.03.2023 KW - Structural integrity KW - Monitoring KW - Maintenance KW - Inspeciton KW - Bridges KW - Offshore wind PY - 2023 AN - OPUS4-57864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lesny, K. A1 - Arnold, P. A1 - Sorgatz, J. A1 - Schneider, Ronald T1 - Wie sicher sind unsere Bauwerke? - Strukturpapier des Arbeitskreises 2.15 der DGGT „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ N2 - Der zukünftige Eurocode 7 wird ausdrücklich die Nutzung zuverlässigkeitsbasierter Methoden in der geotechnischen Planung und Bemessung erlauben. In Deutschland gibt es bisher kaum Erfahrung in der praktischen Anwendung derartiger Verfahren und entsprechend sind die Vorbehalte gegenüber diesen Methoden oft groß. Der neue DGGT-Arbeitskreis (AK) 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ hat sich zum Ziel gesetzt, durch praxisorientierte Anleitungen und Empfehlungen sowie begleitende Aus- und Weiterbildungsangebote den praktischen Zugang zu diesen Verfahren zu unterstützen. Ziel ist es, Möglichkeiten und Grenzen zu verdeutlichen sowie vor allem ihre Potenziale zu erschließen. In dem vorliegenden Beitrag werden allgemeine Grundlagen und die zukünftigen Arbeitsfelder des AK 2.15 vorgestellt. Ausgehend von der Einführung relevanter Fachbegriffe wird zunächst die Einbettung zuverlässigkeitsbasierter Verfahren in den aktuellen Normungs- und Regelungskontext aufgezeigt. Anschließend werden anhand des Lebenszyklus eines geotechnischen Bauwerks die Unsicherheiten in den geotechnischen Prognosen und Bewertungen beschrieben. Daran anknüpfend wird aufgezeigt, an welchen Stellen zuverlässigkeitsbasierte Methoden als mögliches Werkzeug sinnvoll genutzt werden können, um Ingenieur:innen, Bauherr:innen und Prüfer:innen in Nachweis- und Entscheidungsprozessen zu unterstützen. Zu den sich daraus ableitenden Arbeitsthemen werden durch den AK 2.15 zukünftig Empfehlungen erarbeitet und sukzessive veröffentlicht KW - Brückensicherheit KW - Sicherheit KW - Wahrscheinlichkeit KW - Zuverlässigkeit KW - Bemessung KW - Bewertung KW - Offshore Wind PY - 2023 DO - https://doi.org/10.1002/gete.202300014 VL - 46 IS - 3 SP - 153 EP - 164 PB - Ernst & Sohn GmbH CY - Berlin AN - OPUS4-58208 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Impulsvortrag: Ermüdungslebensdauerbewertung mittels Informationen aus Monitoring und Inspektionen N2 - Kontext: Ermüdungsbeanspruchte Tragstrukturen von Windenergieanlagen, Bestimmung der Ermüdungsbeanspruchungen und -zuverlässigkeit auf der Grundlage von Simulationen aus dem Design unter Berücksichtigung von Modellunsicherheiten, Aktualisierung der Ermüdungsbeanspruchungen und -zuverlässigkeit auf der Grundlage von globalen Monitoring- und lokalen Inspektionsinformationen aus dem Betrieb unter Berücksichtigung von Modell- und Messunsicherheiten T2 - 3. Verbundtreffen ReNEW CY - Berlin, Germany DA - 05.09.2024 KW - Modellunsicherheiten KW - Windenergie KW - Ermüdungslebensdauer KW - Tragstrukturen KW - Monitoring KW - Inspektionen PY - 2024 AN - OPUS4-61427 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Modeling in support of offshore wind farm end-of-life decision making N2 - The EU member states have set out ambitious long-term goals for deploying offshore wind energy. The installed offshore wind capacity is set to increase from 14.6 GW in 2021 to around 320 GW in 2050. This signifies the role of offshore wind energy as a major contributor to reaching the EU’s climate and energy goals. To ensure that the defined targets are met, a significant number of new wind farms has to be installed and existing wind farms reaching the end of their planned life need to be reused efficiently. Some of the relevant reuse alternatives are lifetime extension, repowering based on the existing support structures and repowering with new turbines. As a basis of the decision-making regarding the reuse of existing offshore wind farm, the expected utility of each relevant option should be determined based on the associated expected rewards, costs and risks. The optimal concept maximizes the utility of the decision-maker and fulfills the existing constraints and requirements. To facilitate such a quantitative decision-making, models and methods have to be developed. In particular, models are required that enable predictions of (a) the condition and performance of the turbines and support structures and (b) the renumeration, costs and consequences of adverse events. These predictions have to consider (a) the governing uncertainties, (b) the available information from the planning, construction, installation and operating phase, (b) potential repair, retrofitting and strengthening schemes and (c) possible monitoring, inspection and maintenance regimes for the future operating phase. Over the past years, several models, methods and tools have been developed at the Bundesanstalt für Materialforschung und -prüfung (BAM) to support the structural integrity management of offshore wind turbine substructures. These include: (a) a prototype for reliability-based, system-wide, adaptive planning of inspections of welded steel structures in offshore wind farms, (b) a method for monitoring and risk-informed optimization of inspection and maintenance strategies for jacket structures subject to fatigue, and (c) a probabilistic cost model of inspection and maintenance of welded steel structures in offshore wind farms. This contribution provides an overview on these works and discusses how they can be adapted and extended to support the decision-making regarding lifetime extensions and repowering of offshore wind farms. T2 - 12th International Forum on Engineering Decision Making (12th IFED) CY - Stoos, Switzerland DA - 05.12.2023 KW - Windenergie KW - Offshore Wind KW - Lifetime Extension KW - Repowering PY - 2023 AN - OPUS4-60430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Zuverlässigkeitsbasierte Bemessung und Monte Carlo Simulation N2 - Am 19. und 20.11.2024 veranstaltete die BAM und der DGGT AK 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ in Zusammenarbeit mit der DGGT-Akademie einen zweitägigen Workshop zur Einführung in die zuverlässigkeitsbasierte Bemessung. Am ersten Tag wurden in einem Short Course die Grundlagen der Zuverlässigkeitsanalyse in der Geotechnik vermittelt, wobei den Teilnehmenden die Möglichkeit geboten wurde, unter Anleitung Aufgaben mit Hilfe geeigneter Software am PC selbstständig zu bearbeiten. In diesem Vortrag wurde die Grundlagen der zuverlässigkeitsbasierten Bemessung und die Monte Carlo Simulation zur Abschätzung der Versagenswahrscheinlichkeit dargestellt. T2 - 2. Workshop des DGGT AK 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ CY - Berlin, Germany DA - 19.11.2024 KW - Zuverlässigkeitsanalyse KW - Geotechnik KW - Monte Carlo Simulation PY - 2024 AN - OPUS4-61905 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Schwiersch, Niklas T1 - Betrieb und Planung - Ausgewählte Vorteile von Risikoanalysen im Ingenieur- und Wasserbau N2 - Am 19. und 20.11.2024 veranstaltete die BAM und der DGGT AK 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ in Zusammenarbeit mit der DGGT-Akademie einen zweitägigen Workshop zur Einführung in die zuverlässigkeitsbasierte Bemessung. Im Rahmen der Vortragsveranstaltung am zweiten Tag wurden zum einen die unterschiedlichen Sicherheits- und Bemessungsphilosophien nach dem bewährten Teilsicherheitskonzept sowie nach dem zuverlässigkeitsbasierten Konzept vorgestellt. Zum anderen werden verschiedene Anwendungen zuverlässigkeitsbasierter Verfahren aus der Ingenieurpraxis und Wissenschaft präsentiert. In diesem Vortrag wurden aus Sicht des Ingenieur- und Wasserbaus Vorteile von Risikoanalysen u. a. für die Planung von Inspektionszyklen, die Ursachenforschung im Versagensfall und die Konzeption von Hochwasserrisikomanagement-Maßnahmen präsentiert. T2 - 2. Workshop des DGGT AK 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ CY - Berlin, Germany DA - 19.11.2024 KW - Risikoanalyse KW - Offshore-Strukturen KW - Hochwasserschutz PY - 2024 AN - OPUS4-61906 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Pitters, S. A1 - Wedel, F. A1 - Hindersmann, I. T1 - Developing a guideline for structural health monitoring of road bridges in Germany N2 - In recent years, Structural Health Monitoring (SHM) has become a useful and increasingly widely used tool for supporting lifetime extensions of existing bridges with known structural deficiencies or indications of potentially critical damages or damage processes. At the same time, methods and tools are emerging, which enable monitoring-informed predictive maintenance of new and existing bridges based on digital twins. The monitoring process – starting from the definition of monitoring actions and ending with decisions based on monitoring outcomes – is complex and requires expertise in structural engineering, operation and maintenance of bridges, metrology, and data analytics. To support German road authorities, engineering consultancies, building contractors and other stakeholders of the bridge management, the Federal Highway Research Institute (BASt) has initiated the development of a new guideline for applying SHM as part of the management of road bridges. The guideline will present various use cases and for each identified use case, it will propose a proven monitoring scheme. In addition, the guideline will provide guidance on assessing the benefits of SHM as well as a common approach to managing monitoring data as a systematic basis for integrating monitoring data in the bridge management. This contribution discusses the motivation, objectives, and scope of the guideline, describes its use case centric structure and outlines the proposed data management. T2 - IABMAS 2024 CY - Kopenhagen, Danmark DA - 24.06.2024 KW - Guideline KW - Structural health monitoring KW - Road bridges KW - Infrastructure PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613947 SN - 978-1-032-77040-6 DO - https://doi.org/10.1201/9781003483755-236 SP - 2009 EP - 2017 PB - CRC Press AN - OPUS4-61394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wedel, F. A1 - Pitters, S. A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Hindersmann, I. T1 - Guideline for the strategic application of monitoring of road bridges in Germany N2 - Engineering structures are an important part of our transport infrastructure. Their failure is associated with high safety risks and economic damage. Ensuring the availability of these constructions and guaranteeing their operational safety are thus important tasks. Currently, maintenance of engineering structures is a reactive process and therefore not yet a predictive process. Every 3 to 6 years, the structures are visually inspected, all damages are documented and a condition grade is assigned to the structure based on the detected damages. Continuous data-providing methods such as monitoring are used only very occasionally. With the help of monitoring, condition data about the structures are continuously collected, which can be used for a better assessment of the structures. On the one hand, this would increase safety of engineering structures, and on the other hand, it makes the shift towards predictive maintenance management based on real-time data and predictions, where the onset of damage is detected before it occurs, possible in the first place. Monitoring plays therefore an important role in the management of the infrastructure. It is a crucial a step towards the digitalisation of our infrastructure and existing processes. Although there are many use cases for monitoring that have already been successfully implemented, monitoring is not yet widely used by German road authorities due to several challenges that were also identified within the scope of the project. Therefore, a guide has been developed in which the current obstacles related to monitoring are identified and possibilities for integrating monitoring into existing processes are offered. To ensure optimal alignment with the needs of road authorities, both an online survey and a workshop have been conducted. The results are summarised in a brochure that is made available to authorities to improve the use of monitoring in Germany. This paper presents the guideline and the brochure. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Verkehrsinfrastrukturen KW - Engineering Structures KW - Bridges KW - Structural Health Monitoring KW - Guideline PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612821 UR - https://www.ndt.net/search/docs.php3?id=29582 DO - https://doi.org/10.58286/29582 SN - 1435-4934 VL - 29 IS - 7 SP - 1 EP - 8 PB - NDT.net GmbH & Co. KG CY - Mayen AN - OPUS4-61282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Pitters, S. A1 - Ramasetti, Eshwar Kumar A1 - Schneider, Ronald A1 - Wedel, F. A1 - Hindersmann, I. ED - Rogge, Andreas ED - Meng, Birgit T1 - Föderiertes Datenmanagement von Monitoringdaten aus Structural Health Monitoring Anwendungen und daraus gewonnenen Trainingsdaten bei Spannbetonbrücken N2 - Beim Structural Health Monitoring entstehen eine Vielzahl von Daten, Metadaten und Modellen mit hohem Wert für die Beurteilung des Bauwerkszustands und der Prognose von Veränderungen. Kontinuierlich anwachsende Datenbestände müssen nachhaltig geteilt, genutzt und über die Bauwerkslebensdauer archiviert werden. Dabei stellen die Vielfalt der Messaufgaben, die Heterogenität der Daten, die dezentrale Erfassung und z. T. der Umfang eine Herausforderung für die beteiligten Akteure dar. Für den Datentransfer der Monitoringdaten zwischen der Straßenbauverwaltung und den Monitoringausführenden wird ein flexibles Abstimmungsverfahren vorgeschlagen und ein Lösungskonzept für ein föderiertes Datenmanagement skizziert. Eine weitere Herausforderung stellt die bauwerksübergreifende Zusammenstellung von Trainingsdaten für konkrete KI-Anwendungen dar. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Structural Health Monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612902 SN - 978-3-9818564-7-7 SP - 178 EP - 185 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61290 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Pitters, S. A1 - Hindersmann, I. A1 - Schneider, Ronald A1 - Wedel, F. ED - Rogge, Andreas ED - Meng, Birgit T1 - Leitfaden für den strategischen Einsatz von Monitoring an Straßenbrücken N2 - Für die Anwendung von Structural Health Monitoring (SHM) im Rahmen des Managements von Straßenbrü-cken wurde zur Unterstützung von Straßenbauverwaltungen, Ingenieurbüros, Bauunternehmen und weiteren Akteuren die Erstellung eines Leitfadens initiiert. Dieser Leitfaden stellt typische Anwendungsfälle für Monito-ring vor und schlägt für diese bewährte Herangehensweisen vor. Darüber hinaus bietet der Leitfaden Empfeh-lungen für Ausschreibung und Vergabe von Monitoringleistungen, eine Anleitung zur Bewertung des wirt-schaftlichen Nutzens von SHM, Hinweise zur optimal einsetzbaren Messtechnik sowie einen Ansatz für das Datenmanagement zur Integration der Monitoringdaten in das Brückenmanagement. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Leitfaden KW - Monitoring KW - Straßenbrücke PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612931 SN - 978-3-9818564-7-7 SP - 186 EP - 191 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61293 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Baeßler, Matthias T1 - Bestandteile Digitaler Zwillinge im Erhaltungsmanagement von Verkehrsbrücken T1 - Components of digital twins in the operation and maintenance management of traffic bridges N2 - Digitale Zwillinge werden zukünftig ein integraler Bestandteil des Erhaltungsmanagements von Verkehrsbrücken sein. In diesem Beitrag wird argumentiert, dass sie nicht nur als digitale Abbilder physikalischer Bauwerke verstanden werden sollten, sondern als eine umfassende digitale Methode, die durch die Integration von Datenerfassung, Erhaltungsmaßnahmen, Datenmanagement, Bauwerksbewertung und Entscheidungsunterstützung die Bauwerksüberwachung und ‐erhaltung verbessert. In diesem Zusammenhang wird betont, dass der Übergang von der reaktiven zur prädiktiven Erhaltung durch den Einsatz von Digitalen Zwillingen nur dann realisierbar ist, wenn neben den erforderlichen diagnostischen und prognostischen Zustandsanalysen auch Methoden zur Optimierung von Entscheidungen über Datenerfassung und Erhaltungsmaßnahmen implementiert werden. Zur Veranschaulichung der Diskussion werden in diesem Beitrag exemplarisch zwei Bestandteile eines Digitalen Zwillings für das Erhaltungsmanagement von Verkehrsbrücken am Beispiel einer Eisenbahnbrücke demonstriert. Dabei wird zum einen gezeigt, wie Monitoringdaten mittels eines Datenmanagementsystems strukturiert verwaltet und für angeknüpfte Analysen bereitgestellt werden. Zum anderen erfolgt im Rahmen einer bauwerksspezifischen Einwirkungsermittlung eine Zugidentifikation anhand von gemessenen Schwellenschwingungen. N2 - Digital twins will become an integral part of the operation and maintenance management of traffic bridges in the future. This paper argues that they should not only be understood as digital representations of physical structures but as a digital methodology that enhances the operation and maintenance of bridges through the integration of data collection, maintenance actions, data management, structural assessment, and decision support. In this context, it is emphasized that the transition from reactive to predictive maintenance using digital twins can only be achieved if, in addition to the necessary diagnostic and prognostic condition analyses, methods for optimizing decisions on data collection and maintenance actions are also implemented. To illustrate this discussion, two key components of a digital twin for the operation and maintenance management of traffic bridges are demonstrated using a railway bridge as an example. First, it is shown how monitoring data can be systematically managed and made available for subsequent analyses through a data management system. Second, train identification based on measured sleeper vibrations is conducted as part of an object-specific load assessment. KW - Digitale Zwillinge KW - Erhaltung KW - Inspektion KW - Monitoring KW - Brücken PY - 2025 DO - https://doi.org/10.1002/bate.202400101 SN - 1437-0999 SP - 1 EP - 11 PB - Ernst & Sohn CY - Berlin AN - OPUS4-62837 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Helmrich, M. A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Lorelli, S. A1 - Morgenthal, G. T1 - Maintalbrücke Gemünden: Bauwerksmonitoring und -identifikation aus einem Guss T1 - Maintalbrücke Gemünden – Integrated structural health monitoring and UAS diagnostics N2 - Die Infrastruktursysteme der Industriestaaten erfordern heute und in Zukunft ein effizientes Management bei alternder Bausubstanz, steigenden Lasten und gleichbleibend hohem Sicherheitsniveau. Digitale Technologien bieten ein großes Potenzial zur Bewältigung der aktuellen und künftigen Herausforderungen im Infrastrukturmanagement. Im BMBF-geförderten Projekt Bewertung alternder Infrastrukturbauwerke mit digitalen Technologien (AISTEC) wird untersucht, wie unterschiedliche Technologien und deren Verknüpfung gewinnbringend eingesetzt werden können. Am Beispiel der Maintalbrücke Gemünden werden ein sensorbasiertes Bauwerksmonitoring, bildbasierte Inspektion mit durch Kameras ausgestatteten Drohnen (UAS) und die Verknüpfung digitaler Bauwerksmodelle umgesetzt. Die aufgenommenen Bilder dienen u. a. als Grundlage für spätere visuelle Anomaliedetektionen und eine 3D-Rekonstruktion, welche wiederum für die Kalibrierung und Aktualisierung digitaler Tragwerksmodelle genutzt werden. Kontinuierlich erfasste Sensordaten werden ebenfalls zur Kalibrierung und Aktualisierung der Tragwerksmodelle herangezogen. Diese Modelle werden als Grundlage für Anomaliedetektionen und perspektivisch zur Umsetzung von Konzepten der prädiktiven Instandhaltung verwendet. Belastungsfahrten und historische Daten dienen in diesem Beitrag der Validierung von kalibrierten Tragwerksmodellen. N2 - Infrastructure systems of industrialised countries today and in the future require efficient management with an ageing stock, increasing loads while simultaneously maintaining a high level of safety. Digital technologies offer great potential for the current and future challenges in infrastructure management. The BMBF-funded project AISTEC is investigating how the individual technologies and their interconnection can be used beneficially. With the Maintalbrücke in Gemünden as an exemplary application, sensor-based structural monitoring, image-based inspection using unmanned aircraft systems (UAS) equipped with cameras and the integration of digital structural models are being implemented. The recorded images serve, among others, as basis for subsequent anomaly detection and a 3D reconstruction, which in turn are used for updating digital structural models. Continuously recorded sensor data is used to update the parameters of the structural models, which in turn provide the basis for predictive maintenance. Load tests are used to validate the models. KW - Bauwerksüberwachung KW - Strukturmonitoring KW - Structural Health Monitoring KW - Modell-Update KW - UAS KW - Belastungstest KW - Structural system identification KW - Structural health monitoring KW - Model update KW - UAS KW - Load tests PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554924 DO - https://doi.org/10.1002/bate.202100102 SN - 0932-8351 VL - 99 IS - 3 SP - 163 EP - 172 PB - Ernst & Sohn CY - Berlin AN - OPUS4-55492 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Vibration-based system identification of a large steel box girder bridge N2 - The Bundesanstalt für Materialforschung und -prüfung (BAM) collaborates with TNO to develop a software framework for automated calibration of structural models based on monitoring data. The ultimate goal is to include such models in the asset management process of engineering structures. As a basis for developing the framework, a multi-span road bridge consisting of ten simply supported steel box girders was selected as a test case. Our group measured output-only vibration data from one box girder under ambient conditions. From the data, we determined eigenfrequencies and mode shapes. In parallel, we developed a preliminary structural model of the box girder for the purpose of predicting its modal properties. In this contribution, we provide an overview of the measurement campaign, the operational modal analysis, the structural modeling and qualitatively compare the identified with the predicted modes. As an outlook, we discuss the further steps in the calibration process and future applications of the calibrated model. T2 - XII International Conference on Structural Dynamics (EURODYN 2023) CY - Delft, The Netherlands DA - 02.07.2023 KW - Verkehrsinfrastukturen KW - SHM KW - Model updating KW - System identification KW - Operational modal analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605041 DO - https://doi.org/10.1088/1742-6596/2647/18/182039 SN - 1742-6596 VL - 2647 IS - 18 SP - 1 EP - 9 PB - IOP Publishing CY - Bristol AN - OPUS4-60504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Digitaler Zwilling im Erhaltungsmanagement von Straßenbrücken N2 - Digitale Zwillinge werden zukünftig ein integraler Bestandteil des Erhaltungsmanagements von Straßenbrücken sein. In diesem Beitrag wird argumentiert, dass sie nicht nur als digitale Abbilder physikalischer Bauwerke verstanden werden sollten, sondern als eine umfassende digitale Methode, die durch die Integration von Datenerfassung, Erhaltungsmaßnahmen, Datenmanagement, Bauwerksbewertung und Entscheidungsunterstützung die Bauwerksüberwachung und -erhaltung verbessert. In diesem Zusammenhang wird betont, dass der Übergang von der reaktiven zur prädiktiven Erhaltung durch den Einsatz von Digitalen Zwillingen nur dann realisierbar ist, wenn neben den erforderlichen diagnostischen und prognostischen Zustandsanalysen auch Methoden zur Optimierung von Entscheidungen über Datenerfassung und Erhaltungsmaßnahmen implementiert werden. Zur Veranschaulichung der Diskussion werden in diesem Beitrag exemplarisch zwei Bestandteile eines Digitalen Zwillings für das Erhaltungsmanagement von Verkehrsbrücken am Beispiel einer Eisenbahnbrücke demonstriert. Dabei wird zum einen gezeigt, wie Monitoringdaten mittels eines Datenmanagementsystems strukturiert verwaltet und für angeknüpfte Analysen bereitgestellt werden. Zum anderen erfolgt im Rahmen einer bauwerksspezifischen Einwirkungsermittlung eine Zugidentifikation anhand von gemessenen Schwellenschwingungen T2 - Workshop „Digitaler Zwilling im Lebenszyklusmanagement" der AG BIM in der Bauwerkserhaltung des Koordinierungsausschusses Erhaltung (KoA-Erhaltung) der B/L-DB Konstruktiver Ingenieurbau CY - Potsdam, Germany DA - 09.04.2025 KW - Digitale Zwillinge KW - Erhaltung KW - Inspektion KW - Monitoring KW - Brücken PY - 2025 AN - OPUS4-62951 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Morgenthal, Guido ED - Cha, Young-Jin T1 - A Bayesian Probabilistic Framework for Building Models for Structural Health Monitoring of Structures Subject to Environmental Variability N2 - Managing aging engineering structures requires damage identification, capacity reassessment, and prediction of remaining service life. Data from structural health monitoring (SHM) systems can be utilized to detect and characterize potential damage. However, environmental and operational variations impair the identification of damages from SHM data. Motivated by this, we introduce a Bayesian probabilistic framework for building models and identifying damage in monitored structures subject to environmental variability. The novelty of our work lies (a) in explicitly considering the effect of environmental influences and potential structural damages in the modeling to enable more accurate damage identification and (b) in proposing a methodological workflow for model‐based structural health monitoring that leverages model class selection for model building and damage identification. The framework is applied to a progressively damaged reinforced concrete beam subject to temperature variations in a climate chamber. Based on deflections and inclinations measured during diagnostic load tests of the undamaged structure, the most appropriate modeling approach for describing the temperature‐dependent behavior of the undamaged beam is identified. In the damaged state, damage is characterized based on the identified model parameters. The location and extent of the identified damage are consistent with the cracks observed in the laboratory. A numerical study with synthetic data is used to validate the parameter identification. The known true parameters lie within the 90% highest density intervals of the posterior distributions of the model parameters, suggesting that this approach is reliable for parameter identification. Our results indicate that the proposed framework can answer the question of damage identification under environmental variations. These findings show a way forward in integrating SHM data into the management of infrastructures. KW - Verkehrsinfrastukturen KW - SHM KW - Model Updating KW - Environmental and Operational Variability KW - Damage Identification KW - Model Building PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605027 DO - https://doi.org/10.1155/2024/4204316 SN - 1545-2255 VL - 2024 IS - 1 SP - 1 EP - 23 PB - Wiley AN - OPUS4-60502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - SysPark: a software tool for system-wide adaptive planning of inspections of turbine support structures in offshore wind farms N2 - Fatigue is one of the main deterioration processes affecting the performance of welded steel support structures of wind turbines in offshore wind farms. In this contribution, we present a probabilistic physics-based fatigue deterioration model of a wind farm that accounts for the stochastic dependence among the fatigue behavior of different hotspots at turbine and wind farm level. The dependence exists because of uncertain common influencing factors such as similar material properties, fabrication qualities and load conditions. These system effects signify that an inspection of one hotspot provides indirect information of the condition of the remaining hotspots and thus enable an optimization of the inspection effort for a wind farm. The wind farm model consists of two levels: A turbine support structure (level 1 system model) is represented by its fatigue hotspots and their stochastic dependence. The fatigue performance of a hotspot is described by a probabilistic fracture mechanics (FM) fatigue model. The probabilistic model of the parameters of the FM fatigue model is calibrated based on design data and is thus directly linked to the design of the turbine support structures. Dependence among the fatigue performances of different hotspots in a turbine support structure is modeled by introducing correlations between the stochastic parameters of the FM fatigue models. A wind farm (level 2 system model) consists of different turbine support structures (level 1 system models). Additional correlations are introduced at wind farm level to account for the dependence among the fatigue behavior of hotspots belonging to different turbine support structures. The wind farm model enables the computation of (marginal) hotspot fatigue reliabilities, system fatigue reliabilities of individual turbine support structures and the system fatigue reliability of an entire wind farm. The probabilistic model of the parameters of the two-level system model can be consistently updated with inspection outcomes using Bayesian methods. The updated probabilistic model of the model parameters then forms the basis for updating the estimates of the fatigue reliabilities. We implement the wind farm model in a software tool named SysPark. The tool provides the means for planning inspections at wind farm level using an adaptive reliability-based threshold approach. In this approach, the first inspection campaign is planned in the year before the fatigue failure rates of the hotspots with the lowest fatigue reliabilities exceed a threshold failure rate. Once inspection results become available, the probabilistic model of the parameters of the wind farm model is updated. If repairs are performed, the wind farm model is additionally modified to describe the behavior of the repaired hotspots. The updated and modified model then enables the planning of the next inspection campaign and so on. The software tool is demonstrated in a case study considering a generic wind farm consisting of turbines with jacket support structures. T2 - Wind Energy Science Conference (WESC 2021) CY - Online Meeting DA - 25.05.2021 KW - Fatigue deterioration KW - Offshore wind farm KW - Inspection planning PY - 2021 AN - OPUS4-52767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Integrating vibration monitoring into risk-based inspection and maintenance planning for deteriorating structural systems N2 - A reliability and risk-based framework for integrating vibration monitoring data in the planning of inspection and maintenance of deteriorating structural systems is discussed and demonstrated in a numerical example. T2 - Wind Energy Science Conference (WESC 2021) CY - Online Meeting DA - 25.05.2021 KW - Deterioration KW - Structural systems KW - Inspection KW - Vibration monitoring KW - Maintenance PY - 2021 AN - OPUS4-52766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Optimal vibration sensor placement for jacket support structures of offshore wind turbines based on value of information analysis N2 - Information on the condition and reliability of an offshore jacket structure provided by a vibration-based structural health monitoring system can guide decisions on inspection and maintenance. When selecting the sensor setup, the designer of the monitoring system must assess its overall benefit compared to its costs before installation. The potential benefit of continuously monitoring the dynamic response of a jacket structure can be formally quantified through a value of information analysis from Bayesian decision theory. In this contribution, we present a framework for optimizing the placement of vibration sensors on offshore jacket structures by maximizing the value of information of the monitoring system. To solve the resulting discrete optimization problem, we adapt a genetic algorithm. The framework is demonstrated in a numerical example considering a redundant jacket-type steel frame. The numerical study shows that monitoring the vibration response of the frame is beneficial. Good sensor setups consist of relatively few sensors located towards the upper part of the frame. The adapted genetic algorithm performs similarly well as established sequential sensor placement algorithms and holds substantial promise for application to real jacket structures. KW - Optimal sensor placement KW - Value of information KW - Jacket support structure KW - Offshore wind turbine KW - Monitoring-informed inspection and maintenance planning PY - 2023 DO - https://doi.org/10.1016/j.oceaneng.2023.115407 SN - 0029-8018 VL - 288 IS - 2 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-58725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Baeßler, Matthias T1 - Optimal sensor placement for vibration-based structural health monitoring obtained via value of information analysis as part of a digital structural integrity management of offshore structures N2 - A digital structural integrity management of offshore structures enables an optimized planning of inspections and repairs with risk-based methods. In a risk-based approach, the inspection and repair strategy that minimizes the expected lifetime costs consisting of the expected inspection, repair and failure costs is determined. In addition to inspections, information on the structural condition can be continuously obtained by monitoring the vibration response of the structural system. Changes in the vibration characteristics quantified in terms of modal properties can be an indication of structural damage. In risk-based inspection and repair planning, the effect of monitoring results is determined via Bayesian updating of the structural condition and reliability. This information should be applied to inform decisions on inspections and may result in a reduced inspection effort. The benefit of continuously monitoring the structural health can be quantified in terms of the value of information, which corresponds to the difference between the expected lifetime costs with and without monitoring. In this work, we demonstrate in a numerical example how an optimized sensor placement for a vibration-based structural health monitoring system can be determined by maximizing the value of information. T2 - 3rd International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2022) CY - Online meeting DA - 08.06.2022 KW - Structural Health Monitoring KW - Value of Information KW - Offshore Wind Energy KW - Optimal Sensor Placement KW - Bayesian System Identification PY - 2022 UR - https://www.researchgate.net/publication/362569906_Optimal_sensor_placement_for_vibration-based_structural_health_monitoring_obtained_via_value_of_information_analysis_as_part_of_a_digital_structural_integrity_management_of_offshore_structures SN - 978-1-8383226-7-0 SP - 23 EP - 32 AN - OPUS4-55465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias A1 - El-Athman, Rukeia T1 - Research Data Management of Structural Health Monitoring Projects and Subsequent Applications of Artificial Intelligence Methods N2 - Structural health monitoring (SHM) intends to improve the management of engineering structures. The number of successful SHM projects – especially SHM research projects – is ever growing, yielding added value and more scientific insight into the management of infrastructure asset. With the advent of the data age, the value of accessible data becomes increasingly evident. In SHM, many new data-centric methods are currently being developed at a high pace. A consequent application of research data management (RDM) concepts in SHM projects enables a systematic management of raw and processed data, and thus facilitates the development and application of artificial intelligence (AI) and machine learning (ML) methods to the SHM data. In this contribution, a case study based on an institutional RDM framework is presented. Data and metadata from monitoring the structural health of the Maintalbrücke Gemünden for a period of 16 months are managed with the RDM system BAM Data Store, which makes use of the openBIS data management software. An ML procedure is used to classify the data. Feature engineering, feature training and resulting data are performed and modelled in the RDM system. T2 - 11th International Conference on Bridge Maintenance, Safety and Management (IABMAS2022) CY - Barcelona, Spain DA - 11.07.2022 KW - Research data management KW - Structural health monitoring KW - Artificial intelligence PY - 2022 SN - 978-1-032-35623-5 SN - 978-1-003-32264-1 DO - https://doi.org/10.1201/9781003322641-127 SP - 1061 EP - 1068 PB - CRC Press CY - Boca Raton AN - OPUS4-55493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Gerards, Paul A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for data and structural integrity management for support structures in offshore wind farms based on building information modelling N2 - Support structures of wind turbines in German offshore wind farms are regularly inspected. Currently, inspection outcomes are generally not systematically recorded. This prevents their consistent handling and processing, which is a key requirement to enable an efficient structural integrity management. As part of the DiMoWind-Inspect project, a data model and reference designation system for such inspection results is developed to facilitate their identification, localization, quantification, tracing and linking throughout the lifetime of a wind farm and beyond. The inspection results together with structural health monitoring results and information on repairs form the basis for assessing and predicting the structural condition, estimating the remaining lifetime, and planning of future inspections, structural health monitoring, and repairs. As a basis for developing a digital structural integrity management, a generic framework is proposed in this paper, which describes the stakeholders, data, models, processes and workflows of the integrity management of support structures in offshore wind farms and their interrelations. The framework adopts a building information modelling approach to describe the information relevant to the structural integrity management. The central digital space of the framework is a common data environment. An implementation of the framework will enable a digital structural integrity management in which inspection, structural health monitoring, repair, assessment and planning outcomes generated throughout the life cycle of a wind farm can be consistently collected, managed, shared and processed by the relevant shareholders. T2 - 8th International Symposium on Reliability Engineering and Risk Management CY - Hannover, Germany DA - 04.09.2022 KW - Offshore wind energy KW - support structures KW - structural health monitoring KW - building information modelling KW - structural integrity management PY - 2022 DO - https://doi.org/10.3850/978-981-18-5184-1_MS-04-161-cd SP - 111 EP - 117 PB - Research Publishing CY - Singapore AN - OPUS4-55656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Belastungsversuch und Methodenvalidierung an der Maintalbrücke Gemünden N2 - Im Projekt AISTEC wurden Methoden entwickelt, die der prädiktiven Instandhaltung von Ingenieurbauwerken dienen. Zur Validierung dieser Methoden wurden an einem Referenzbauwerk - der Maintalbrücke Gemünden - Belastungstests durchgeführt. T2 - Abschlussveranstaltung AISTEC CY - Berlin, Germany DA - 02.05.2022 KW - Belastungsfahrt KW - GNSS KW - Einflusslinien PY - 2022 AN - OPUS4-55496 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Kontinuierliche sensordaten- und modellgestützte Bewertung von Infrastrukturbauwerken in der Praxis N2 - Ein Einsatz von kontinuierlichen sensorbasierten Verfahren komplementär zu den zeitlich diskreten bildbasierten Verfahren haben ein enormes Potenzial, die bisher hauptsächlich visuellen Prüfprozesse zu transformieren. Zur Ermöglichung eines strategischen Einsatzes des sensorbasierten Monitorings im Erhaltungsmanagement von Ingenieurbauwerken ist das übergeordnete Ziel des Projektes AISTEC-Pro die Demonstration des praktischen Mehrwerts des sensorbasierten Monitorings. Dies wird durch praktische Anwendungen an der Maintalbrücke Gemünden und einem neu ausgewählten Referenzbauwerk unter Berücksichtigung von typischen Einsatzszenarien im Bereich der Bauwerkserhaltung erreicht werden. Die Einsatzszenarien werden in enger Abstimmung mit den Endanwendern entwickelt und fortgeschrieben. Hierbei wird insbesondere Bezug auf die aktuelle Neufassung der DIN 1076 genommen, in der erstmals die Anwendung von sensor- und bildbasierten Monitoringverfahren in der Bauwerksprüfung geregelt wird. T2 - AISTEC-Pro Auftakttreffen CY - Weimar, Germany DA - 02.12.2024 KW - Sensorbasiertes Monitoring KW - Erhaltung KW - Verkehrsbrücken PY - 2024 AN - OPUS4-61919 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Probabilistische Systemidentifikation einer Versuchsstruktur für Substrukturen von Offshore-Windenergieanlagen mit statischen und dynamischen Messdaten N2 - In diesem Beitrag wird ein probabilistischer Ansatz zur Systemidentifikation für Tragstrukturen von Offshore-Windkraftanlagen vorgestellt. Der Schwerpunkt der Forschung liegt auf der Integration von globalen Systemantworten in Form von Eigenfrequenzen und -formen sowie Verschiebungen und Dehnungen als lokale Messdaten. Die unterschiedlichen Daten werden kombiniert für die Aktualisierung der Parameter eines Finite-Elemente-Modells genutzt. Zu diesem Zweck wird ein probabilistischer Ansatz nach Bayes verfolgt, um Vorwissen sowie Unsicherheiten einzubeziehen. Die Methodik wird bei einer Versuchsstruktur angewandt, die eine Jacket-Substruktur von Offshore-Windenergieanlagen nachbildet. Eine Systemidentifikation mit Hilfe von Überwachungsdaten ist wertvoll für Jacket-Substrukturen, da eine Zustandsanalyse für die Gewährleistung der strukturellen Integrität unerlässlich ist, aber hinsichtlich der schwierigen Offshore-Bedingungen möglichst effizient sein muss. In diesem Zusammenhang schafft diese Arbeit die Grundlage für eine Schadenserkennung, eine verbesserte Vorhersage der Ermüdungslebensdauer und optimierte Instandhaltungsstrategien. Während das Modell hinsichtlich der statischen Messdaten erfolgreich aktualisiert werden kann, sind Schwierigkeiten bei der Identifizierung der dynamischen Systemeigenschaften erkennbar. T2 - 8. VDI-Fachtagung Baudynamik 2025 CY - Würzburg, Germany DA - 02.04.2025 KW - Systemidentifikation KW - Versuchsstruktur KW - Jacket KW - Offshore-Windenergie PY - 2025 VL - 8 SP - 175 EP - 188 AN - OPUS4-62879 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Herrmann, Ralf T1 - Sensorbasiertes Monitoring der Maintalbrücke Gemünden N2 - Monitoringsysteme erfassen kontinuierlich Bauwerksdaten wie z.B. Bauwerksbeschleunigungen, auf deren Grundlage Bauwerksschäden mit Hilfe von SHM-Methoden quantifiziert werden können. Mit den gewonnenen Informationen über den aktuellen Bauwerkszustand können Vorhersagen des Bauwerkszustandes und der Bauwerkszuverlässigkeit aktualisiert und erforderliche Inspektionen und Instandhaltungsmaßnahmen vorausschauend geplant werden. Im BMBF-Forschungsvorhaben AISTEC entwickeln der Fachbereich 7.2 „Ingenieurbau“ innovative Monitoringverfahren zur Systemidentifikation und automatischen Detektion, Lokalisierung und Quantifizierung von Schäden an Infrastrukturbauwerken anhand von gemessenen dynamischen und statischen Bauwerksdaten. Im Rahmen dieses Projektes werden die Verfahren an der Maintalbrücke bei Gemünden angewendet, welche Teil der ICE-Strecke Hannover-Würzburg ist. In diesem Vortrag wird das für die Maintalbrücke Gemünden geplante und umgesetzte Monitoingsystem vorgestellt. T2 - 4. Verbundtreffen AISTEC CY - Weimar, Germany DA - 24.09.2020 KW - Zivile Sicherheit KW - Brücken KW - Structural Health Monitoring PY - 2020 AN - OPUS4-51333 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Kontinuierliches Bauwerksmonitoring – Sensor-basiert (AP4) N2 - Kontinuierliche sensorbasierte Bauwerksmessungen leisten einen wichtigen Beitrag zur Sicherheit von Verkehrsbauwerken. Hierzu werden im Vorhaben AISTEC Referenzbauwerke und Referenzverfahren untersucht mit Schwerpunkt auf den Einfluss klimatischer Bedingungen. Der Vortrag stellt den aktuellen Projektstand des FB 7.2 vor. T2 - 3. Verbundtreffen AISTEC CY - Online meeting DA - 05.05.2020 KW - Zivile Sicherheit KW - Brücken KW - Structural Health Monitoring PY - 2020 AN - OPUS4-50796 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Papadrakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Structural health monitoring KW - Bayesian methods KW - Environmental effects PY - 2020 SN - 978-618-85072-2-7 SN - 978-618-85072-0-3 SP - 1254 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA) CY - Athens, Greece AN - OPUS4-51590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias ED - Yokota, H. ED - Frangopol, D. M. T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Structural systems KW - Bayesian system identification KW - Damage identification KW - Environmental effects KW - Structural health monitoring PY - 2021 DO - https://doi.org/10.1201/9780429279119-125 SP - 934 EP - 941 PB - CRC Press AN - OPUS4-52809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Sensorbasiertes Monitoring (AP4 + AP7): Ein Überblick N2 - Im AISTEC Projekt erforscht der FB 7.2 Verfahren zur Bewertung von Verkehrsbrücken auf der Gruandlage von sensorbasierten Bauwerksmessungen. In diesem Vortrag wird ein Überlick über die Forschungsarbeiten des FB 7.2 präsentiert. Des Weiteren wird ein Ausblick zur quantitativen Integration von sensorbasierten Bauwerksmessungen in die risiko-basierte prädiktive Planung von Inspektionen und Reparaturen von Ingenieurbauwerken gegeben. T2 - AISTEC 5. Verbundtreffen CY - Online meeting DA - 24.06.2021 KW - AISTEC KW - Structural Health Monitoring KW - Brücken PY - 2021 AN - OPUS4-52982 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Recknagel, Christoph ED - Cunha, Á. ED - Caetano, E. T1 - Enhancing structural models with material tests and static response data - a case study considering a steel beam with asphalt layer subject to temperature variations N2 - Gradual or sudden changes in the state of structural systems caused, for example, by deterioration or accidental load events can influence their load-bearing capacity. Structural changes can be inferred from static and/or dynamic response data measured by structural health monitoring systems. However, they may be masked by variations in the structural response due to varying environmental conditions. Particularly, the interaction of nominally load-bearing components with nominally non-load bearing components exhibiting characteristics that vary as a function of the environmental conditions can significantly affect the monitored structural response. Ignoring these effects may hamper an inference of structural changes from the monitoring data. To address this issue, we adopt a probabilistic model-based framework as a basis for developing digital twins of structural systems that enable a prediction of the structural behavior under varying ambient condition. Within this framework, different types of data obtained from real the structural system can be applied to update the digital twin of the structural system using Bayesian methods and thus enhance predictions of the structural behavior. In this contribution, we implement the framework to develop a digital twin of a simply supported steel beam with an asphalt layer. It is formulated such that it can predict the static response of the beam in function of its temperature. In a climate chamber, the beam was subject to varying temperatures and its static response wass monitored. In addition, tests are performed to determine the temperature-dependent properties of the asphalt material. Bayesian system identification is applied to enhance the predictive capabilities of the digital twin based on the observed data. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) CY - Online meeting DA - 30.06.2021 KW - Digital twin KW - Structural health monitoring KW - Material tests KW - Bayesian updating PY - 2021 SN - 2564-3738 SP - 1537 EP - 1544 AN - OPUS4-54126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Multivariate Gaussian Process Regression for 3D site characterization from CPT and categorical borehole data N2 - Accurate prediction of subsurface stratigraphy and geotechnical properties, along with quantification of associated uncertainties, is essential for improving the design and assessment of geotechnical structures. Several studies have utilized indirect data from Cone Penetration Tests (CPTs) and employed statistical and Machine Learning methods to quantify the geological and geotechnical uncertainty. Incorporating direct borehole data can reduce uncertainties. This study proposes a computationally efficient multivariate Gaussian Process model that utilizes site-specific data and: (i) jointly models multiple categorical (USCS labels) and continuous CPT variables, (ii) learns a non-separable covariance structure leveraging the Linear Model of Coregionalization, and (iii) predicts a USCS based stratigraphy and CPT parameters at any location within the 3D domain. The results demonstrate that integrating geotechnical and geological data into a unified model yields more reliable predictions of subsurface stratification, enabling the parallel interpretation of both USCS classification and CPT profiles. Importantly, the model demonstrates its potential to integrate multiple variables from different sources and data types, contributing to the advancement of methodologies for the joint modeling of geotechnical, geological, and geophysical data. KW - Geotechnical site-characterization KW - Cone Penetration Tests KW - Stratigraphy prediction KW - Multivariate Gaussian process KW - Variational inference KW - Linear Model of Coregionalization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629456 DO - https://doi.org/10.1016/j.enggeo.2025.108052 SN - 1872-6917 VL - 352 SP - 1 EP - 19 PB - Elsevier B.V. AN - OPUS4-62945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Said, Samir A1 - Baeßler, Matthias ED - Curbach, M. ED - Marx, S. ED - Scheerer, S. ED - Hampel, T. T1 - Structural Health Monitoring der Maintalbrücke Gemünden zur Unterstützung einer prädiktiven Instandhaltung N2 - Nach den bisherigen Regeln werden Bauwerksprüfungen von Brücken in starr definierten Intervallen durchgeführt. Diese starre, periodische, zustandsbasierte Instandhaltungsstrategie soll zukünftig durch eine flexible und prädiktive Instandhaltung ersetzt werden. Hierbei sollen Inspektionen und Instandhaltungsmaßnahmen unterstützt durch autonome Systeme auf der Grundlage von Monitoringdaten geplant und zusätzlich bei unvorhergesehenen Ereignissen ausgelöst werden. Im Rahmen des Verbundforschungsvorhabens AISTEC wird ein Vorgehen für Großbauwerke und kleinere Regelbauwerke zur Umsetzung eines kombinierten globalen, schwingungsbasierten und quasistatischen Monitorings entworfen. An der Maintalbrücke Gemünden – einer semiintegralen Rahmenbrücke aus Spannbeton auf der Schnellfahrstrecke Hannover–Würzburg – wurde als Demonstrator ein Dauermonitoring realisiert. T2 - 11. Symposium Experimentelle Untersuchungen von Baukonstruktionen (SEUB) CY - Online meeting DA - 08.03.2021 KW - Structural Health Monitoring KW - Umwelteinflüsse KW - Prädiktive Instandhaltung PY - 2021 UR - https://tu-dresden.de/bu/bauingenieurwesen/imb/ressourcen/dateien/veranstaltungen/seub/11-seub-2021/2021_SEUB11_06_Herrmann_et_al.pdf?lang=de VL - 55 SP - 66 EP - 76 PB - Technische Universität Dresden CY - Dresden AN - OPUS4-52810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eichner, Lukas A1 - Gerards-Wünsche, Paul A1 - Happel, Karina A1 - Weise, Sigurd A1 - Haake, Gerrit A1 - Sieber, Lars A1 - Flederer, Holger A1 - Schneider, Ronald A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Baeßler, Matthias A1 - Huhn, Holger A1 - Küchler, Andreas T1 - Digitales Datenmanagement für die Instandhaltung von Offshore-Windparks T1 - Digital data management for maintenance in offshore wind farms N2 - Im Forschungsprojekt DiMoWind-Inspect wurde untersucht, welche Grundvoraussetzungen geschaffen werden müssen, um digitale Methoden für die Instandhaltung von Offshore-Windenergieanlagen einsetzen zu können. Daten aus allen Lebensphasen der Anlagen werden derzeit nur selten effizient dafür genutzt, um die sinnvollsten Instandhaltungsmaßnahmen am richtigen Ort, zum richtigen Zeitpunkt und mit den geringsten Kosten durchzuführen. Eine im Vorhaben entwickelte einheitliche Strukturierung der bisher häufig unstrukturierten Bau- und Instandhaltungsdaten ermöglicht ihre übergreifende, anwenderspezifische Verfügbarkeit. Hierfür werden Prinzipien des Referenzkennzeichnungssystems RDS-PP adaptiert. Es wird aufgezeigt, wie neben Bauteilen auch zusätzliche Informationen wie Instandhaltungsmaßnahmen oder Mängel strukturiert werden können. Dem Ansatz des Building Information Modeling folgend werden die Bauwerkskomponenten direkt mit den Informationen aus Inspektionen und weiteren Instandhaltungsmaßnahmen verknüpft. So können Informationen aus dem Betrieb über den Zustand der Struktur verarbeitet und für die maßgebenden Berechnungen und Nachweise zur Verfügung gestellt werden. Als Anwendungsfall wird ein zweistufiges Konzept vorgestellt, das zur Bewertung der Ermüdungslebensdauer eines korrosionsgeschädigten Konstruktionsdetails der Gründungsstruktur einer Offshore-Windenergieanlage mit Informationen aus der Instandhaltung eingesetzt wird. N2 - The DiMoWind-Inspect research project explored the essential requirements for implementing digital methods in the maintenance of offshore wind turbines. Currently, data from all stages of the turbines' lifecycles are underutilized, leading to suboptimal maintenance actions being taken in terms of location, timing, and cost. A consistent structuring of previously often unstructured construction and maintenance data developed in the project enables their cross-disciplinary, user-specific availability. To accomplish this, the principles of the Reference Designation System for Power Plants RDS-PP are applied. In this way, additional information, such as maintenance measures or defects, can be structured alongside components. The components of the structures are directly linked with information from inspections and other maintenance activities, following the Building Information Modeling approach. This allows for processing operational information about the condition of the structure and providing it for relevant calculations and assessments. As a use case, a two-stage concept is presented, utilizing maintenance information to assess the fatigue life of a corrosion-damaged structural detail in the support structure of an offshore wind turbine. KW - Building Information Modeling KW - Datenmanagement KW - Instandhaltung KW - Offshore-Windenergie KW - Referenzkennzeichnungssystem PY - 2024 DO - https://doi.org/10.1002/bate.202400026 VL - 101 IS - 10 SP - 558 EP - 567 PB - Ernst & Sohn CY - Berlin AN - OPUS4-60765 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Vibration-based system identification of a large steel box girder bridge N2 - The Bundesanstalt für Materialforschung und -prüfung (BAM) collaborates with TNO to develop a software framework for automated calibration of structural models based on monitoring data. The ultimate goal is to include such models in the asset management process of engineering structures. As a basis for developing the framework, a multi-span road bridge consisting of ten simply supported steel box girders was selected as a test case. Our group measured output-only vibration data from one box girder under ambient conditions. From the data, we determined eigenfrequencies and mode shapes. In parallel, we developed a preliminary structural model of the box girder for the purpose of predicting its modal properties. In this contribution, we provide an overview of the measurement campaign, the operational modal analysis, the structural modeling and qualitatively compare the identified with the predicted modes. As an outlook, we discuss the further steps in the calibration process and future applications of the calibrated model. T2 - XII International Conference on Structural Dynamics (EURODYN 2023) CY - Delft, Netherlands DA - 02.07.2023 KW - Bridge KW - Safety KW - Fatigue KW - Modal system identification KW - Model updating PY - 2023 AN - OPUS4-57863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul A1 - Ratkovac, Mirjana A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for assessing the reliability of crack luminescence – an automated fatigue crack detection system N2 - The new crack luminescence method offers the possibility of making fatigue surface cracks in metallic materials more visible during inspections through a special coating system. This coating system consists of two layers, whereby the first layer has fluorescent properties and emits visible light as soon as it is irradiated by UV light. The top layer is black and is designed to prevent the fluorescent layer from emitting if no crack develops in the underlying material. The technique proved particularly useful in a wide variety of fatigue tests of steel components under laboratory conditions. Moreover, it has the potential to be used in various industrial applications. To enable industrial deployment and integration into maintenance strategies, a concept study is developed in this contribution, resulting in a qualification framework that can serve as a foundation for determining the reliability of the crack luminescence system in terms of a probability of detection curve. Within this study, factors causing measurement variability and uncertainty are being determined and their influences assessed. Due to the extension of the system by a moving computer vision system for automated crack detection using artificial intelligence, additional long-term effects associated with structural health monitoring systems need to be incorporated into an extended probability of detection study as part of the technical justification. Finally, important aspects and findings related to design of experiments are discussed, and a framework for reliability assessment of a new optical crack monitoring method is presented, emphasizing the influence of various uncertainty parameters, including long-term effects such as system ageing. T2 - SPIE Conference Smart Structures + Nondestructive Evaluation 2023 CY - Long Beach, CA, USA DA - 24.03.2023 KW - Structural Health Monitoring KW - Non-Destructive Evaluation KW - Probability of Detection KW - Reliability KW - Artificial Intelligence KW - Computer Vision KW - Crack Luminescence KW - Wind PY - 2023 SN - 978-1-5106-6086-1 DO - https://doi.org/10.1117/12.2658390 SP - 1 EP - 15 AN - OPUS4-57244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Probabilistic approaches to the design and assessment of offshore foundations considering spatially varying site conditions N2 - In this presentation, we discuss the potential of probabilistic approaches to the design and assessment of offshore foundations. The potential is demonstrated in a numerical example considering a laterally loaded monopile. As an outlook, we present a concept for managing the risk associated with installing large monopiles. T2 - 3rd International Conference on Structural Integrity for Offshore Energy Industry (SI 2021) CY - Online meeting DA - 15.11.2021 KW - Offhore KW - Foundations KW - Probabilistic KW - Design KW - Assessment PY - 2021 AN - OPUS4-53748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Morgenthal, Guido T1 - Parallelized adaptive Bayesian updating with structural reliability methods for inference of large engineering models N2 - The reassessment of engineering structures, such as bridges, now increasingly involve the integration of models with realworld data. This integration aims to achieve accurate ‘as-is’ analysis within a digital twin framework. Bayesian model updating combines prior knowledge and data with models to enhance the modelling accuracy while consistently handling uncertainties. When updating large engineering models, numerical methods for Bayesian analysis present significant computational challenges due to the need for a substantial number of likelihood evaluations. The novelty of this contribution is to parallelize adaptive Bayesian Updating with Structural reliability methods combined with subset simulation (aBUS) to improve its computational efficiency. To demonstrate the efficiency and practical applicability of the proposed approach, we present a case study on the Maintalbrücke Gemünden, a large railway bridge. We leverage modal property data to update a linear-elastic dynamic structural model of the bridge. The parallelized aBUS approach significantly reduces computational time, making Bayesian updating of large engineering models feasible within reasonable timeframes. The improved efficiency allows for a wider implementation of Bayesian model updating in structural health monitoring and maintenance decision support systems. KW - Bayesian model updating KW - Bayesian updating with structural reliability methods KW - Structural health monitoring KW - Parallelization KW - Modal analysis KW - Railway bridge PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-633686 DO - https://doi.org/10.1177/13694332251346848 SN - 1369-4332 SN - 2048-4011 SP - 1 EP - 26 PB - Sage AN - OPUS4-63368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - 3D spatial modelling of CPT data for probabilistic preliminary assessment of potential pile tip damage upon collision with boulders N2 - Tip damage of monopiles from boulder collisions during installation has emerged as a critical design issue, primarily due to the combination of the widespread use of large-diameter piles and the complexity of the ground conditions at the available sites. Recently, a framework relating potential pile tip damage to cone tip resistance from Cone Penetration Tests (CPTs) has been proposed in the literature. Gaussian processes are powerful stochastic models that enable probabilistic spatial interpolation of soil data at any location within a site. On this basis, this study utilizes sparse CPT data from a site in the North Sea, to first develop an efficient Gaussian process regression model, which is used to derive a three-dimensional (3D) probabilistic predictive map of the cone tip resistance. Assuming deterministic loading conditions and a factual collision with a boulder of pre-defined properties, the cone tip resistance predictive model is subsequently used for a probabilistic preliminary assessment of potential pile tip damage. Results of the analysis are realistic 3D probability maps of potential damage that aim to support engineering judgment and contribute towards cost-effective site investigation planning and offshore wind farm design. T2 - 5th International Symposium on Frontiers in Offshore Geotechnics (ISFOG 2025) CY - Nantes, France DA - 09.06.2025 KW - CPT data KW - Gaussian process regression KW - Boulder impact KW - Preliminary pile tip damage assessment PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634417 SN - 978-2-85782-758-0 DO - https://doi.org/10.53243/ISFOG2025-323 SP - 505 EP - 510 PB - International Society for Soil Mechanics and Geotechnical Engineering CY - London AN - OPUS4-63441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Multivariate Gaussian Process for 3D subsurface stratigraphy prediction from CPT and labelled borehole data N2 - Quantifying uncertainties in subsurface properties and stratigraphy can lead to better understanding of the ground conditions and enhance the design and assessment of geotechnical structures. Several studies have utilized Cone Penetration Test (CPT) data and employed Bayesian and Machine Learning methods to quantify the geological uncertainty, based on the Robertson’s soil classification charts and the Soil Behaviour Type Index (Ic). The incorporation of borehole data can reduce the stratigraphic uncertainty. Significant challenges can arise, however, mainly due to the intrinsic differences between field and laboratory-based soil classification systems, which can potentially lead to inconsistent soil classification. To this end, this study proposes a multivariate Gaussian Process model that utilizes site-specific data and: i) jointly models multiple categorical (USCS labels) and continuous (Ic) variables, ii) learns a (shared) spatial correlation structure and the betweenoutputs covariance, and iii) produces two types of dependent classification outputs. The results indicate that the integration of geotechnical and geological information into a unified model can provide more reliable predictions of the subsurface stratification, by allowing simultaneous interpretation of USCS and Ic profiles. Importantly, the model demonstrates the potential to integrate multiple variables of different types, aiming to contribute to the development of a methodology for joint modeling of geotechnical, geological and geophysical data. T2 - 7th International Conference on Geotechnical and Geophysical Site Characterization CY - Barcelona, Spain DA - 18.06.2024 KW - Geotechnical site-characterization KW - Probabilistic KW - Soil classification KW - Gaussian Process PY - 2024 SP - 1733 EP - 1740 AN - OPUS4-60712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Spatial modeling of heterogeneous geotechnical site investigation data using multivariate Gaussian Process N2 - This presentation is part of the Engineering Risk Analysis group open seminars. It aims to showcase the results of an ongoing study centered on developing a novel probabilistic methodology for 3D geotechnical site characterization. This methodology integrates data from Cone Penetration Tests (CPTs) and categorical borehole data. The presentation covers the mathematical details of the proposed Multivariate Gaussian Process model and demonstrates its application to a real geotechnical site in New Zealand. T2 - ERA Seminars CY - Munich, Germany DA - 24.07.2024 KW - Geotechnical site-characterization KW - CPT KW - Boreholes KW - Gaussian Process PY - 2024 AN - OPUS4-60716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Probabilistic approaches to the design and assessment of offshore foundations considering spatially varying site conditions N2 - In this contribution, we consider two applications in which probabilistic approaches can potentially complement or enhance the design and assessment of offshore wind turbine foundations. First, we illustrate in a numerical example that probabilistic modelling can be helpful in dealing with chang-es in turbine locations during the planning phase of an offshore wind farm. In this case, spatial probabilistic modelling of the ground conditions enables (a) an inference of the soil properties at the modified turbine location from field data collected at different locations across an offshore wind farm site and (b) an optimisation of further site investigations. Second, we discuss the uncer-tainties and risks associated with the installation of large diameter monopiles in soils with hetero-geneities such as strong layers and/or embedded boulders. Subsequently, we present a concept for modelling, understanding, and managing these risks based on a probabilistic model of the subgrade conditions, monopile, and subgrade-pile-interaction. T2 - 3rd International Conference on Structural Integrity for Offshore Energy Industry (SI 2021) CY - Online meeting DA - 15.11.2021 KW - Probabilistic modelling KW - Spatially varying ground conditions KW - Foundation reliability analysis KW - Monopile installation risks PY - 2022 SN - 978-1-8383226-3-2 SP - 9 EP - 17 AN - OPUS4-54531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Ebell, Gino A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Schneider, Ronald ED - Lienhart, Werner ED - Krüger, Markus T1 - On potentials and challenges of physics-informed SHM for civil engineering structures N2 - Physics-informed structural health monitoring, which integrates realistic physical models of material behavior, structural response, damage mechanisms, and aging processes, offers a promising approach to improve monitoring capabilities and inform operation and maintenance planning. However, the associated technical challenges and model requirements are context-specific and vary widely across applications. To illustrate the relevance and potential of the topic, two application examples are presented. The first focuses on monitoring the modal characteristics of a prestressed road bridge, where strong sensitivity to temperature variations limits the diagnostic capabilities of conventional vibration-based global monitoring. The discussion highlights how environmental influences can obscure structural changes, and emphasizes that purely data-based approaches are inherently limited to detecting anomalies and do not enable comprehensive condition diagnostics. The second example explores a physics-informed monitoring approach for prestressed concrete bridges affected by hydrogen-induced stress corrosion cracking. T2 - SHMII-13 CY - Graz, Austria DA - 01.09.2025 KW - Hydrogen Stress Corrosion Cracking KW - SHM KW - Physics informed PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643271 SN - 978-3-99161-057-1 DO - https://doi.org/10.3217/978-3-99161-057-1-039 SP - 245 EP - 251 PB - Verlag der Technischen Universität Graz CY - Graz, Austria AN - OPUS4-64327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Joyal K. A1 - von Wangenheim, Kristian A1 - Kaplan, Felix A1 - Schneider, Ronald A1 - Hindersmann, Iris ED - Lienhart, Werner ED - Krüger, Markus T1 - Monitoring of civil engineering structures - current and future use cases N2 - Monitoring represents an effective approach for addressing the diverse challenges associated with the maintenance of civil engineering structures. It contributes to improving both the availability and safety of these structures. By increasing the amount of information available about the structure, monitoring supports better-informed decisions regarding its preservation. Due to the complexity of monitoring applications, specific use cases are outlined. A key advantage of these use cases is that new technologies can be tested within well-defined and limited scopes. The use cases monitoring of known, localized damage, monitoring of known deficits identified through reassessment or resulting from outdated design procedures and monitoring aimed at assessing traffic loads and their effects currently account for the majority of implemented monitoring measures. Their practical implementation is demonstrated through case studies from the Brandenburg State Road Authority. Additional use cases, such as monitoring to support structural inspections and monitoring of major structures, such as large viaducts, are gaining importance, with initial practical examples already present in Europe. Future applications reveal potential for expanded use, particularly in the context of monitoring to support predictive lifecycle management. This will become increasingly important in the implementation of digital twins, as announced in the national BIM master plan. Furthermore the concept of a Birth Certificate is intended to establish a reference state of the structure prior to commissioning, which can then be used for comparison with future measurements over time. The integration and interaction of these individual use cases pave the way for the implementation of digital twins. T2 - 13th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Graz, Austria DA - 01.09.2025 KW - Structural Health Monitoring KW - Use Cases KW - Bridges KW - Digital Twin PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644422 DO - https://doi.org/10.3217/978-3-99161-057-1-033 SP - 203 EP - 208 PB - Verlag der Technischen Universität Graz CY - Graz AN - OPUS4-64442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Döhler, Michael ED - Mélot, Adrien ED - Aenlle Lopez, Manuel T1 - System identification and model calibration of a steel road bridge N2 - The Bundesanstalt für Materialforschung und -prüfung (BAM), in cooperation with the Netherlands Organization for Applied Scientific Research (TNO), is working on a framework for integrating frequently updated structural models into an asset management process for bridge structures. A multi-span steel road bridge was selected as a test case for the development of this framework. In order for the structural model to represent the real behavior of the bridge with sufficient accuracy, model calibration is required. In this case, we have planned to calibrate the model based on the dynamic response of the bridge. To determine its dynamic properties, a multi-setup operational modal analysis was performed on one of the bridge spans. In parallel, a structural model of the span was developed based on the available design and service life information. Both eigenfrequencies and mode shapes were used as reference parameters to calibrate the model. A sensitivity analysis was performed to identify the most influential design parameters. Subsequently, a genetic algorithm was applied for minimizing the difference between measured and simulated characteristic responses. In the proposed paper, we summarize the measurements as well as the determination of the modal response of the bridge and describe the process of calibration of the structural model using the identified dynamic response. T2 - 11th International Operational Modal Analysis Conference (IOMAC 2025) CY - Rennes, France DA - 20.05.2025 KW - Bridge structure KW - Operational modal analysis KW - Model calibration PY - 2025 SN - 978-84-09-75120-4 SP - 114 EP - 121 PB - International Group of Operational Modal Analysis CY - Gijón, Spain AN - OPUS4-64416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schneider, Ronald T1 - Time-variant reliability of deteriorating structural systems conditional on inspection and monitoring data N2 - The current practice of operating and maintaining deteriorating structural systems ensures acceptable levels of structural reliability, but it is not clear how efficient it is. Changing the current prescriptive approach to a risk-based approach has great potential to enable a more efficient management of such systems. Risk-based optimization of operation and maintenance strategies identifies the strategy that optimally balances the cost for controlling deterioration in a structural system with the achieved risk reduction. Inspections and monitoring are essential parts of operation and maintenance strategies. They are typically performed to reduce the uncertainty in the structural condition and inform decisions on future operation and maintenance actions. In risk-based optimization of operation and maintenance strategies, Bayesian updating is used to include information contained in inspection and monitoring data in the prediction of the structural reliability. All computations need to be repeated many times for different potential inspection and monitoring outcomes. This motivates the development of robust and efficient approaches to this computationally challenging task. The reliability of deteriorating structural systems is time-variant because the loads on them and their capacities change with time. In most practical applications, the reliability analysis of deteriorating structural systems can be approached by dividing their lifetime into discrete time intervals. The time-variant reliability problem can then be represented by a series of time-invariant reliability problems. Using this methodology as a starting point, this thesis proposes a novel approach to compute the time-variant reliability of deteriorating structural systems for which inspection and monitoring data are available. The problem is formulated in a nested way in which the prediction of the structural condition is separated from the computation of the structural reliability conditional on the structural condition. Information on the structural condition provided by inspections and monitoring is included in the reliability assessment through Bayesian updating of the system deterioration model employed to predict the structural condition. The updated system reliability is obtained by coupling the updated deterioration model with a probabilistic structural model utilized to calculate the failure probability conditional on the structural condition. This approach is the first main outcome of this thesis and termed nested reliability analysis (NRA) approach. It is demonstrated in two numerical examples considering inspected and monitored steel structures subject to high-cycle fatigue. An alternative – recently developed – approach, which also follows the strategy of discretizing time, describes deteriorating structural systems with hierarchical dynamic Bayesian networks (DBN). DBN combined with approximate or exact inference algorithms also enable the computation of the time-variant reliability of deteriorating structural systems conditional on information provided by inspection and monitoring data. In this thesis – as a proof of concept – a software prototype is developed based on the DBN approach, which can be used to assess the reliability of a corroding concrete box girder for which half-cell potential measurements are available. This is the second main outcome of this thesis. Both approaches presented in this thesis enable an integral reliability analysis of inspected and monitored structures that accounts for system effects arising from (a) the correlation among deterioration states of different structural elements, (b) the interaction between element deterioration and system failure, and (c) the indirect information gained on the condition of all unobserved structural elements from inspecting or monitoring the condition of some structural elements. Thus, both approaches enable a systemwide risk-based optimization of operation and maintenance strategies for deteriorating structural systems. The NRA approach can be implemented relatively easily with subset simulation, which is a sequential Monte Carlo method suitable for estimating rare event probabilities. Subset simulation is robust and considerably more efficient than crude Monte Carlo simulation. It is, however, still sampling-based and its efficiency is thus a function of the number of inspection and monitoring outcomes, as well as the value of the simulated event probabilities. The current implementation of the NRA approach performs separate subset simulation runs to estimate the reliability at different points in time. The efficiency of the NRA approach with subset simulation can be significantly improved by exploiting the fact that failure events in different years are nested. The lifetime reliability of deteriorating structural systems can thus be computed in reverse chronological order in a single subset simulation run. The implementation of the DBN approach is much more demanding than the implementation of the NRA approach but it has two main advantages. Firstly, the graphical format of the DBN facilitates the presentation of the model and the underlying assumptions to stakeholders who are not experts in reliability analysis. Secondly, it can be combined with exact inference algorithms. In this case, its efficiency neither depends on the number of inspection and monitoring outcomes, nor on the value of the event probabilities to be calculated. However, in contrast to the NRA approach with subset simulation, the DBN approach with exact inference imposes restrictions on the number of random variables and the dependence structure that can be implemented in the model. T3 - BAM Dissertationsreihe - 168 KW - Reliability KW - Structural systems KW - Deterioration KW - Bayesian analysis KW - Inspection KW - Monitoring KW - Zuverlässigkeit KW - Tragstrukturen KW - Schädigungsprozesse KW - Bayes'sche Analyse KW - Inspektion KW - Monitoring PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512977 SN - 1613-4249 VL - 168 SP - 1 EP - 188 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-51297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farhan, Muhammad A1 - Schneider, Ronald A1 - Thöns, Sebastian A1 - Gündel, M. T1 - Probabilistic cost modeling as a basis for optimizing inspection and maintenance of turbine support structures in offshore wind farms N2 - The operational management of offshore wind farms includes inspection and maintenance (I&M) of the wind turbine support structures. These activities are complex and influenced by numerous uncertain factors that affect their costs. The uncertainty in the I&M costs should be considered in decision value analyses performed to optimize I&M strategies for the turbine support structures. In this paper, we formulate a probabilistic parametric model to describe I&M costs for the common case in which a wind farm is serviced and maintained using a workboat-based strategy. The model is developed based on (a) interviews with a wind farm operator, engineering consultants, and operation and maintenance engineers, as well as (b) scientific literature. Our methodology involves deriving the probabilistic models of the cost model parameters based on intervals representing a subjective expert opinion on the foreseeable ranges of the parameter values. The probabilistic cost model is applied to evaluate the total I&M costs, and a sensitivity analysis is conducted to identify the main cost drivers. The model can be utilized to optimize I&M strategies at the component, structural system, and wind farm level. To illustrate its potential use, we apply it in a numerical study in which we optimize I&M strategies at the structural system level and identify and demonstrate a simplified approach of capturing uncertain I&M costs in the optimization. The simplified approach is generalized and made available for maintenance cost optimization of offshore wind turbine structures. KW - Inspection KW - Maintenance KW - Turbine support structures KW - Offshore wind KW - Costs PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626144 DO - https://doi.org/10.5194/wes-10-461-2025 SN - 2366-7443 SN - 2366-7451 VL - 10 IS - 2 SP - 461 EP - 481 PB - Copernicus Publications CY - Göttingen AN - OPUS4-62614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -