TY - JOUR A1 - Auersch, Lutz T1 - Characteristics of train passages over slab tracks from measurements and different track-soil models - Damage detection and ground vibration reduction N2 - The train passages over intact or damaged slab tracks on different soils have been calculated by the finite-element boundary-element or the wavenumber-domain method. The influence of track and soil parameters on the distribution of the track displacements and the soil forces has been analysed. The measured and calculated displacement time histories of train passages could be used to identify track damages such as lose sleepers or a lose track plate. The time histories and spectra of the soil forces can explain the measured ground vibration reduction of slab tracks. The calculated displacement and force distributions of slab tracks on continuous soils do not fulfil the Winkler hypothesis and Winkler models should not be used for track analysis. KW - Wavenumber domain KW - Continuous soil KW - Slab track KW - Soil forces KW - Track displacements KW - Track filter KW - Vehicle–track interaction PY - 2020 DO - https://doi.org/10.1177/0954409719835036 SN - 0954-4097 VL - 234 IS - 2 SP - 142 EP - 160 PB - Sage CY - London AN - OPUS4-50266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Slab track behaviour under train passage and hammer impact – Measurements at different sites and calculated track interaction with continuous soils N2 - This contribution intends to give an overview on the vibration behaviour of slab tracks in comparison of measurements and calculations and also by comparison of different track types at more than ten different measuring sites. In theory, tracks on continuous soil are calculated by the frequency-wavenumber domain method. In experiment, geophone measurements are transformed to displacement results. Two aspects of track behaviour are considered, the frequency-dependant compliance of the track, measured by hammer impact, and the deflection under a passing axle load. In theory, the response to a single axle can be calculated, whereas in experiment, only the passage of the whole train can be measured. For comparison of theory and experiment, the calculated deflection under a single axle is superposed to get the response of the whole train. As a result, the slab track characteristics are completely different from the ballast track characteristics where each axle can be seen in the time histories. The slab track has a more global behaviour where only a whole bogie can be found in the track response and moreover, the two neighbouring bogies are not completely separated. The measurement of the different track elements (rail, sleeper, track plate, base layer) and the frequency-dependant compliances with possible resonances yield further information About the properties of the track elements. The calculations show that the soil has the dominant influence on the amplitudes and the width of the track-plate displacements. In the measurement results, the following parameters are analysed: slab track vs. ballast track, different types of slab tracks, damaged slab tracks, different trains, switches at different measuring points, voided sleepers, an elastic layer, the mortar layer, and different soils at different places. Finally, a good agreement between measured and calculated results is found for the normal and some special (damaged, floating) slab tracks. KW - Slab track KW - Train passage KW - Hammer impact KW - Compliance function KW - Track deflection PY - 2020 UR - https://iiav.org/ijav/index.php?va=viewpage&vaid=177&id_number=95 DO - https://doi.org/10.20855/ijav.2020.25.31622 SN - 1027-5851 VL - 25 IS - 3 SP - 341 EP - 354 PB - International Institute of Acoustics and Vibration CY - Gliwice AN - OPUS4-51346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle-Track-Soil Interaction of Isolated, Un-isolated and Damaged Railway Tracks N2 - This article deals with two topics of vehicle-track-soil interaction, the mitigation of railway induced ground vibration by soft track elements, and the identification of track damage. Theoretical results have been achieved by a combined finite-element boundary-element method (FEBEM). The theoretical results are confronted with measurements at four sites. Improved mitigation effects have been found for soft rail pads under heavy sleepers. The insertion loss, however, can be too optimistic if a strong vehicle track resonance occurs for the un-isolated reference track. Two measurement sites show this strong vehicle-track resonance at about 80 Hz, which has been approximated by using the results of a wide parameter study including the rail pad, ballast, and soil stiffness, as well as the ballast model and the soil layering. – The detection of slab track damage is mainly based on the differences of the receptance or compliance functions. Theoretical results have been confirmed by measurements at one site where a loss of contact between track plate and base layer was visible. Measurements at a second site with a hidden damage have been compared with the theoretical results of a loose sleeper. The differences between intact (or repaired) and damaged tracks are strong enough to encourage the further development of this method for the identification of track damages. KW - Railway track KW - Track-soil interaction KW - Ground vibration KW - Mitigation KW - Under-sleeper pads KW - Track damage monitoring PY - 2020 DO - https://doi.org/10.4203/ijrt.6.3.2 SN - 2049-5358 VL - 2 IS - 20 SP - 21 EP - 49 PB - Saxe-Coburg Publications CY - London AN - OPUS4-51257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Simple and fast prediction of train-induced track forces, ground and building vibrations N2 - A simple and fast prediction scheme is presented for train induced ground and building vibrations. Simple models such as (1-dimensional) transfer matrices are used for the vehicle-track-soil interaction and for the building-soil interaction. The wave propagation through layered soils is approximated by a frequency-dependent homogeneous half-space. The prediction is divided into the parts “emission” (excitation by railway traffic), “transmission” (wave propagation through the soil) and “immission” (transfer into a building). The link between the modules is made by the excitation force between emission and transmission, and by the free-field vibration between transmission and immission. All formula for the simple vehicle-track, soil and building models are given in this article. The behaviour of the models is demonstrated by typical examples, that is the mitigation of train vibrations by elastic track elements, the low- and high-frequency cut-offs characteristic for layered soils, and the interacting soil, wall and floor resonances of multi-storey buildings. It is shown that the results of the simple prediction models can well represent the behaviour of the more time-consuming detailed models, the finite-element boundary-element models of the track, the wavenumber integrals for the soil, and the three-dimensional finite-element models of the building. In addition, measurement examples are given for each part of the prediction confirming that the methods provide reasonable results. As the prediction models are fast in calculation, many predictions can be done, for example to assess the environmental effect along a new railway line. The simple models have the additional advantage that the user needs to know only a minimum of parameters. So, the prediction is fast and user-friendly, but also theoretically and experimentally well-founded. KW - Railway induced vibration KW - Ground vibration KW - Layered soil KW - Building response KW - Excitation forces KW - Track and vehicle irregularities PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513340 DO - https://doi.org/10.1007/s40534-020-00218-7 SN - 2662-4745 VL - 28 IS - 3 SP - 232 EP - 250 PB - Springer AN - OPUS4-51334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - A mid-frequency component of train-induced ground vibration due to scattered axle impulses and the irregularities of the soil and ballast N2 - The passage of the train is dominated by the impulses of the static axle loads. The response of the regular homogeneous and irregular soils has been calculated by the finite-element method in frequency domain. The superposition of the impulse responses yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil or ballast of which the stiffness varies randomly in space, a mid-frequency ground vibration component is generated by the scattering of the axle impulses. Measurements will be shown which prove the existence of the mid-frequency ground vibration component and the unique explanation by the scattered axle impulses: many international measurements with a raised mid-frequency component, axle-box measurements with a too low mid-frequency dynamic load, amplitude-speed dependencies which are incompatible with irregularity-induced dynamic loads, and ground vibration reductions due to stiff track elements. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD) CY - Online meeting DA - 07.09.2020 KW - Ground vibration KW - Railway KW - Irregular soil KW - Irregular ballast KW - Axle impulses PY - 2020 SP - 2611 EP - 2625 PB - KULeuven CY - Leuven AN - OPUS4-51210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 SP - 1573 EP - 1585 PB - KULeuven CY - Leuven AN - OPUS4-51211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - A mid-frequency component of train-induced ground vibration due to scattered axle impulses and the irregularities of the soil and ballast N2 - The passage of the train is dominated by the impulses of the static axle loads. The response of the regular homogeneous and irregular soils has been calculated by the finite-element method in frequency domain. The superposition of the impulse responses yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil or ballast of which the stiffness varies randomly in space, a mid-frequency ground vibration component is generated by the scattering of the axle impulses. Measurements will be shown which prove the existence of the mid-frequency ground vibration component and the unique explanation by the scattered axle impulses: many international measurements with a raised mid-frequency component, axle-box measurements with a too low mid-frequency dynamic load, amplitude-speed dependencies which are incompatible with irregularity-induced dynamic loads, and ground vibration reductions due to stiff track elements. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Ground vibration KW - Railway KW - Irregular soil KW - Irregular ballast KW - Axle impulses PY - 2020 AN - OPUS4-51212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 AN - OPUS4-51213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 13.11.2020 KW - Building vibration KW - Office building KW - Residential building KW - Soil-building resonance KW - Floor resonance KW - Column/wall resonance PY - 2020 SN - 978-618-85072-2-7 SP - 4560 EP - 4576 CY - Athen AN - OPUS4-51678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Building vibration PY - 2020 AN - OPUS4-51679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Carletti, E. ED - Crocker, M. ED - Pawelczyk, M. ED - Tuma, J. T1 - Dynamic measurements during drop tests on stiff foundations N2 - Measurements at the foundation, the surrounding soil and nearby buildings have been done during several drop tests of different containers on different foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. It was controlled that the foundation does not absorb more than 2 percent of the energy of the container. Most of the drop energy is lost in shock absorbers. Later on, a smaller drop test facility has been built on the ground but inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which occur during the drop tests. On the other hand, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Different sensors, accelerometers, accelerometers with mechanical filters, geophones (velocity transducers), strain gauges, and pressure cells have been applied for these tasks. The signals have been transformed to displacements which proved to be best suited for the interpretation of the impact mechanism. Modell calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple estimation. The amplitudes of the foundation could also be estimated from the ground vibrations and their amplitude-distance law. T2 - 27th International Congress on Sound and Vibration (ICSV27) CY - Online meeting DA - 11.07.2021 KW - Drop test KW - Vibration measurement KW - Container loading KW - Foundation load PY - 2021 SN - 978-83-7880-799-5 SN - 2329-3675 SP - 1 EP - 8 PB - Silesian University Press CY - Gliwice, Poland AN - OPUS4-53255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Dynamic measurements during drop tests on stiff foundations N2 - Measurements at the foundation, the surrounding soil and nearby buildings have been done during several drop tests of different containers on different foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. It was controlled that the foundation does not absorb more than 2 percent of the energy of the container. Most of the drop energy is lost in shock absorbers. Later on, a smaller drop test facility has been built on the ground but inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which occur during the drop tests. On the other hand, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Different sensors, accelerometers, accelerometers with mechanical filters, geophones (velocity transducers), strain gauges, and pressure cells have been applied for these tasks. The signals have been transformed to displacements which proved to be best suited for the interpretation of the impact mechanism. Modell calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple estimation. The amplitudes of the foundation could also be estimated from the ground vibrations and their amplitude-distance law. T2 - 27th international Congress on Sound and Vibration (ICSV27) CY - Online meeting DA - 11.07.2021 KW - Drop test KW - Vibration measurement KW - Container loading KW - Foundation load PY - 2021 AN - OPUS4-53256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Train-induced ground vibration due to the irregularities of the soil N2 - Many measurements of train induced ground vibrations show high amplitudes for a certain mid-frequency range. This ground vibration component cannot be well explained by dynamic loads of the train. Many characteristics indicate that the axle impulses, which are scattered by an irregular soil, are the excitation. This new understanding of railway-induced ground vibration is verified by numerical analysis. The response of the regular homogeneous and irregular inhomogeneous soils has been calculated by the finite-element method in frequency domain. A specific superposition of the impulse responses has been invented including time shift, axle sequence, track filter and hanning filter. The superposition yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil of which the stiffness varies randomly in space, the superposition yields a mid-frequency ground vibration component from the scattering of the axle impulses. The existence and the importance of this component can thus be demonstrated by the calculations. Some rules of the influence of distance, train speed, soil stiffness, strength and width of the stiffness variation have been derived from the calculations. Many measurements show the unique explanation of the mid-frequency ground vibration component by the scattered axle impulses. KW - Train-induced ground vibration KW - Static axle loads KW - Quasi-static response; KW - Axle impulses KW - Irregular soil KW - Random stiffness variation KW - Scattered axle impulses PY - 2021 DO - https://doi.org/10.1016/j.soildyn.2020.106438 SN - 0267-7261 VL - 140 SP - 106438 PB - Elsevier Ltd. CY - London AN - OPUS4-52006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of building noise and vibration – 3D finite element and 1D wave propagation models N2 - Construction work or traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance for the inhabitants. The transfer of the vibration from the free field to the building has been calculated by the finite element method for many models in consultancy and research work. The analysis for all storeys of certain building points such as walls, columns and floors unveiled some rules, some typical modes, and some wavetype responses. A simplified building-soil model has been created, which includes well these effects of building-soil resonance, wall/column resonance, floor resonances, and the high-frequency reduction. The model consists of one wall for a wall-type apartment building or a column for each specific part (mid, side or corner) of a column-type office building. The building response in the high-frequency (acoustic) region is calculated as mean values over all storeys and over wider frequency bands, by wave-type asymptotes of an infinitely tall building, and by the soil to wall ratio of impedances. The secondary noise is predicted by Transfer values between the building vibration (center of floors, walls at a room corner) and the sound pressure. T2 - Euronoise 2021 CY - Online meeting DA - 25.10.2021 KW - Building vibration KW - Finite element models KW - Soil-wall-floor model KW - Apartment building KW - Office tower PY - 2021 SN - 978-989-53387-0-2 SP - 1792 EP - 1801 AN - OPUS4-53702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of building noise and vibration – 3D finite element and 1D wave propagation models N2 - Construction work or traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance for the inhabitants. The transfer of the vibration from the free field to the building has been calculated by the finite element method for many models in consultancy and research work. The analysis for all storeys of certain building points such as walls, columns and floors unveiled some rules, some typical modes, and some wavetype responses. A simplified building-soil model has been created, which includes well these effects of building-soil resonance, wall/column resonance, floor resonances, and the high-frequency reduction. The model consists of one wall for a wall-type apartment building or a column for each specific part (mid, side or corner) of a column-type office building. The building response in the high-frequency (acoustic) region is calculated as mean values over all storeys and over wider frequency bands, by wave-type asymptotes of an infinitely tall building, and by the soil to wall ratio of impedances. The secondary noise is predicted by Transfer values between the building vibration (center of floors, walls at a room corner) and the sound pressure. T2 - Euronoise 2021 CY - Online meeting DA - 25.10.2021 KW - Building vibration KW - Finite element models KW - Soil-wall floor model KW - Apartment building KW - Office tower PY - 2021 AN - OPUS4-53703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Dynamic track-soil interaction – calculations and measurements about slab and ballast tracks N2 - The dynamic behaviour of slab and ballast tracks has been investigated by measurements and calculations. Hammer impacts and train passages have been analysed. Measurements have been performed by geophones (velocity transducers) which have been time-integrated to displacements. The calculations are done in frequency-wavenumber domain for multi-beam-on-continuous soil models. The characteristics of the different tracks and track elements have been established in theory and experiment. The frequency-dependent compliances (displacement transfer functions) show clear rail-on-rail-pad resonances or highly damped track-soil resonances. Compared to the rail and sleeper, the track plate has much lower amplitudes. The slab track has usually the highest rail amplitudes due to soft rail pads. The train passage yields track displacements which are a superposition of the axle loads from the two neighbouring axles of a bogie and from the two bogies of two neighbouring carriages. This global behaviour is characteristic for the track plate of the slab track whereas the rails of the slab and the ballast track behave more local with only one bogie of influence. The measurements agree very well with the theory of the continuous soil in case of the six measured slab tracks and acceptably well for the six measured ballast tracks. The measurements allow to find appropriate model parameters and to check the models, for example the Winkler model of the soil has been found less appropriate as it reacts more locally. KW - Slab track KW - Ballast track KW - Train passage KW - Hammer impact KW - Track-soil interaction PY - 2021 DO - https://doi.org/10.1631/jzus.A1900651 SN - 1673-565X VL - 22 IS - 1 SP - 21 EP - 36 PB - Zhejiang University Press CY - Hangzhou AN - OPUS4-52107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz ED - Degrande, G. ED - al., et T1 - Predicted and measured amplitude-speed relations of railway ground vibrations at four German sites with different test trains N2 - The present contribution evaluates four measuring series made by the Federal Institute of Material Research and Testing for the relations between train speed and ground vibration amplitudes. This experimental evaluation is supported by the simulation of the train passages at the different sites by using appropriate excitation mechanisms and forces as well as layered soil models which have been derived from impact measurements at each site. KW - Train speed KW - Ground vibration KW - Excitation forces KW - Layered soils PY - 2021 SN - 978-3-030-70288-5 DO - https://doi.org/10.1007/978-3-030-70289-2_43 SN - 1612-2909 VL - 150 SP - 411 EP - 419 PB - Springer Nature Switzerland AG CY - Cham AN - OPUS4-52611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Müller, R. A1 - Brechbühl, Y. A1 - Lutzenberger, S. A1 - Said, Samir A1 - Auersch, Lutz A1 - Guigou-Carter, C. A1 - Villot, M. A1 - Müller, R. ED - Degrande, G. ED - al., et T1 - Vibration Excitation at Turnouts, Mechanism, Measurements and Mitigation Measures N2 - There is a strong need for cost-effective mitigation measures for turnouts. SBB has initiated a series of examinations using different methodologies to gain a deeper understanding of the excitation mechanisms at low frequencies, in addition to that obtained in the RIVAS project. To date it is not yet clear what constitutes a complete measurement data set that would enable understanding most of the vibration excitation mechanisms in turnouts. Increasing vibration at turnouts in comparison to normal track is observed for all measured frequencies. The different methodologies are presented in the paper. Under-sleeper pads (USP) are a cost-effective method to reduce vibration at frequencies above 63 Hz (1/3 octave), but there is probably no improvement for frequencies below 63 Hz. A first test of new frog geometry did not show relevant improvements in Vibration emission in comparison to a reference frog geometry. Axle box acceleration measurements are an interesting method to identify defects in a turnout. A specialized measurement system of rail roughness could identify certain geometry Problem areas for some frogs. Noise increases also are observed at turnouts for frequencies ranging between 80 to 1000 Hz. The use of railway source models to calculate contact forces for ballasted track and turnouts seems promising, in particular for understanding the influence of ground. KW - Turnout KW - Switch KW - Vibration excitation KW - Vibration measurements PY - 2021 SN - 978-3-030-70288-5 DO - https://doi.org/10.1007/978-3-030-70289-2_42 SN - 1612-2909 VL - 150 SP - 403 EP - 410 PB - Springer Nature Switzerland AG CY - Cham AN - OPUS4-52612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Resonances of railway bridges analysed in frequency domain by the modal-force-excitation, bridge-transfer and axle-sequence spectra N2 - In this article, the passage of different trains over different bridges will be studied for resonant excitation. The intensity of the resonance will be estimated in frequency domain by using three separated spectra. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of the train. The influences of train speed, bridge length, bridge support, track irregularities, and train type on the resonance amplitudes will be analysed for each of these spectra separately for getting a better insight. A variety of axle-sequence spectra and corresponding rules will be presented for different vehicles and trains. As examples, the passage of a slow freight train over a long-span bridge, a normal passenger train over a medium-span bridge, and a high-speed train over a short bridge will be analysed. Corresponding measurements show the amplification, but also the cancellation of the subsequent axle responses. Namely in one of the measurement examples, the first mode of the bridge was amplified and the second mode was cancelled at a low speed of the train and vice versa at a higher speed. KW - Railway bridge KW - Bridge vibration KW - Train passage KW - Axle sequence KW - Resonance KW - Cancellation KW - Fequency domain PY - 2021 DO - https://doi.org/10.1016/j.engstruct.2021.113282 SN - 0141-0296 VL - 249 SP - 1 EP - 9 PB - Elsevier Ltd. CY - London AN - OPUS4-53766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The role of vehicle dynamics in train-induced ground vibrations and the detection of irregular axle-pulse responses due to a varying track support stiffness N2 - Train-induced ground vibrations are all generated by the vehicle, by static or dynamic vehicle loads. The most important and most accepted excitation are the dynamic wheel loads from the passage over track irregularities. Dynamic wheel loads will be compared from parallel axle-box and ground vibration measurements at more than seven sites. Some low-frequency excitation of ground vibrations, typically between 10 and 30 Hz, cannot be found in the axle-box measurements. Therefore, other vehicle modes, such as rigid bogie modes, flexible carriage modes, rigid and flexible wheelset modes, have been analysed for additional excitation forces. These vehicle dynamics analyses give an explanation for higher axle-box results at high frequencies, but not for the excitation of the higher low-frequency ground-vibration component. Finally, the effect of the moving static train loads will be analysed. For a regular track and soil, the moving static train loads yield the quasi-static response which exists only in the low-frequency nearfield of the track. If the support stiffness is randomly varying along the track, the pulses on the track generate an additional low-frequency component which is called the irregular pulse responses. This component will be demonstrated by numerical analysis where all axle pulses are superposed in frequency domain. KW - Wheelset KW - Vehicle-track interaction KW - Rail roughness KW - Random dynamics and vibrations KW - Modal analysis PY - 2022 DO - https://doi.org/10.1177/09544097221086064 SN - 0954-4097 VL - 236 IS - 10 SP - 1218 EP - 1233 PB - Sage CY - London AN - OPUS4-55000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wave propagation from hammer, vibrator and railway excitation – theoretical and measured attenuation in space and frequency domain N2 - The attenuation of wave amplitudes is ruled by the planar, cylindrical or spher-ical geometry of the wave front (the geometric or power-law attenuation) but also by the damping of the soil (an exponential attenuation). Several low- and high-frequency filter effects are derived for the layering and the damping of the soil, for the moving static and the distributed train loads and for a homoge-neous or randomly heterogeneous soil. Measurements of hammer- and train-induced vibrations at five sites have been analysed for these attenuation and filter effects. The measured attenuation with distance can be discribed by gen-eralised power laws and some reasons will be discussed. The theoretical filter effects can well be found in the measurements. T2 - 10th Wave Mechanics and Vibration Conference (WMVC)nce CY - Lisbon, Potugal DA - 04.07.2022 KW - Hammer impact KW - Train passage KW - Layered soil KW - Attenuation KW - Filter effects KW - Randomly heterogeneous soil KW - Scattering PY - 2022 AN - OPUS4-55246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Different types of continuous track irregularities as sources of train-induced ground vibration and the importance of the random variation of the track support N2 - Irregularities of the track are a main cause of train-induced ground vibration, and track maintenance is of great importance. Although geometric irregularities at the wheel-rail contact are widely used, other types of irregularities, such as stiffness irregularities, irregularities from different track positions and irregularities in the wave propagation, were analysed in the present study. The track behaviour was investigated by a multi-beam-on-soil model. This track model is coupled with a vehicle model to calculate the vehicle–track interaction. The track model was also used for the track filtering, which transfers a track support error to the equivalent rail irregularity or, conversely, the sharp axle pulse on the rail to a smoother pulse on the soil. In the case in which this filtering varies randomly along the track, the pulses of the moving static load induce a certain ground Vibration component (“the scatter of axle pulses”). This effect was calculated by the superposition of axle pulses in the frequency domain and by a stochastic simulation. Simultaneous vehicle, track and soil measurements at a certain site were used to evaluate the different excitation and ground Vibration components. The agreement between calculations and axle-box and soil measurements is good. The ground vibrations calculated from rail irregularities and corresponding dynamic loads, however, clearly underestimate the measured ground vibration amplitudes. Only the static load that is moving over a varying track support stiffness can produce the important mid-frequency ground Vibration component by the scatter of axle pulses. KW - Train-induced ground vibration KW - Geometric vehicle and track irregularities KW - Stiffness variation KW - Multi-beam track model KW - Track filtering KW - Dynamic axle loads KW - Static axle loads KW - layered soil PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543846 DO - https://doi.org/10.3390/app12031463 SN - 2076-3417 VL - 12 IS - 3 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wave propagation from hammer, vibrator and railway excitation – theoretical and measured attenuation in space and frequency domain N2 - The attenuation of wave amplitudes is ruled by the planar, cylindrical or spherical geometry of the wave front (the geometric or power-law attenuation) but also by the damping of the soil (an exponential attenuation). Several low- and high-frequency filter effects are derived for the layering and the damping of the soil, for the moving static and the distributed train loads and for a homogeneous or randomly heterogeneous soil. Measurements of hammer- and train-induced vibrations at five sites have been analysed for these attenuation and filter effects. The measured attenuation with distance can be discribed by generalised power laws and some reasons will be discussed. The theoretical filter effects can well be found in the measurements. T2 - Wave Mechanics and Vibrations Conference CY - Lisbon, Potugal DA - 04.07.2022 KW - Hammer impact KW - Train passage KW - Layered soil KW - Attenuation KW - Filter effects KW - Randomly heterogeneous soil KW - Scattering PY - 2023 SN - 978-3-031-15757-8 DO - https://doi.org/10.1007/978-3-031-15758-5_35 SP - 352 EP - 359 PB - Springer Nature CY - Cham, Schweiz AN - OPUS4-56034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Measurement and evaluation tools for ground and building vibrations from industrial process-es, construction work, traffic and other sources N2 - Vibration measurements have many causes and many technical and natural sources. Problems can sometimes be solved by short-term measurements, but in many cases, a long-term measurement is necessary. In long-term measurements of days, weeks, months and even years, it is easy to collect a huge quantity of raw data, but at the end, the post-processing of these data can be exhausting (for example one-year vibration data of a wind energy tower). A software has been developed which con-sists of measuring and evaluation routines where the measuring routines can operate different meas-uring systems and different measuring cards. The main advantage of this software is the fact that the interesting evaluations can be integrated in the measuring process so that the characteristics of the vibration can be extracted without storing all the raw data. Only important time segments are stored, for example train passages. The overall concept of the software and the main evaluation routines will be described in some details. Examples of our measurement experience will illustrate the capabilities of the software. 1) Surveying construction work in nearby sensitive buildings (for example an old wind tunnel), including a stable alarm system and meaningful vibration limits. 2) Prediction of train-induced vibration for a planned building to prevent annoyance and to improve the building design. 3) Modal analysis and long term measurements of several single- or multi-span, concrete or steel bridges 4) Modal and wave analysis of coupled floors in a historical building (“Neues Palais” at Potsdam). 5) Soil properties of various measurement sites (different routines to evaluate the dispersion). Moreover, from many projects, amplitudes, frequencies, and attenuation laws have been collected and analysed for the different sources such as vibratory or impact pile driving and ground compaction, demolition work with different machines, blasting in quarries and in tunnel works, bomb and mine clearing. T2 - 28th International Congress on Sound and Vibration (ICSV28) CY - Online meeting DA - 25.07.2022 KW - Ground vibration KW - Building vibration KW - Measurement KW - Evaluation KW - Modes and waves PY - 2022 AN - OPUS4-56035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Effects of a varying track and soil stiffness on ground vibrations near railway lines N2 - Usually, geometric irregularities are considered as the main cause of ground vibrations from trains. A varying stiffness of the track, the track support and the soil can also generate ground vibrations. The regular stiffness variation of the track on and between the sleepers results in a deterministic dynamic axle load. The random stiffness variation of the track support yields also dynamic axle loads. The dynamic axle loads are generated by the varying wheel displacements under the static axle load by the acceleration of the unsprung mass of the rail vehicle. The random stiffness variation has a second effect. The pulses from the passage of the static axle loads are superposed regularly to the quasi-static response, but also irregularly to yield a “scattered” part of the axle pulses. The same holds for a random variation of the soil stiffness. All these effects of stiffness variations have been calculated by wavenumber-domain multi-beam track models, a random finite-element soil model and the superposition of axle impulses in a stochastic simulation. The results are confronted with many measurements at different sites. It is concluded that the stiffness variation of the track and the soil generate an important ground vibration component near railway lines. T2 - Railways 2022 CY - Montpellier, France DA - 22.08.2022 KW - Ground vibration KW - Railways KW - Varying track stiffness KW - Varying soil stiffness PY - 2022 AN - OPUS4-56036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Building vibration KW - Railways KW - Simple and fast prediction PY - 2022 AN - OPUS4-56038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Challenges of vibration prediction – realistic irregularities, the scattering of axle pulses, and the tunnel-surface reduction N2 - A prediction software has been developed by BAM. The following topics have still be solved. A realistic irregularity spectrum can be derived from axle-box measurements. It agrees wel with the spectrum used for the high-speed 2 project in the United Kingdom. In addition, the scattering of axle pulses should be included. This mid-frequency component can also be found in the HS2 procedure. Finally, the reduction in case of a tunnel line compared to a surface line should be included. Some measurement results of BAM, HS2 and other institutes show a certain mid-frequency reduction. This is due to the load distribution of the tunnel which yields softer axle pulses and the scattered axle impulses are reduced. T2 - ISO/TC 108/SC 2/WG 8 Working group Ground-borne noise and vibration from rail systems CY - London, UK DA - 21.11.2022 KW - Ground vibration KW - Railway trafiic KW - Prediction KW - Irregularities KW - Axle pulses KW - Tunnel line KW - Surface line PY - 2022 AN - OPUS4-56738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Characteristic Frequencies of Train-Induced Bridge, Track, Ground and Building Vibrations – Excitation and Mitigation N2 - The characteristic frequencies of train-induced vibrations are discussed in theory and experiment following the propagation of vibrations from the source to the receiver: 1. Out-of-roundness frequencies of the wheels, 2. sleeper-passage frequency, 3. the vehicle-track eigenfrequency, 4. band frequency of the impulses of the passing static axle loads, 5. car-length frequency and multiples, 6. axle-distance frequencies with two characteristic zeros, 7. bridge eigenfrequencies, 8. the cut-on frequency due to the layering, and 9. the cut-off frequency due to the material damping of the soil, 10. the building-soil eigenfrequency, 11. as a rigid building or flexible wall/column mode, 12. floor eigenfrequencies, 13. acoustic room resonances, 14. the „resonance“ frequency or cut-off frequency of a base isolation. Coincidences of some of these characteristic frequencies or frequency ranges can be typically problematic and mitigation measures at the track or at the building can be necessary. The bridge response to the passing static loads is deter¬mined by the axle-sequence spectrum, the eigenfrequency (transfer function) of the bridge, and the modal force or mode shape spectrum. The ground vibration has typically high frequencies for a stiff soil and low frequencies for a soft soil. The high amplitudes between the zeros of the axle-sequence spectrum are often measured in the ground vibrations, and they can be mitigated by soft support elements or a higher bending stiffness of the track. T2 - EVACES 2025 CY - Porto, Portugal DA - 02.07.2025 KW - Train-induced vibration KW - Axle-sequence spectrum KW - Vehicle-track eigenfrequency KW - Axle impulses PY - 2025 AN - OPUS4-63654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Mitigation of railway-induced ground vibration by soft support elements and a higher bending stiffness of the track N2 - The mitigation of train-induced ground vibrations by track solutions is investigated by calculations and measurements. The calculation by a wavenumber domain method includes the correct vehicle–track interaction and the correct track–soil interaction. Some theoretical results for elastic elements and an increased bending stiffness of the track are presented where the force transfer of the track and the vehicle–track interaction are calculated for the high-frequency dynamic mitigation, and the force distribution along the track is calculated for the low-frequency mitigation which is due to the smoother impulses from the passing static loads. Measurement results for the ground vibration near isolated and un-isolated tracks are given for several under-sleeper pads, for under-ballast mats, and for several under-ballast plates and ballast troughs. The elastic elements yield a resonance frequency of the vehicle–track–soil system and a high-frequency reduction of the dynamic axle loads which depends mainly on the softness of the pads or mats and which can be improved by a higher sleeper mass. In addition, all troughs and most of the soft elements show a low-frequency reduction which is attributed to the scattered impulses of the static axle loads. Besides this main contribution of the article, the problem of a soft reference section on a different soil is discussed and recommendations for better ground vibration measurements of mitigation effects are given. KW - Railway track KW - Elastic elements KW - Bending stiffness KW - Ground vibration KW - Mitigation KW - Lowfrequency reduction KW - Axle impulses PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612568 DO - https://doi.org/10.3390/app14031244 VL - 14 IS - 3 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-61256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different (simply supported, integral, multi-span, continuous) bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long single-span bridge on elastomeric bearings under standard train speeds, to a short two-span bridge under high-speed traffic, and to a long three-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4, a Maglev train on a viaduct, and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. KW - Rail bridge KW - Resonance KW - ICE4 KW - MAGLEV KW - Hyperloop KW - Continuous bridge KW - Multi-span bridge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612595 DO - https://doi.org/10.1088/1742-6596/2647/25/252014 VL - 2647 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-61259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway vibration – fast physics-based models for the prediction of ground vibration and the identification of track damage N2 - The following applications of machine learning will be discussed: 1. The prediction of the wave propagation from a railway line (completely physics based for surface lines, physics-based machine learning for tunnel lines) 2. The track behaviour for the emission of train-induced ground vibration (physics based for homogeneous soil, machine learning for layered soil) 3. Track damage detection and quantification from frequency response functions and moving load responses 4. Bridge damage detection and localisation from modal analysis and moving load 5. The use of axle-box acceleration for the identification of track/sub-soil condition and bridge resonances. The prediction of railway vibration usually needs time-consuming finite element, boundary element and wavenumber domain calculations. For a user-friendly prediction software however, fast calculations are needed. Several time-consuming detailed calculations have been used to develop simpler and fast models for the surface railway lines. The more challenging prediction from tunnel lines will be attacked by purely mathematical and by physics-informed machine learning. The dynamic stiffnesses of isolated or un-isolated railway tracks from detailed calculations with a continuous soil have been approximated with the simpler Winkler soil. The vehicle-track resonance (P2 resonance) rules the effect of the mitigation measures, and it can also be used for the on-board monitoring of the track and sub-soil condition. For the identification of track damage such as gaps between sleepers, track slabs and layers, detailed models with a continuous soil have been updated to get the best fit to the measured frequency response functions from hammer tests and the deformation pattern from the moving load response. Whereas the track damage can be locally identified, this is more difficult for bridges where the modal analysis gives mainly global information. The influence lines of the inclination for statically passing vehicles (locomotive, truck, compaction roller) have been used to localise bridge damage (stiffness variations). The on-board monitoring of rail bridges needs special conditions (regular trains with special speeds) to excite and measure the bridge resonance. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Vibration prediction KW - Track damage detection KW - Human and machine learning KW - Wave propagation KW - Surface line KW - Tunnel KW - Bridge resonance PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612462 DO - https://doi.org/10.58286/29865 SN - 1435-4934 SP - 1 EP - 9 PB - NDT.net CY - Kirchwald AN - OPUS4-61246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Papadrakakis, Manolis T1 - Frequency-wavenumber method for the wave propagation through the soil and the soil-structure interaction of railway tracks and building foundations near railway lines N2 - In soil-structure interaction, the soil and the (flexible) structures are modelled as elastic continua. The partial differential equations of elasticity can be transformed to algebraic equations in frequency-wavenumber domain where they can be solved by matrix methods. The results for the soil and a structure can be coupled in frequency-wavenumber domain, and the solution in space domain is obtained by an infinite wavenumber integral (the back-transformation). This method has several applications for the prediction of the emission, transmission and immission of railway-induced vibrations. The wave propagation in homogeneous or layered soils is calculated for surface and tunnel lines by a single wavenumber integration (transmission). The response of ballast or slab tracks (for the emission problem) and the foundation stiffness (for the immission problem) need an additional integration across the track or foundation width. In wavenumber domain, tracks and foundations of infinite length are analysed. Finite structures can be calculated by finite element models where the soil is calculated by the boundary element method. The Green’s functions for the boundary element method are calculated by a wavenumber integration as for the transmission problem. Some example results for all these tasks will be shown. The immission into buildings will be analysed in detail, and the effect of stiff slab foundations and (basement) walls on the incoming wavefield is quantified in a parameter study. The transfer function (the amplitude ratio) structure to free field usually starts with 1 at 0 Hz and decreases continuously with frequency. The reduction is due to the structural stiffness against wave deformation which turns to be higher than the stiffness of the soil, for example above the structure-soil coincidence frequency of the slab foundation. The reduction is better for a high structural stiffness and for a low soil stiffness. Walls are stiffer than plates for the relevant frequency range, but even walls and especially low basement walls are not infinitely rigid and can follow the wave deformation to a certain extent. These basic rules from frequency-wavenumber analysis can well be used for real building projects near railway lines where stiff foundations can be an alternative reduction method to the commonly used base isolation by elastic elements. T2 - COMPDYN 2025 CY - Rhodos, Greece DA - 15.06.2025 KW - Frequency-wavenumber method KW - Wave propagation KW - Soil-structure interaction KW - Building foundations KW - Mitigation measures PY - 2025 SP - 1 EP - 15 PB - NTUA CY - Athen AN - OPUS4-63470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Frequency-wavenumber method for the wave propagation through the soil and the soil-structure interaction of railway tracks and building foundations near railway lines N2 - In soil-structure interaction, the soil and the (flexible) structures are modelled as elastic continua. The partial differential equations of elasticity can be transformed to algebraic equations in frequency-wavenumber domain where they can be solved by matrix methods. The results for the soil and a structure can be coupled in frequency-wavenumber domain, and the solution in space domain is obtained by an infinite wavenumber integral (the back-transformation). This method has several applications for the prediction of the emission, transmission and immission of railway-induced vibrations. The wave propagation in homogeneous or layered soils is calculated for surface and tunnel lines by a single wavenumber integration (transmission). The response of ballast or slab tracks (for the emission problem) and the foundation stiffness (for the immission problem) need an additional integration across the track or foundation width. In wavenumber domain, tracks and foundations of infinite length are analysed. Finite structures can be calculated by finite element models where the soil is calculated by the boundary element method. The Green’s functions for the boundary element method are calculated by a wavenumber integration as for the transmission problem. Some example results for all these tasks will be shown. The immission into buildings will be analysed in detail, and the effect of stiff slab foundations and (basement) walls on the incoming wavefield is quantified in a parameter study. The transfer function (the amplitude ratio) structure to free field usually starts with 1 at 0 Hz and decreases continuously with frequency. The reduction is due to the structural stiffness against wave deformation which turns to be higher than the stiffness of the soil, for example above the structure-soil coincidence frequency of the slab foundation. The reduction is better for a high structural stiffness and for a low soil stiffness. Walls are stiffer than plates for the relevant frequency range, but even walls and especially low basement walls are not infinitely rigid and can follow the wave deformation to a certain extent. These basic rules from frequency-wavenumber analysis can well be used for real building projects near railway lines where stiff foundations can be an alternative reduction method to the commonly used base isolation by elastic elements. T2 - COMPDYN 2025 CY - Rhodos, Greece DA - 15.06.2025 KW - Frequency-wavenumber method KW - Wave propagation KW - Soil-structure interaction KW - Building foundations KW - Mitigation measures PY - 2025 AN - OPUS4-63468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels finite element, boundary element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. T2 - Recent Advance in Structural Dynamics (RASD) CY - Southampton, UK DA - 01.07.2024 KW - Ground vibration KW - Building vibration KW - Railway tunnel KW - Wavenumber method KW - Finite element method KW - Boundary element method PY - 2024 AN - OPUS4-61230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference 2022 CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Simple prediction KW - Vehicle-track interaction KW - Layered soil KW - Soil-building interaction KW - Soil-wall-floor model KW - Propagation from a tunnel KW - Tunnel-pile transfer PY - 2022 SP - 1 EP - 13 PB - KU Leuven CY - Leuven AN - OPUS4-56603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Measurement and evaluation tools for ground and building vibrations from industrial pro-cesses, construction work, traffic and other sources N2 - Vibration measurements have many causes and many technical and natural sources. Problems can sometimes be solved by short-term measurements, but in many cases, a long-term measurement is necessary. In long-term measurements of days, weeks, months and even years, it is easy to collect a huge quantity of raw data, but at the end, the post-processing of these data can be exhausting (for example one-year vibration data of a wind energy tower). A software has been developed which con-sists of measuring and evaluation routines where the measuring routines can operate different meas-uring systems and different measuring cards. The main advantage of this software is the fact that the interesting evaluations can be integrated in the measuring process so that the characteristics of the vibration can be extracted without storing all the raw data. Only important time segments are stored, for example train passages. The overall concept of the software and the main evaluation routines will be described in some details. Examples of our measurement experience will illustrate the capabilities of the software. 1) Surveying construction work in nearby sensitive buildings (for example an old wind tunnel), including a stable alarm system and meaningful vibration limits. 2) Prediction of train-induced vibration for a planned building to prevent annoyance and to improve the building design. 3) Modal analysis and long term measurements of several single- or multi-span, concrete or steel bridges 4) Modal and wave analysis of coupled floors in a historical building (“Neues Palais” at Potsdam). 5) Soil properties of various measurement sites (different routines to evaluate the dispersion). Moreover, from many projects, amplitudes, frequencies, and attenuation laws have been collected and analysed for the different sources such as vibratory or impact pile driving and ground compaction, demolition work with different machines, blasting in quarries and in tunnel works, bomb and mine clearing. T2 - 28th International Congress on Sound and Vibration CY - Online meeting DA - 24.07.2022 KW - Ground vibration KW - Building vibration KW - Measurement KW - Evaluation KW - Modes KW - Waves PY - 2022 SP - 1 EP - 8 AN - OPUS4-56602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Effects of a varying track and soil stiffness on ground vibrations near railway lines N2 - Usually, geometric irregularities are considered as the main cause of ground vibrations from trains. A varying stiffness of the track, the track support and the soil can also generate ground vibrations. The regular stiffness variation of the track on and between the sleepers results in a deterministic dynamic axle load. The random stiffness variation of the track support yields also dynamic axle loads which are generated by the acceleration of the unsprung mass (from the varying wheel displacements under the static axle load). The random stiffness variation has a second effect. The pulses from the passage of the static axle loads are superposed regularly to the quasi-static response, but also irregularly to yield a “scattered” part of the axle pulses. The same holds for a random variation of the soil stiffness. All these effects of stiffness variations have been calculated by wavenumber-domain multi-beam track models, a random finite-element soil model and the superposition of axle impulses in a stochastic simulation. The results are confronted with many measurements at different sites. It is concluded that the stiffness variation of the track and the soil generate an important ground vibration component near railway lines. T2 - International Conference Railways 2022 CY - Montpellier, France DA - 22.08.2022 KW - Ground vibration KW - Axle loads KW - Irregularities KW - Varying stiffness PY - 2022 SP - 1 EP - 11 AN - OPUS4-56605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The dynamic train-track interaction on a bridge and in a tunnel compared with the simultaneous vehicle, track, and ground vibration measurements at a surface line N2 - The vehicle–track interaction generates forces and consequently vibrations in the environment. The interaction has been analysed by the simultaneous measurements of vehicle, track and ground vibrations during test runs with varied train speeds. The special effects of the passage over a bridge and through a tunnel are studied and compared with the measurements on a conventional ballasted surface line. The maximum amplitudes, narrow band and one-third octave band spectra are presented for the axle-box accelerations and for the track, bridge and ground vibrations. The different frequencies and frequency bands are related to wheel out-of-roundness, track alignment errors, the sleeper passage and the wheelset–track resonance. An axle impulse component has been observed at the track, at the near-field soil and as a scattered version in the far field. Specific results can be found for the bridge track, where clearly speed-dependent bridge resonances occur due to the axle sequence of the train, and for the tunnel track where soft rail pads are responsible for a strong amplification around the wheelset–track resonance. On the other hand, the axle impulses are strongly reduced by the tunnel track, and the scattered axle impulse component is not as relevant as for the surface track. As a consequence, a strong mid-frequency amplitude reduction of the tunnel compared to the surface line has been measured for low and high train speeds by the Federal Institute of Material Research and Testing (BAM) and by other institutes. KW - Vehicle–track interaction KW - Ground vibration KW - Tunnel-to-surface reduction KW - Bridge resonance KW - Axle sequence PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585139 DO - https://doi.org/10.3390/app131910992 VL - 13 IS - 19 SP - 1 EP - 23 PB - MDPI CY - Basel, Schweiz AN - OPUS4-58513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Soil–structure interaction and damping by the soil - effects of foundation groups, foundation flexibility, soil stiffness and layers N2 - In many tasks of railway vibration, the structure, that is, the track, a bridge, and a nearby building and its floors, is coupled to the soil, and the soil–structure interaction and the damping by the soil should be included in the analysis to obtain realistic resonance frequencies and amplitudes. The stiffness and damping of a variety of foundations is calculated by an indirect boundary element method which uses fundamental solutions, is meshless, uses collocation points on the boundary, and solves the singularity by an appropriate averaging over a part of the surface. The boundary element method is coupled with the finite element method in the case of flexible foundations such as beams, plates, piles, and railway tracks. The results, the frequency-dependent stiffness and damping of single and groups of rigid foundations on homogeneous and layered soil and the amplitude and phase of the dynamic compliance of flexible foundations, show that the simple constant stiffness and damping values of a rigid footing on homogeneous soil are often misleading and do not represent well the reality. The damping may be higher in some special cases, but, in most cases, the damping is lower than expected fromthe simple theory. Some applications and measurements demonstrate the importance of the correct damping by the soil. KW - Soil–structure interaction KW - Soil dynamics KW - Radiation damping of the soil KW - Rigid foundation KW - Flexible foundation KW - Foundation groups KW - Boundary element method KW - Vibration measurement PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627007 DO - https://doi.org/10.3390/vibration8010005 SN - 2571-631X VL - 8 IS - 5 SP - 1 EP - 28 PB - MDPI CY - Basel, Schweiz AN - OPUS4-62700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels –finite-element, boundary-element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. KW - Railway tunnel KW - Ground vibration KW - Building vibration KW - Wavenumber integral KW - Full-space solution KW - Reflection at the surface PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627015 DO - https://doi.org/10.1088/1742-6596/2909/1/012013 SN - 1742-6596 VL - 2909 SP - 1 EP - 12 PB - IOP Publishing CY - London AN - OPUS4-62701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Modal analysis of road and rail bridges for damage detection and resonance prediction N2 - In the 1980s, the Federal Institute of Material Research and Testing started with modal analysis measurements of some bridges before and after repair. For one of the bridges, a structural health monitoring was installed 1994 which is still working up to now. It has been modified and extended several times. The monitoring was extended from the critical span to three neighbouring spans. A modal analysis of the whole bridge with seven spans have been done three times, twice together with EMPA of Switzerland. Additional calibration measurements have been done and additional evaluation procedures have been implemented for the monitoring of the steadily increasing loads from the road traffic. Additional sensors were installed such as strain gauges, crack-width, and temperature sensors. The strong influence of the temperature on the natural frequencies has been studied over the years. Later, a temperature compensation has been established and a weak aging trend has been found in the monitoring data. Now, the bridge will be demolished and replaced by a new bridge. Some results of this long-term monitoring will be shown and possible damages (changes of the pre-stress or the support structure) will be discussed. A second application of modal analysis will be demonstrated: the prediction of the resonances due to passing trains. The response of a bridge to passing trains can be calculated in frequency domain as the multiplication of three spectra, the axle sequence spectrum of the train, the transfer function of the bridge, and the modal force spectrum of a single passing load. A resonance occurs if a maximum of the train spectrum coincides with the maximum of the bridge spectrum. The amplitude at this resonance is strongly influenced by the modal force spectrum which is identical to the frequency or wavenumber spectrum of the corresponding mode shape. Therefore, modal analysis from calculation, impact measurements, wind and train measurements are necessary for the prediction of the resonance occurrence and amplification. Examples of mode shape spectra for single or multi-span bridges with simply supported or continuous spans will be shown, and some relations between mode shapes and resonance amplifications will be concluded. T2 - 11th International Operational Modal Analysis Conference (IOMAC) CY - Rennes, France DA - 20.05.2025 KW - Bridge monitoring KW - Multi-span bridges KW - Damage detection KW - Resonance PY - 2025 AN - OPUS4-63472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - System and damage identification for cars, floors and roofs, bridges, tracks and foundations by modal analyses, frequency response functions and moving-load responses N2 - The following objects have been analysed by frequency response functions and moving load responses. A simple modal analysis which is based on the transformed and weighted system equations has been tested for an automotive test car and for many floors in many buildings to get some rules for their natural frequency and damping. Moreover, six neighboured equal, weakly coupled, wooden floors in a castle have been measured by ambient and hammer excitation, and a special method to extract the different mode shapes of the closely spaced natural frequencies has been developed and tested. Different foundations, for which the soil-structure interaction is generally important, have been measured and compared with finite-element boundary-element models of varying soil properties. Similarly by FEBEM calculations, damages in railway tracks have been identified from flexibility functions (frequency response functions) and from the moving-load responses to normal train operation. Rail and foot bridges have been measured during train passages and by quasi-static tests with moving vehicles. The repeatability of the inclinometer measurements has been checked for different passages, passage directions, and measurement campaigns at a six-span foot bridge. Two rail bridges at the Hanover-Würzburg high-speed line have been measured and evaluated for integrity and for the train- and speed-dependent bridge resonances. The relation between the multi-axle and the single-axle excitation can be solved in frequency domain by the axle-sequence spectrum of the vehicle or the whole train. The single axle response has been used to identify track and bridge damages in laboratory and in situ. T2 - 10th International Operational Modal Analysis Conference (IOMAC 2024) CY - Naples, Italy DA - 21.05.2024 KW - Weakly coupled floors KW - Bridge passage KW - Track damage KW - Foundation-soil interaction KW - Flexibility function KW - Moving load response PY - 2024 SN - 978-3-031-61420-0 DO - https://doi.org/10.1007/978-3-031-61421-7_19 SN - 2366-2557 SP - 187 EP - 195 PB - Springer Nature Switzerland AG CY - Cham, Schweiz AN - OPUS4-61248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - The excitation, propagation, and mitigation of train-induced ground vibrations from the axle impulses on the track N2 - Train-induced vibrations in soft ground usually have a strong low-frequency component. This component has a characteristic spectrum which is related to the axle sequence and the speed of the train. Its attenuation with distance is weaker than the attenuation for higher frequencies, and it always dominates the far-field ground vibration. Narrow-band frequency analyses clearly show that this ground vibration component is due to the static axle loads. Axle box vibrations have a different characteristic where the first out-of-roundness of the wheels is the only remarkable low-frequency component. Therefore, the dynamic axle loads from wheel and track irregularities are not the reason for the strong ground vibration component. The moving static axle loads generate the quasi-static response of the soil at very low frequencies and at very near distances. A part of the original impulse spectrum is scattered when it propagates through an inhomogeneous ballast and soil with a randomly varying stiffness. The axle impulses are smoother for a higher bending stiffness or a lower support stiffness (under sleeper pads, under ballast mats) of the track. This mitigation of the ground vibration will be demonstrated by measurements at three sites in Switzerland as well as the characteristic of the soil and axle-box vibrations. T2 - Railways Conference CY - Prague, Czech Republic DA - 02.09.2024 KW - Soil and vehicle measurements KW - Train passages KW - Ground vibration KW - Excitation mechanisms KW - Mitigation KW - Under sleeper pads KW - Under ballast mat PY - 2024 AN - OPUS4-61226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Song, Jiaojiao T1 - Analysis of intact and damaged (floating) slab tracks by finite-element boundary-element models and by measurements N2 - The damage detection and repair control have become important tasks for slab tracks. Different intact and damaged slab tracks have been investigated theoretically and experimentally for train passages and hammer impacts. The following damages have been considered: The loss of contact between the sleeper and the track slab, between the track slab and the base slab, and between the base slab and the base layer. At first, a slab track with a gap between the track slab and the base layer has been calculated by the combined finite-element boundary-element method which correctly incorporates the behaviour of the infinite soil. The basic results are the track displacements of the rail, the track slab, and the base layer along the track which are caused by a single axle load. These solutions are properly superposed for to get the complete train load. The influence of track and soil parameters and of the track damage has been analysed. For the intact track, the compliance of the soil is dominant whereas the track bending stiffness becomes more important for the damaged track. By comparing the calculated results with the measurements, the length of the gap could be quantified. A slab track with a loose sleeper (without contact to the supporting track slab) was analysed by the transfer function between the displacements and the hammer force (receptance functions) where a resonance appeared in case of the damage. Differences between the different track elements confirmed the detection of the damage. A floating slab track with a thin rubber layer has been investigated for a possible gap between the base slab and the base layer. The behaviour of the intact track has been calculated by a wavenumber-domain method, and the same behaviour has been found in the measurements at several track sections, indicating that there is no damage. Finally, a floating slab track with steel springs and viscous fluid dampers has been measured in the Tongji laboratory. The modes of the floating track slab and the transfer function with corresponding resonances have been calculated and successfully compared with results from wheelset drop tests. T2 - 3rd International Conference of Rail Transportation CY - Shanghai, China DA - 07.08.2024 KW - Slab tracks KW - Damage KW - Vibration measurements KW - Finite-element boundary-element method PY - 2024 AN - OPUS4-61227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Vibrations of multi-span structures like floors, rail and road bridges N2 - Resonances of rail bridges due to the passage of trains have been mainly investigated for sin-gle-span bridges. When multi-span bridges are to be considered, it is of interest if stronger resonance amplifications must be taken into account. Measurements of several multi-span structures have been evaluated for natural frequencies and mode shapes. An integral rail bridge with three different spans shows a separated local resonance of the longest main span and clearly higher natural frequencies of the shorter side spans. A two-span continuous beam on the test area of the Federal Institute of Material Research and Testing showed a regular pattern of natural frequencies where always a pair of frequencies is found with a certain fre-quency ratio. The corresponding mode shapes are the out-of-phase and in-phase combinations of the first, second, third … bending mode. A seven-span road bridge has been monitored for one of the almost equally long spans. Similar mode shapes have been observed for different, clearly separated natural frequencies. Three modal analyses measurement campaigns have been performed on the whole bridge. The combined mode shapes of the seven spans have been clearly identified where different combinations of spans are dominating in the different mode shapes. Equal weakly coupled spans have been analysed for a large wooden floor in a castle. A cluster of natural frequencies has been observed and a special method to extract the mode shapes has been developed and tested. The consequences of multi-span bridges for rail traffic will be discussed. If n simply supported bridge spans have no coupling, n equal modes with amplitude A/n exist and their superposition would yield the same resonance as for a single bridge. Real simply supported bridges have always a weak coupling due to the track or the common piers. Therefore, the natural frequencies differ a little and they cannot be in reso-nance at the same time for the same train passage so that the resonance amplification cannot be as strong as for the single bridge. This rule holds also for the average amplitude of the time history of the bridge passage which is an adequate quantity to judge for the bridge behaviour. The maximum amplitude of the time histories of different bridge points are quite random and could exceed the values of a single bridge. The meaning of such criteria is questioned and fre-quency domain analyses are suggested for a clearer bridge analysis and understanding. T2 - DinEst 2024 Third Conference on Structural Dynamics CY - Seville, Spain DA - 12.09.2024 KW - Rail bridge PY - 2024 SP - 41 EP - 59 PB - Escuela Tecnica Superior de Ingenieria CY - Sevilla AN - OPUS4-61238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels –finite-element, boundary-element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. Figure T2 - Int. Conf. RASD, Recent Advance in Structural Dynamics CY - Southampton, GB DA - 01.07.2024 KW - Ground vibration KW - Tunnel line KW - Wave propagation KW - Wavenumber method KW - Building vibration KW - Thin layer method PY - 2024 SP - 1 EP - 12 CY - Southampton AN - OPUS4-61266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Conreaux, Laurence A1 - Said, Samir A1 - Müller, Roger T1 - The excitation, propagation, and mitigation of train-induced ground vibrations from the axle impulses on the track N2 - Train-induced vibrations in soft ground usually have a strong low-frequency component. This component has a characteristic spectrum which is related to the axle sequence and the speed of the train. Its attenuation with distance is weaker than the attenuation for higher frequencies, and it always dominates the far-field ground vibration. Narrow-band frequency analyses clearly show that this ground vibration component is due to the static axle loads. Axle box vibrations have a different characteristic where the first out-of-roundness of the wheels is the only remarkable low-frequency component. Therefore, the dynamic axle loads from wheel and track irregularities are not the reason for the strong ground vibration component. The moving static axle loads generate the quasi-static response of the soil at very low frequencies and at very near distances. A part of the original impulse spectrum is scattered when it propagates through an inhomogeneous ballast and soil with a randomly varying stiffness. The axle impulses are smoother for a higher bending stiffness or a lower support stiffness (under sleeper pads, under ballast mats) of the track. This mitigation of the ground vibration will be demonstrated by measurements at three sites in Switzerland as well as the characteristic of the soil and axle-box vibrations. T2 - Sixth International Conference on Railway Technology: Research, Development and Maintenance CY - Prague, Czech Republic DA - 01.09.2024 KW - Soil and vehicle measurements KW - Train passages KW - Ground vibration KW - Excitation mechanisms KW - Mitigation KW - Under sleeper pads KW - Under ballast mat PY - 2024 DO - https://doi.org/10.4203/ccc.7.13.2 SN - 2753-3239 VL - 7 SP - 1 EP - 13 PB - Civil-Comp Press CY - Edinburgh, United Kingdom AN - OPUS4-61240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - System and damage identification for cars, floors and roofs, bridges, tracks and foundations by modal analyses, frequency response functions and moving load responses N2 - The following objects have been analysed by frequency response functions and moving load responses. A simple modal analysis which is based on the transformed and weighted system equations has been tested for an automotive test car and for many floors in many buildings to get some rules for their natural frequency and damping. Moreover, six neighboured equal, weakly coupled, wooden floors in a castle have been measured by ambient and hammer excitation, and a special method to extract the different mode shapes of the closely spaced natural frequencies has been developed and tested. Different foundations, for which the soil-structure interaction is generally important, have been measured and compared with finite-element boundary-element models of varying soil properties. Similarly by FEBEM calculations, damages in railway tracks have been identified from flexibility functions (frequency response functions) and from the moving-load responses to normal train operation. Rail and foot bridges have been measured during train passages and by quasi-static tests with moving vehicles. The repeatability of the inclinometer measurements has been checked for different passages, passage directions, and measurement campaigns at a six-span foot bridge. Two rail bridges at the Hanover-Würzburg high-speed line have been measured and evaluated for integrity and for the train- and speed-dependent bridge resonances. The relation between the multi-axle and the single-axle excitation can be solved in frequency domain by the axle-sequence spectrum of the vehicle or the whole train. The single axle response has been used to identify track and bridge damages in laboratory and in situ. T2 - 10th International Operational Modal Analysis Conference (IOMAC 2024) CY - Naples, Italy DA - 21.05.2024 KW - Weakly coupled floors KW - Bridge passage KW - Track damage KW - Foundation-soil interaction KW - Flexibility function KW - Moving load response PY - 2024 AN - OPUS4-61233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway vibration fast physics based models for the prediction of ground vibration and the identification of track damage N2 - The following applications of machine learning will be discussed: 1. The prediction of the wave propagation from a railway line (completely physics based for surface lines, physics-based machine learning for tunnel lines) 2. The track behaviour for the emission of train-induced ground vibration (physics based for homogeneous soil, machine learning for layered soil) 3. Track damage detection and quantification from frequency response functions and moving load responses 4. Bridge damage detection and localisation from modal analysis and moving load 5. The use of axle-box acceleration for the identification of track/sub-soil condition and bridge resonances. The prediction of railway vibration usually needs time-consuming finite element, boundary element and wavenumber domain calculations. For a user-friendly prediction software however, fast calculations are needed. Several time-consuming detailed calculations have been used to develop simpler and fast models for the surface railway lines. The more challenging prediction from tunnel lines will be attacked by purely mathematical and by physics-informed machine learning. The dynamic stiffnesses of isolated or un-isolated railway tracks from detailed calculations with a continuous soil have been approximated with the simpler Winkler soil. The vehicle-track resonance (P2 resonance) rules the effect of the mitigation measures, and it can also be used for the on-board monitoring of the track and sub-soil condition. For the identification of track damage such as gaps between sleepers, track slabs and layers, detailed models with a continuous soil have been updated to get the best fit to the measured frequency response functions from hammer tests and the deformation pattern from the moving load response. Whereas the track damage can be locally identified, this is more difficult for bridges where the modal analysis gives mainly global information. The influence lines of the inclination for statically passing vehicles (locomotive, truck, compaction roller) have been used to localise bridge damage (stiffness variations). The on-board monitoring of rail bridges needs special conditions (regular trains with special speeds) to excite and measure the bridge resonance. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM) CY - Potsdam, Germany DA - 10.06.2024 KW - Vibration prediction KW - Track damage detection KW - Human and machine learning KW - Wave propagation KW - Surface line KW - Tunnel KW - Bridge resonance PY - 2024 AN - OPUS4-61231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Reduction of ground induced building vibrations by kinematic and inertial soil structure interaction and by base isolation N2 - Many buildings on the soil have been measured and the transfer function freefield-to-building is ana-lysed. In general, an amplification at low frequencies, an amplification for the floor resonances, and a reduction for higher frequencies can be observed. Most of the measurement examples show a flexible behaviour along the height of the buildings. The prediction of building vibration consists typically of three steps. At first, the dynamic stiffness of the foundation and secondly the kinematic soil-structure interaction has to be calculated for example by the combined finite-element boundary-element meth-od. The stiffness of the foundation reduces the incoming waves (the kinematic interaction). Finally, the inertial interaction of the building with the foundation soil is calculated by the conventional finite ele-ment method where the dynamic foundation stiffness from the first step is added at the bottom of the building. The building on the compliant soil has a fundamental vertical resonance usually below 10 Hz. A parametrical variation clearly shows the influence of the elasticity of the building on this reso-nance frequency and amplitude. Moreover for column-type office buildings, the low-frequency floor resonances can further reduce this fundamental frequency. A 1-dimensional model has been estab-lished which can well approximate the behaviour of the 3-dimensional building models. It is used to demonstrate the effect of a base isolation with soft elements at the foundation. A rigid building model clearly over-estimates the isolation effect, which is smaller for a model with flexible walls, columns and floors. An even simpler model of an infinitely high building is suggested for the mitigation effect, and the resonance frequency of the rigid building should be replaced by a better performance indica-tor, which is based on the impedance ratio of the isolation and the wall and which can be also ex-pressed as a characteristic frequency. T2 - 30th International Congress on Sound and Vibration CY - Amsterdam, Netherlands DA - 08.07.2024 KW - Building vibrations KW - Base isolation KW - Foundation stiffness KW - Kinematic soil-structure interaction KW - Transfer functions of flexible buildings PY - 2024 AN - OPUS4-61229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle Dynamics and Train‑Induced Ground Vibration—Theoretical Analyses and Simultaneous Vehicle, Track, and Soil Measurements N2 - Ground vibrations near railway lines are generated by the forces that are acting between wheel and rail. It seems to be a straight forward assumption that the vehicle dynamics are important for the level and the frequencies of the excitation forces. Different vehicle dynamics phenomena are analysed for their role in the excitation of ground vibrations: rigid body modes of the bogies, elastic (bending) modes of the car body, and elastic modes of the wheelset. The theoretical analyses use rigid body models, simplified elastic models, and detailed elastic models. Some of these problems are vehicle–track interaction problems where 3D finite‑element boundary‑element models have been used for the track and soil. It is shown that the rigid or flexible vehicle modes are well in the frequency range of ground vibrations (4 to 100 Hz). They have an influence on the excitation force but the additional forces are rather small and can be neglected in ground vibration prediction. The theoretical results are checked by experimental results of a simultaneous measurement of vehicle, track, and ground vibrations. KW - Rigid vehicle model KW - Flexible car body KW - Flexible wheelset KW - Dynamic loads KW - Ground vibration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569796 DO - https://doi.org/10.3390/vehicles5010013 VL - 5 IS - 1 SP - 223 EP - 247 PB - MDPI CY - Basel AN - OPUS4-56979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long 1-span bridge on elastomeric bearings under standard train speeds, and to a long multi-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4 and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. T2 - EURODYN 2023 XII International Conference on Structural Dynamics CY - Delft, Netherlands DA - 03.07.2023 KW - Railway bridge KW - Transfer fuction KW - Modal load spectrum KW - Axle-sequence spectrum KW - Freight train KW - Passenger train KW - High-speed train KW - 2-span bridge PY - 2023 AN - OPUS4-57955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Soil-foundation-structure problems related to train induced vibrations - the kinematic interaction of tunnel excited pile foundations and the inertial interaction of high rise buildings N2 - The soil-foundation-structure interaction is always important when building vibrations due to train passages have to be considered. The frequency range for train vibrations is up to 100 Hz. Normally, soft surface soils are crucial so that the wavelength can be much smaller than the foundation dimensions. Three topics are of interest for the prediction and the under-standing of building vibrations. 1. The „kinematic interaction“ or the „added foundation ef-fect“, which is calculated either by the combined boundary-element finite-element method or by the wavenumber domain method, results in a reduction of the free-field vibration. The stiff-ness of the foundation resists the wave deformation, plates and walls for horizontally propa-gating waves or piles for vertically incident waves. 2. The „inertial interaction“ or the „added building effect“ yields an amplification around the vertical building resonance, which may be a rigid mode on the compliant soil or a flexible mode for high-rise buildings, and a reduction at higher frequencies. This has been analysed by detailed finite element models of apartment and office buildings. 3. Base isolation is a method to further reduce building vibrations. It is important to know the soil-foundation impedance for the possible reduction, as well as the correct building impedance. A high-rise building cannot be considered as a rigid mass model. It has a frequency-dependent behaviour with longitudinal waves travelling from the founda-tion to the top of the building which include the effect of floor vibrations. Experiences from building projects in Vienna, Frankfort and Berlin will give some additional results for the ex-citation from tunnel lines, the kinematic response of pile foundations, and the inertial re-sponse of the flexible multi-storey buildings. T2 - Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2023) CY - Athens, Greece DA - 12.06.2023 KW - Soil-pile interaction KW - Pile groups KW - Kinematic interaction KW - Inertial interaction KW - High-rise buildings KW - Base isolation PY - 2023 AN - OPUS4-57954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Damage detection by flexibility functions and quasi-static moving load tests N2 - The contribution shows measurement examples of cars, floors, foundations, railway tracks, a footbridge, and a railbridge. Vibrations may include modes and waves. Namely in soil-structure interaction, modes are damped, shifted and prevented so that alternatives for the modal analysis are necessary: The approximation of the whole spectrum (flexibility function) and of the whole train passage (moving-load response). T2 - Symposium Emerging Trends in Bridge Damage Detection, Localization and Quantification CY - Luxembourg, Luxembourg DA - 05.05.2023 KW - Flexibility KW - Movin load test KW - Frequency response function KW - Cars KW - Floors KW - Foundations KW - Railway tracks KW - Footbridge KW - Railbridge KW - Damage detection PY - 2023 AN - OPUS4-57951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train-induced ground vibrations – The emission and transmission from tunnel and surface lines N2 - Train-induced ground vibrations are quite different for tunnel and surface lines. The excitation of the track and ground vibration by the vehicle-track-soil interaction maybe influenced by the stiffer track support of the tunnel invert. The excited waves are propagating on a different path compared to the surface line. The wave propagation in the interior of the soil is calculated by a wavenumber integral in a similar way as the propagation along the surface and a general reduction of < 0.5 has been found. An additional reduction has been found because of the missing Rayleigh wave. The different excitation of tunnel lines is analysed theoretically by the combined finite-element boundary-element method and some results about the influencing tunnel and soil parameters will be shown. Measurements have been made at the Mühlberg-Tunnel in Germany. The vibrations of the train, the track and the soil have been measured simultaneously at the tunnel and a nearby surface line. Spectra will be shown for different train speeds between 60 and 160 km/h. A clear reduction effect for the tunnel line compared to the surface line has been observed in a specific (train-speed-dependent) frequency range. This agrees well with the observations of other research institutes. The mid-frequency tunnel-surface reduction seems to be a consequence of the stiffer track structure which leads to a wider distribution of the axle loads. Therefore, the axle impulses due to the train passage are longer and have a lower frequency content. This will have an effect on the ground vibrations at some distance which are present in case of an irregular transmission path through a ballast and soil with varying stiffness. A similar reduction effect can also be found for other track forms where the axle impulses are distributed on a longer track segment, for example slab tracks, tracks with under ballast plates, under ballast mats or under sleeper pads. T2 - 29th International Congress on Sound and Vibration (ICSV29) CY - Prague, Czech Republic DA - 09.07.2023 KW - Ground vibration KW - Railway tunnel KW - Layered soil KW - Surface-tunnel reduction KW - Measurements PY - 2023 AN - OPUS4-57956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Soil-foundation-structure problems related to train induced vibrations - the kinematic interaction of tunnel excited pile foundations and the inertial interaction of high rise buildings N2 - The soil-foundation-structure interaction is always important when building vibrations due to train passages have to be considered. The frequency range for train vibrations is up to 100 Hz. Normally, soft surface soils are crucial so that the wavelength can be much smaller than the foundation dimensions. Three topics are of interest for the prediction and the under-standing of building vibrations. 1. The „kinematic interaction“ or the „added foundation ef-fect“, which is calculated either by the combined boundary-element finite-element method or by the wavenumber domain method, results in a reduction of the free-field vibration. The stiff-ness of the foundation resists the wave deformation, plates and walls for horizontally propa-gating waves or piles for vertically incident waves. 2. The „inertial interaction“ or the „added building effect“ yields an amplification around the vertical building resonance, which may be a rigid mode on the compliant soil or a flexible mode for high-rise buildings, and a reduction at higher frequencies. This has been analysed by detailed finite element models of apartment and office buildings. 3. Base isolation is a method to further reduce building vibrations. It is important to know the soil-foundation impedance for the possible reduction, as well as the correct building impedance. A high-rise building cannot be considered as a rigid mass model. It has a frequency-dependent behaviour with longitudinal waves travelling from the founda-tion to the top of the building which include the effect of floor vibrations. Experiences from building projects in Vienna, Frankfort and Berlin will give some additional results for the ex-citation from tunnel lines, the kinematic response of pile foundations, and the inertial re-sponse of the flexible multi-storey buildings. T2 - COMPDYN 2023 CY - Athen, Greece DA - 12.06.2023 KW - Kinematic Interaction KW - Inertial Interaction KW - Surface Foundation KW - Pile Foundation KW - High-Rise Building PY - 2023 SP - 1 EP - 14 PB - NTUA CY - Athens AN - OPUS4-57959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long 1-span bridge on elastomeric bearings under standard train speeds, and to a long multi-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4 and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. T2 - XII International Conference on Structural Dynamics CY - Delft, The Netherlands DA - 03.07.2023 KW - Railway bridge KW - Transfer function KW - Modal force spectrum KW - Axle-sequence spectrum KW - Freight train KW - Passenger train KW - High-speed train KW - 2-span bridge KW - Long-span bridge PY - 2023 SP - 1 EP - 10 PB - TU Delft CY - Delft AN - OPUS4-57961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Train-induced ground vibrations - the emission and transmission from tunnel and surface lines N2 - Train-induced ground vibrations are quite different for tunnel and surface lines. The excitation of the track and ground vibration by the vehicle-track-soil interaction maybe influenced by the stiffer track support of the tunnel invert. The excited waves are propagating on a different path compared to the surface line. The wave propagation in the interior of the soil is calculated by a wavenumber integral in a similar way as the propagation along the surface and a general reduction of < 0.5 has been found. An additional reduction has been found because of the missing Rayleigh wave. The different excitation of tunnel lines is analysed theoretically by the combined finite-element boundary-element method and some results about the influencing tunnel and soil parameters will be shown. Measurements have been made at the Mühlberg-Tunnel in Germany. The vibrations of the train, the track and the soil have been measured simultaneously at the tunnel and a nearby surface line. Spectra will be shown for different train speeds between 60 and 160 km/h. A clear reduction effect for the tunnel line compared to the surface line has been observed in a specific (train-speed-dependent) frequency range. This agrees well with the observations of other research institutes. The mid-frequency tunnel-surface reduction seems to be a consequence of the stiffer track structure which leads to a wider distribution of the axle loads. Therefore, the axle impulses due to the train passage are longer and have a lower frequency content. This will have an effect on the ground vibrations at some distance which are present in case of an irregular transmission path through a ballast and soil with varying stiffness. A similar reduction effect can also be found for other track forms where the axle impulses are distributed on a longer track segment, for example slab tracks, tracks with under ballast plates, under ballast mats or under sleeper pads. T2 - 29th International Congress on Sound and Vibration CY - Prague, Czech Republic DA - 09.07.2023 KW - Ground vibration KW - Railway tunnel KW - Layered soil KW - Surface-tunnel reduction KW - Measurements PY - 2023 SP - 1 EP - 8 PB - IIAV CY - Auburn, USA AN - OPUS4-57962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Impacts between different drop masses and different targets in different scales N2 - The Federal Institute of Material Research and Testing has performed many impact tests from very small laboratory tests to very big “free-field” tests with heavy containers on stiff foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. Later on, a smaller drop test facility has been built on the ground inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which oc-cur during the drop tests. In addititon, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Dif-ferent sensors, accelerometers, accelerometers with mechanical filters, geo-phones (velocity transducers), strain gauges, and pressure cells have been ap-plied for these tasks. Signal transformations and model calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple esti-mation. T2 - 10th International Conference on Experimental Vibration Analysis for Civil Engineering Structures CY - Milano, Italy DA - 30.08.2023 KW - Drop test KW - Vibration measurements KW - Container loading KW - Foundation load PY - 2023 AN - OPUS4-58504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Impacts Between Different Drop Masses and Different Targets in Different Scales N2 - The Federal Institute of Material Research and Testing has performed many impact tests from very small laboratory tests to very big “free-field” tests with heavy containers on stiff foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. Later on, a smaller drop test facility has been built on the ground inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which oc-cur during the drop tests. In addititon, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Dif-ferent sensors, accelerometers, accelerometers with mechanical filters, geo-phones (velocity transducers), strain gauges, and pressure cells have been ap-plied for these tasks. Signal transformations and model calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple esti-mation. T2 - Experimental Vibration Analysis for Civil Engineering Structures (EVACES 2023) CY - Milano, Italy DA - 30.08.2023 KW - Drop test KW - Vibration measurements KW - Container loading KW - Foundation load PY - 2023 SN - 978-3-031-39116-3 DO - https://doi.org/10.1007/978-3-031-39117-0_60 SN - 2366-2557 SP - 592 EP - 602 PB - Springer Nature Switzerland CY - Cham, Schweiz AN - OPUS4-58503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Reduction in Train-Induced Vibrations—Calculations of Different Railway Lines and Mitigation Measures in the Transmission Path N2 - The reduction in train-induced ground vibrations by different railway lines and by mitigation measures in the propagation path was analysed in a unified approach by two-dimensional finite element calculations. In general, there was no reduction at low frequencies, and the reduction be-came stronger with increasing frequencies. A maximum reduction of 0.1 at high frequencies was established with an open trench. Reductions between 0.7 and 0.2 have been found for the other sit-uations, filled trenches, walls, plates, and blocks, as well as for railway lines on dams, in cuts and in a tunnel. Bridges can produce amplifications due to their resonance frequencies, but also strong reductions due to massive bridge piers. The influence of some parameters has been analysed, such as the bridge span, the inclination of the dam and the cut, the stiffness of the soil, and the tunnel structure. The dynamic track stiffnesses of a surface, bridge, and tunnel track have been calculated using the 3D finite-element boundary-element method for comparison with corresponding meas-urements. KW - Train-induced vibration KW - Mitigation KW - Trench KW - Obstacles KW - Tunnel KW - Bridge KW - Finite element KW - Boundary element PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579573 DO - https://doi.org/10.3390/app13116706 VL - 13 IS - 11 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-57957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Site-specific amplitude-distance laws, wave velocities, damping, and transfer functions of the soil from hammer impacts and application to railway-induced ground vibration – Similarities and mid-frequency differences N2 - The propagation of ground vibrations is theoretically analysed with frequency-wavenumber and simplified methods. Experimental methods are presented which can characterise the site-specific ground vibrations by wave velocities, stiffness and damping. Measurements with hammer and train excitation have been performed at several sites. The one-third octave spectra show the stiffness-dependent amplitudes and the low- and high-frequency filter effects due to the layering and the damping of the soil. Specific train effects, an additional high-frequency filter, the sleeper passage frequency, and an amplified mid-frequency component can be clearly found. The attenuation with distance is analysed in detail where the theoretical exponential and the empirical frequency-dependent power law are considered. Hammer and train excitation show the same site-specific effects which are mainly due to the stronger or weaker damping of the soil. The train attenuation is generally weaker than the hammer attenuation. The attenuation exponent of the power law, which is strongly dependent on the site and the frequency, is reduced for the train vibration by 0.3 to 0.5 in agreement with the theory. Reasons are discussed for the overall power law and for the dominating mid-frequency component. KW - Hammer impact KW - Train passage KW - Layered soil KW - Attenuation KW - Filter effects KW - Randomly heterogeneous soil KW - Scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585020 DO - https://doi.org/10.1007/s42417-023-01095-0 SN - 2366-2557 SP - 1 EP - 17 PB - Springer AN - OPUS4-58502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Song, Jiaojiao T1 - Dynamic damage detection of slab tracks – finite element models on Winkler soil and finite-element boundary-element models on continuous soil N2 - The train passages over intact or damaged slab tracks on different soils have been calculated by two methods. The finite element method (FEM) uses a Winkler soil under the track model by adding a thin “soil layer”. The combined finite element boundary element method has a continuous soil model which is included by the boundary element method. The basic results are the distributions of the track (rail, track plate, and base layer) displacements along the track for a single axle laod. These solutions are superposed to a complete train load and transformed to time histories. The influence of track and soil parameters has been analysed. The main interest is the influence of the track damage. A gap between track plate and base layer of different lengths has been studied for changes in amplitudes and widths of deflection. A best fit to measured track displacements has been found so that the track damage can be identified and quantified. The FEM model with Winkler soil cannot be fitted to the amplitude and width with the same soil parameters. Therefore, the FEBEM model is preferable for these railway track problems. KW - Track damage quantification KW - Finite element method KW - Combined finite-element boundary-element method PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562207 DO - https://doi.org/10.3390/civileng3040055 SN - 2673-4109 VL - 3 IS - 4 SP - 979 EP - 997 PB - MDPI CY - Basel AN - OPUS4-56220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, Rolf ED - Döhler, Michael T1 - Modal analysis of road and rail bridges for damage detection and resonance prediction N2 - In the 1980s, the Federal Institute of Material Research and Testing started with modal analysis measurements of some bridges before and after repair. For one of the bridges, a structural health monitoring was installed 1994 which is still working up to now. It has been modified and extended several times. The monitoring was extended from the critical span to three neighbouring spans. A modal analysis of the whole bridge with seven spans have been done three times, twice together with EMPA of Switzerland. Additional calibration measurements have been done and additional evaluation procedures have been implemented for the monitoring of the steadily increasing loads from the road traffic. Additional sensors were installed such as strain gauges, crack-width, and temperature sensors. The strong influence of the temperature on the natural frequencies has been studied over the years. Later, a temperature compensation has been established and a weak aging trend has been found in the monitoring data. Now, the bridge will be demolished and replaced by a new bridge. Some results of this long-term monitoring will be shown and possible damages (changes of the pre-stress or the support structure) will be discussed. A second application of modal analysis will be demonstrated: the prediction of the resonances due to passing trains. The response of a bridge to passing trains can be calculated in frequency domain as the multiplication of three spectra, the axle sequence spectrum of the train, the transfer function of the bridge, and the modal force spectrum of a single passing load. A resonance occurs if a maximum of the train spectrum coincides with the maximum of the bridge spectrum. The amplitude at this resonance is strongly influenced by the modal force spectrum which is identical to the frequency or wavenumber spectrum of the corresponding mode shape. Therefore, modal analysis from calculation, impact measurements, wind and train measurements are necessary for the prediction of the resonance occurrence and amplification. Examples of mode shape spectra for single or multi-span bridges with simply supported or continuous spans will be shown, and some relations between mode shapes and resonance amplifications will be concluded. T2 - 11th International Operational Modal Analysis Conference (IOMAC) CY - Rennes, France DA - 20.05.2025 KW - Bridge monitoring KW - Multi-span bridges KW - Damage detection KW - Resonance PY - 2025 SP - 39 EP - 46 PB - INRIA CY - Rennes AN - OPUS4-63473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Song, Jiaojiao T1 - Analysis of intact and damaged (floating) slab tracks by finite-element boundary-element models and by measurements N2 - The damage detection and repair control have become important tasks for slab tracks. Different intact and damaged slab tracks have been investigated theoretically and experimentally for train passages and hammer impacts. The following damages have been considered: The loss of contact between the sleeper and the track slab, between the track slab and the base slab, and between the base slab and the base layer. At first, a slab track with a gap between the track slab and the base layer has been calculated by the combined finite-element boundary-element method which correctly incorporates the behaviour of the infinite soil. The basic results are the track displacements of the rail, the track slab, and the base layer along the track which are caused by a single axle load. These solutions are properly superposed for to get the complete train load. The influence of track and soil parameters and of the track damage has been analysed. For the intact track, the compliance of the soil is dominant whereas the track bending stiffness becomes more important for the damaged track. By comparing the calculated results with the measurements, the length of the gap could be quantified. A slab track with a loose sleeper (without contact to the supporting track slab) was analysed by the transfer function between the displacements and the hammer force (receptance functions) where a resonance appeared in case of the damage. Differences between the different track elements confirmed the detection of the damage. A floating slab track with a thin rubber layer has been investigated for a possible gap between the base slab and the base layer. The behaviour of the intact track has been calculated by a wavenumber-domain method, and the same behaviour has been found in the measurements at several track sections, indicating that there is no damage. Finally, a floating slab track with steel springs and viscous fluid dampers has been measured in the Tongji laboratory. The modes of the floating track slab and the transfer function with corresponding resonances have been calculated and successfully compared with results from wheelset drop tests. T2 - Third International Conference on Rail Transportation (ICRT2024) CY - Shanghai, China DA - 07.08.2024 KW - Railway track KW - Damage KW - Vibration measurement KW - Finite element method KW - Boundary element method KW - Frequency response function KW - Moving load response KW - Floating slab track PY - 2025 SN - 978-0-7844-8594-1 SP - 591 EP - 600 AN - OPUS4-61267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Characteristic Frequencies of Train-Induced Bridge, Track, Ground and Building Vibrations – Excitation and Mitigation N2 - The characteristic frequencies of train-induced vibrations are discussed in theory and experiment following the propagation of vibrations from the source to the receiver: 1. Out-of-roundness frequencies of the wheels, 2. sleeper-passage frequency, 3. the vehicle-track eigenfrequency, 4. band frequency of the impulses of the passing static axle loads, 5. car-length frequency and multiples, 6. axle-distance frequencies with two characteristic zeros, 7. bridge eigenfrequencies, 8. the cut-on frequency due to the layering, and 9. the cut-off frequency due to the material damping of the soil, 10. the building-soil eigenfrequency, 11. as a rigid building or flexible wall/column mode, 12. floor eigenfrequencies, 13. acoustic room resonances, 14. the „resonance“ frequency or cut-off frequency of a base isolation. Coincidences of some of these characteristic frequencies or frequency ranges can be typically problematic and mitigation measures at the track or at the building can be necessary. The bridge response to the passing static loads is deter¬mined by the axle-sequence spectrum, the eigenfrequency (transfer function) of the bridge, and the modal force or mode shape spectrum. The ground vibration has typically high frequencies for a stiff soil and low frequencies for a soft soil. The high amplitudes between the zeros of the axle-sequence spectrum are often measured in the ground vibrations, and they can be mitigated by soft support elements or a higher bending stiffness of the track. T2 - EVACES 2025 CY - Porto, Portugal DA - 02.07.2025 KW - Train-induced vibration KW - Vehicle excitation KW - Track response KW - Bridge resonance KW - Ground vibration KW - Soil-building transfer KW - Floor resonance KW - Axle-sequence spectrum KW - Vehicle-track eigenfrequency KW - Axle impulses PY - 2025 SN - 978-3-031-96113-7 DO - https://doi.org/10.1007/978-3-031-96106-9_77 VL - 2025 SP - 1 EP - 8 PB - Springer CY - Cham, Schweiz AN - OPUS4-63655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Reduction of ground-induced building vibrations by kinematic and inertial soil-structure interac-tion and by base isolation N2 - Many buildings on the soil have been measured and the transfer function freefield-to-building is ana-lysed. In general, an amplification at low frequencies, an amplification for the floor resonances, and a reduction for higher frequencies can be observed. Most of the measurement examples show a flexible behaviour along the height of the buildings. The prediction of building vibration consists typically of three steps. At first, the dynamic stiffness of the foundation and secondly the kinematic soil-structure interaction has to be calculated for example by the combined finite-element boundary-element meth-od. The stiffness of the foundation reduces the incoming waves (the kinematic interaction). Finally, the inertial interaction of the building with the foundation soil is calculated by the conventional finite ele-ment method where the dynamic foundation stiffness from the first step is added at the bottom of the building. The building on the compliant soil has a fundamental vertical resonance usually below 10 Hz. A parametrical variation clearly shows the influence of the elasticity of the building on this reso-nance frequency and amplitude. Moreover for column-type office buildings, the low-frequency floor resonances can further reduce this fundamental frequency. A 1-dimensional model has been estab-lished which can well approximate the behaviour of the 3-dimensional building models. It is used to demonstrate the effect of a base isolation with soft elements at the foundation. A rigid building model clearly over-estimates the isolation effect, which is smaller for a model with flexible walls, columns and floors. An even simpler model of an infinitely high building is suggested for the mitigation effect, and the resonance frequency of the rigid building should be replaced by a better performance indica-tor, which is based on the impedance ratio of the isolation and the wall and which can be also ex-pressed as a characteristic frequency. T2 - 30th International Congress on Sound and Vibration CY - Amsterdam, Netherlands DA - 08.07.2024 KW - Building vibrations KW - Base isolation KW - Foundation stiffness KW - Kinematic soil-structure interaction KW - Transfer functions of flexible buildings PY - 2024 SN - 978-90-90-39058-1 SN - 2329-3675 SP - 1 EP - 8 AN - OPUS4-61245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -