TY - JOUR A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Munsch, Sarah Mandy A1 - Telong, Melissa A1 - Unger, Jörg F. A1 - Andrés Arcones, Daniel A1 - Pirskawetz, Stephan T1 - 63. DAfStb-Forschungskolloquium in der BAM - Themenblock 4: Digitalisierung im Bauwesen N2 - Die Digitalisierung hat sich in vielen Bereichen des Bauwesens durchgesetzt. So sind Planung und Entwurf selbst kleinerer Bauvorhaben heute vollständig digitalisiert. Auch das Monitoring von Bestandsbauwerken ist ohne digitale Datenerfassung, -verarbeitung und -speicherung nicht denkbar. Trotzdem sind Fragen hinsichtlich der strukturierten Speicherung und künftigen Nutzung von Daten noch offen. Einige Aspekte der Digitalisierung wurden im Rahmen des 63. DAfStb-Forschungskolloquiums (Tagungsband: DOI 10.26272/opus4-61338) in Vorträgen und Veröffentlichungen aufgegriffen und werden im Folgenden zusammengefasst. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Digitalisierung KW - Infrastruktur KW - Structural Health Monitoring KW - Digitaler Zwilling PY - 2025 SN - 0005-9846 VL - 75 IS - 4 SP - 136 EP - 138 PB - concrete content UG CY - Schermbeck AN - OPUS4-63070 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weise, Frank A1 - Stelzner, Ludwig A1 - Recknagel, Christoph A1 - Pittrich, Tim A1 - Neugum, Tim A1 - Hering, Marcus A1 - Fiedler, Georg A1 - Thiele, Marc A1 - Simon, Patrick A1 - Maack, Stefan T1 - 63. DAfStb-Forschungskolloquium in der BAM - Themenblock 5: Bauteile und Bauwerke N2 - Ein weiterer Fokus des 63. DAfStb-Forschungskolloquiums (Tagungsband: DOI 10.26272/opus4-61338) lag auf den Bauteil- und Bauwerksuntersuchungen. Insbesondere wurde hier ein Einblick in die Forschungsaktivitäten in den BAM-Themenfeldern „Infrastruktur“ und „Energie“ gegeben. Thematisch wird dabei der Bogen von der Dauerhaftigkeit von Betonfahrbahndecken über die Extrembeanspruchung von Bauteilen und Bauwerken mittels Brand und Impact bis zum Bauwerksmonitoring und der Zustandsanalyse von Bestandsbauwerken gespannt. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Dauerhaftigkeit von Betonfahrbahndecken KW - Alkali-Kieselsäurereaktion KW - Brand Impact KW - Bauwerksmonitoring PY - 2025 SN - 0005-9846 VL - 75 IS - 4 SP - 138 EP - 140 PB - concrete content UG CY - Schermbeck AN - OPUS4-63071 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sadowski, A. A1 - Seidel, M. A1 - Al-Lawati, H. A1 - Azizi, E. A1 - Balscheit, Hagen A1 - Böhm, M. A1 - Chen, Lei A1 - van Dijk, I. A1 - Doerich-Stavridis, C. A1 - Kunle Fajuyitan, O. A1 - Filippidis, A. A1 - Winther Fischer, A. A1 - Fischer, C. A1 - Gerasimidis, S. A1 - Karampour, H. A1 - Kathirkamanathan, L. A1 - Subramanian, S. A1 - Topkaya, Cem A1 - Wagner, H. N. R. A1 - Wang, J. A1 - Wang, J. A1 - Kumar Yadav, K. A1 - Yun, X. A1 - Zhang, P. T1 - 8-MW wind turbine tower computational shell buckling benchmark - Part 1: An international ‘round-robin’ exercise N2 - An assessment of the elastic-plastic buckling limit state for multi-strake wind turbine support towers poses a particular challenge for the modern finite element analyst, who must competently navigate numerous modelling choices related to the tug-of-war between meshing and computational cost, the use of solvers that are robust to highly nonlinear behaviour, the potential for multiple near-simultaneously critical failure locations, the complex issue of imperfection sensitivity and finally the interpretation of the data into a safe and economic design. This paper reports on an international ‘round-robin’ exercise conducted in 2022 aiming to take stock of the computational shell buckling expertise around the world which attracted 29 submissions. Participants were asked to perform analyses of increasing complexity on a standardised benchmark of an 8-MW multi-strake steel wind turbine support tower segment, from a linear elastic stress analysis to a linear bifurcation analysis to a geometrically and materially nonlinear buckling analysis with imperfections. The results are a showcase of the significant shell buckling expertise now available in both industry and academia. This paper is the first of a pair. The second paper presents a detailed reference solution to the benchmark, including an illustration of the Eurocode-compliant calibration of two important imperfection forms. KW - Wind turbine tower KW - Computational KW - Shell buckling KW - Benchmark PY - 2023 DO - https://doi.org/10.1016/j.engfailanal.2023.107124 SN - 1350-6307 VL - 148 SP - 1 EP - 23 PB - Elsevier Science CY - Oxford AN - OPUS4-57019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Morgenthal, Guido ED - Cha, Young-Jin T1 - A Bayesian Probabilistic Framework for Building Models for Structural Health Monitoring of Structures Subject to Environmental Variability N2 - Managing aging engineering structures requires damage identification, capacity reassessment, and prediction of remaining service life. Data from structural health monitoring (SHM) systems can be utilized to detect and characterize potential damage. However, environmental and operational variations impair the identification of damages from SHM data. Motivated by this, we introduce a Bayesian probabilistic framework for building models and identifying damage in monitored structures subject to environmental variability. The novelty of our work lies (a) in explicitly considering the effect of environmental influences and potential structural damages in the modeling to enable more accurate damage identification and (b) in proposing a methodological workflow for model‐based structural health monitoring that leverages model class selection for model building and damage identification. The framework is applied to a progressively damaged reinforced concrete beam subject to temperature variations in a climate chamber. Based on deflections and inclinations measured during diagnostic load tests of the undamaged structure, the most appropriate modeling approach for describing the temperature‐dependent behavior of the undamaged beam is identified. In the damaged state, damage is characterized based on the identified model parameters. The location and extent of the identified damage are consistent with the cracks observed in the laboratory. A numerical study with synthetic data is used to validate the parameter identification. The known true parameters lie within the 90% highest density intervals of the posterior distributions of the model parameters, suggesting that this approach is reliable for parameter identification. Our results indicate that the proposed framework can answer the question of damage identification under environmental variations. These findings show a way forward in integrating SHM data into the management of infrastructures. KW - Verkehrsinfrastukturen KW - SHM KW - Model Updating KW - Environmental and Operational Variability KW - Damage Identification KW - Model Building PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605027 DO - https://doi.org/10.1155/2024/4204316 SN - 1545-2255 VL - 2024 IS - 1 SP - 1 EP - 23 PB - Wiley AN - OPUS4-60502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kemmler, Samuel A1 - Cuéllar, Pablo A1 - Artinov, Antoni A1 - Luu, Li-Hua A1 - Farhat, Abbas A1 - Philippe, Pierre A1 - Rettinger, Christoph A1 - Köstler, Harald T1 - A fully-resolved micromechanical simulation of piping erosion during a suction bucket installation N2 - Granular fluidization phenomena such as piping erosion represent a challenge to the delicate installation process of offshore suction bucket foundations. A detailed analysis of the complex conditions in terms of soil composition, soil state, and foundation installation parameters that may lead to piping can be very demanding, if at all possible, solely by experimental means or using macroscopic continuum-based seabed models. The present paper presents a fully-resolved fluid-coupled micromechanical approach for a three-dimensional numerical simulation of the installation process of a suction bucket using the lattice Boltzmann method and discrete element method. The developed model is validated using well-established benchmarks and calibrated by means of experimental data from physical model tests on relevant scenarios focusing on the local fluidization of fixed embedded suction buckets as well as on the suction-driven installation of unrestrained buckets. The qualitative and quantitative agreement with the experimental data both endorse the proposed methodology and highlight the physical soundness of the obtained results. Thereby, the paper shows that three-dimensional analyses of relevant local scenarios at a real scale with little macromechanical model assumptions are feasible. KW - Micromechanical simulation KW - Fluid–solid coupling KW - Piping erosion KW - Suction bucket foundation KW - Offshore wind support structure KW - High-performance computing PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-633790 DO - https://doi.org/10.1016/j.compgeo.2025.107375 SN - 0266-352X VL - 186 SP - 1 EP - 17 PB - Elsevier B.V. AN - OPUS4-63379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herrmann, Ralf A1 - Ramasetti, Eshwar Kumar A1 - Degener, Sebastian A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A living lab for Structural Health Monitoring at the Nibelungen Bridge Worms for Transfer Learning of Structural Dynamics N2 - The Nibelungen Bridge in Worms, Germany has been selected as a national demonstration structure for advanced non-destructive testing (NDT) and structural health monitoring concepts to extend the lifetime of civil structures and to optimize O&M actions. Parts of the research that involves this bridge as a demonstrator belong to the focus area program SPP100+. In this program, the bridges SHM System has been extended and combined with an additional setup of vibration sensors. The used digital smart sensor with pre-processing functions, the arrangement of the sensors at the structure and additional edge computing capability allows the investigation of transfer learning and other methods directly into the real structure. The living lab with seven triaxial accelerometers can be reconfigured in real-time and adjusted to the needs of AI models for classification. The comparison with the existing conventional SHM sensors has been made possible by hardware synchronization to the existing SHM System and collocating sensors at similar positions, so that a hardware exchange can be an investigated use-case for the transfer learning. During idle times, the system collects vibration data like a conventional SHM system. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam DA - 10.06.2024 KW - Nibelungen Bridge KW - Living Lab KW - Transfer Learning KW - Transfer Structures KW - Modal Analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612810 UR - https://www.ndt.net/search/docs.php3?id=29853 DO - https://doi.org/10.58286/29853 SN - 1435-4934 VL - 29 IS - 7 SP - 1 EP - 8 PB - NDT.net GmbH & Co. KG CY - Mayen AN - OPUS4-61281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Benseghier, Z. A1 - Cuéllar, Pablo A1 - Luu, L.-H. A1 - Bonelli, S. A1 - Philippe, P. T1 - A parallel GPU-based computational framework for the micromechanical analysis of geotechnical and erosion problems N2 - This article deals with the relevance and practical feasibility of micromechanical simulations for their application to general geomechanical problems involving fluid-saturated granular assemblies, whether frictional or cohesive. A set of conceptual and numerical tools is here presented, advocating for a parallel computation using graphical processing units (GPUs) to treat large numbers of degrees of freedom with conventional Desktop computers. The fluid phase is here simulated with a particle-resolved approach in the frame of the Lattice Botzmann Method (LBM) while the granular solid phase is modelled as a collection of discrete particles from a Molecular Dynamics DEM perspective. The range of possible material behaviours for the solid granular phase is intended here to cover a broad spectrum from purely frictional to viscous cohesive materials with either brittle or transient debonding features. Specific details of the implementation and some validation cases are put forward. Finally, some exemplary applications in the fields of soil erosion and geotechnical profile installation are provided along with a discussion on the parallel performance of the presented models. The results show that a micromechanical approach can be feasible and useful in practice, providing meaningful insights into complex engineering problems like the erosion kinetics of a soil under an impinging jet or the penetration resistance of a deep foundation in a layered soil profile. KW - Offshore geomechanics KW - Erosion KW - Micromechanical modelling KW - LBM-DEM KW - GPU Parallel computing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502309 DO - https://doi.org/10.1016/j.compgeo.2019.103404 VL - 120 SP - Paper 103404, 1 PB - Elsevier Ltd. AN - OPUS4-50230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omidalizarandi, M. A1 - Herrmann, Ralf A1 - Kargoll, B. A1 - Marx, S. A1 - Paffenholz, J. A1 - Neumann, I. T1 - A validated robust and automatic procedure for vibration analysis of bridge structures using MEMS accelerometers N2 - Today, short- and long-term structural health monitoring (SHM) of bridge infrastructures and their safe, reliable and cost-effective maintenance has received considerable attention. From a surveying or civil engineer’s point of view, vibration-based SHM can be conducted by inspecting the changes in the global dynamic behaviour of a structure, such as natural frequencies (i. e. eigenfrequencies), mode shapes (i. e. eigenforms) and modal damping, which are known as modal parameters. This research work aims to propose a robust and automatic vibration analysis procedure that is so-called robust time domain modal parameter identification (RT-MPI) technique. It is novel in the sense of automatic and reliable identification of initial eigenfrequencies even closely spaced ones as well as robustly and accurately estimating the modal parameters of a bridge structure using low numbers of cost-effective micro-electro-mechanical systems (MEMS) accelerometers. To estimate amplitude, frequency, phase shift and damping ratio coefficients, an observation model consisting of: (1) a damped harmonic oscillation model, (2) an autoregressive model of coloured measurement noise and (3) a stochastic model in the form of the heavy-tailed family of scaled t-distributions is employed and jointly adjusted by means of a generalised expectation maximisation algorithm. Multiple MEMS as part of a geo-sensor network were mounted at different positions of a bridge structure which is precalculated by means of a finite element model (FEM) analysis. At the end, the estimated eigenfrequencies and eigenforms are compared and validated by the estimated parameters obtained from acceleration measurements of high-end accelerometers of type PCB ICP quartz, velocity measurements from a geophone and the FEM analysis. Additionally, the estimated eigenfrequencies and modal damping are compared with a well-known covariance driven stochastic subspace identification approach, which reveals the superiority of our proposed approach. We performed an experiment in two case studies with simulated data and real applications of a footbridge structure and a synthetic bridge. The results show that MEMS accelerometers are suitable for detecting all occurring eigenfrequencies depending on a sampling frequency specified. Moreover, the vibration analysis procedure demonstrates that amplitudes can be estimated in submillimetre range accuracy, frequencies with an accuracy better than 0.1 Hz and damping ratio coefficients with an accuracy better than 0.1 and 0.2 % for modal and system damping, respectively. KW - Vibration analysis KW - Automatic modal parameters identification KW - MEMS KW - FEM analysis KW - Bridge monitoring PY - 2020 UR - https://www.degruyter.com/view/journals/jag/14/3/article-p327.xml DO - https://doi.org/10.1515/jag-2020-0010 SN - 1862-9016 VL - 14 IS - 3 SP - 1 EP - 28 PB - De Gruyter CY - Berlin AN - OPUS4-51338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hering, Marcus A1 - Sievers, Jürgen A1 - Curbach, Manfred A1 - Beckmann, Birgit T1 - An Approach to Predicting the Ballistic Limit of Thin Textile-Reinforced Concrete Plates Based on Experimental Results N2 - In this article, a partial selection of experiments on enhancing the impact resistance of structural components with non-metallic, textile-reinforced concrete is discussed. The focus is on the experimental investigations in which the impact resistance of thin, textile-reinforced concrete plates is characterized. The article discusses the materials, fabrics and test setup used. For the experimental work, a drop tower from the Otto Mohr Laboratory, which belongs to the Technische Universtät Dresden, was used. Furthermore, the experimental results are presented and evaluated using different methods. Based on the collected data, a suitable approach to determining the perforation velocity of an impactor through the investigated thin, textile-reinforced concrete plates is shown. KW - Building and Construction KW - Civil and Structural Engineering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586692 DO - https://doi.org/10.3390/buildings13092234 VL - 13 IS - 9 SP - 1 EP - 14 PB - MDPI AN - OPUS4-58669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiele, Marc A1 - Pirskawetz, Stephan T1 - Analysis of damage evolution in concrete under fatigue loading by acoustic emission and ultrasonic testing N2 - The fatigue process of concrete under compressive cyclic loading is still not completely explored. The corresponding damage processes within the material structure are especially not entirely investigated. The application of acoustic measurement methods enables a better insight into the processes of the fatigue in concrete. Normal strength concrete was investigated under compressive cyclic loading with regard to the fatigue process by using acoustic methods in combination with other nondestructive measurement methods. Acoustic emission and ultrasonic signal measurements were applied together with measurements of strains, elastic modulus, and static strength. It was possible to determine the anisotropic character of the fatigue damage caused by uniaxial loading based on the ultrasonic measurements. Furthermore, it was observed that the fatigue damage seems to consist not exclusively of load parallel oriented crack structures. Rather, crack structures perpendicular to the load as well as local compacting are likely components of the fatigue damage. Additionally, the ultrasonic velocity appears to be a good indicator for fatigue damage beside the elastic modulus. It can be concluded that acoustic methods allow an observation of the fatigue process in concrete and a better understanding, especially in combination with further measurement methods. KW - Concrete KW - Fatigue KW - Damage evolution KW - Ultrasonic testing KW - Acoustic emission PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541891 DO - https://doi.org/10.3390/ma15010341 SN - 1996-1944 VL - 15 IS - 1 SP - 341 EP - 355 PB - MDPI CY - Basel AN - OPUS4-54189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -