TY - JOUR A1 - Auersch, Lutz A1 - Song, Jiaojiao T1 - Dynamic damage detection of slab tracks – finite element models on Winkler soil and finite-element boundary-element models on continuous soil N2 - The train passages over intact or damaged slab tracks on different soils have been calculated by two methods. The finite element method (FEM) uses a Winkler soil under the track model by adding a thin “soil layer”. The combined finite element boundary element method has a continuous soil model which is included by the boundary element method. The basic results are the distributions of the track (rail, track plate, and base layer) displacements along the track for a single axle laod. These solutions are superposed to a complete train load and transformed to time histories. The influence of track and soil parameters has been analysed. The main interest is the influence of the track damage. A gap between track plate and base layer of different lengths has been studied for changes in amplitudes and widths of deflection. A best fit to measured track displacements has been found so that the track damage can be identified and quantified. The FEM model with Winkler soil cannot be fitted to the amplitude and width with the same soil parameters. Therefore, the FEBEM model is preferable for these railway track problems. KW - Track damage quantification KW - Finite element method KW - Combined finite-element boundary-element method PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562207 DO - https://doi.org/10.3390/civileng3040055 SN - 2673-4109 VL - 3 IS - 4 SP - 979 EP - 997 PB - MDPI CY - Basel AN - OPUS4-56220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Song, Jiaojiao T1 - Analysis of intact and damaged (floating) slab tracks by finite-element boundary-element models and by measurements N2 - The damage detection and repair control have become important tasks for slab tracks. Different intact and damaged slab tracks have been investigated theoretically and experimentally for train passages and hammer impacts. The following damages have been considered: The loss of contact between the sleeper and the track slab, between the track slab and the base slab, and between the base slab and the base layer. At first, a slab track with a gap between the track slab and the base layer has been calculated by the combined finite-element boundary-element method which correctly incorporates the behaviour of the infinite soil. The basic results are the track displacements of the rail, the track slab, and the base layer along the track which are caused by a single axle load. These solutions are properly superposed for to get the complete train load. The influence of track and soil parameters and of the track damage has been analysed. For the intact track, the compliance of the soil is dominant whereas the track bending stiffness becomes more important for the damaged track. By comparing the calculated results with the measurements, the length of the gap could be quantified. A slab track with a loose sleeper (without contact to the supporting track slab) was analysed by the transfer function between the displacements and the hammer force (receptance functions) where a resonance appeared in case of the damage. Differences between the different track elements confirmed the detection of the damage. A floating slab track with a thin rubber layer has been investigated for a possible gap between the base slab and the base layer. The behaviour of the intact track has been calculated by a wavenumber-domain method, and the same behaviour has been found in the measurements at several track sections, indicating that there is no damage. Finally, a floating slab track with steel springs and viscous fluid dampers has been measured in the Tongji laboratory. The modes of the floating track slab and the transfer function with corresponding resonances have been calculated and successfully compared with results from wheelset drop tests. T2 - Third International Conference on Rail Transportation (ICRT2024) CY - Shanghai, China DA - 07.08.2024 KW - Railway track KW - Damage KW - Vibration measurement KW - Finite element method KW - Boundary element method KW - Frequency response function KW - Moving load response KW - Floating slab track PY - 2025 SN - 978-0-7844-8594-1 SP - 591 EP - 600 AN - OPUS4-61267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels finite element, boundary element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. T2 - Recent Advance in Structural Dynamics (RASD) CY - Southampton, UK DA - 01.07.2024 KW - Ground vibration KW - Building vibration KW - Railway tunnel KW - Wavenumber method KW - Finite element method KW - Boundary element method PY - 2024 AN - OPUS4-61230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -