TY - CONF A1 - Zinas, Orestis A1 - Wilhelm, Sigrid T1 - CPT-based probabilistic design of monopile foundations N2 - This work was presented in the two-day workshop ‘Reliability-based methods in geotechnics’ organized by BAM and DGGT AK 2.15 in cooperation with the DGGT Academy. The presentation provides an overview of the sources of uncertainty in geotechnical analyses. A probabilistic 3D ground model of the cone-tip resistance from CPTs is developed utilizing sparse CPT data from a real offshore wind farm site in the North Sea. The predictive cone tip resistance model is used to derive a design property, such as the friction angle, using geotechnical transformation models. The friction angle profiles are then used to show an example of monopile design under uncertainty. T2 - Workshop: Einführung in die zuverlässigkeitsbasierte Bemessung in der Geotechnik 2024 CY - Berlin, Germany DA - 19.11.2024 KW - Geotechnical site-characterization KW - CPT KW - Spatial variability KW - Gaussian process regression KW - Design of monopiles KW - Offshore wind farms PY - 2024 AN - OPUS4-61716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - 3D spatial modelling of CPT data for probabilistic preliminary assessment of potential pile tip damage upon collision with boulders N2 - Tip damage of monopiles from boulder collisions during installation has emerged as a critical design issue, primarily due to the combination of the widespread use of large-diameter piles and the complexity of the ground conditions at the available sites. Recently, a framework relating potential pile tip damage to cone tip resistance from Cone Penetration Tests (CPTs) has been proposed in the literature. Gaussian processes are powerful stochastic models that enable probabilistic spatial interpolation of soil data at any location within a site. On this basis, this study utilizes sparse CPT data from a site in the North Sea, to first develop an efficient Gaussian process regression model, which is used to derive a three-dimensional (3D) probabilistic predictive map of the cone tip resistance. Assuming deterministic loading conditions and a factual collision with a boulder of pre-defined properties, the cone tip resistance predictive model is subsequently used for a probabilistic preliminary assessment of potential pile tip damage. Results of the analysis are realistic 3D probability maps of potential damage that aim to support engineering judgment and contribute towards cost-effective site investigation planning and offshore wind farm design. T2 - 5th International Symposium on Frontiers in Offshore Geotechnics (ISFOG 2025) CY - Nantes, France DA - 09.06.2025 KW - CPT data KW - Gaussian process regression KW - Boulder impact KW - Preliminary pile tip damage assessment PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634417 SN - 978-2-85782-758-0 DO - https://doi.org/10.53243/ISFOG2025-323 SP - 505 EP - 510 PB - International Society for Soil Mechanics and Geotechnical Engineering CY - London AN - OPUS4-63441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Multivariate Gaussian Process Regression for 3D site characterization from CPT and categorical borehole data N2 - Accurate prediction of subsurface stratigraphy and geotechnical properties, along with quantification of associated uncertainties, is essential for improving the design and assessment of geotechnical structures. Several studies have utilized indirect data from Cone Penetration Tests (CPTs) and employed statistical and Machine Learning methods to quantify the geological and geotechnical uncertainty. Incorporating direct borehole data can reduce uncertainties. This study proposes a computationally efficient multivariate Gaussian Process model that utilizes site-specific data and: (i) jointly models multiple categorical (USCS labels) and continuous CPT variables, (ii) learns a non-separable covariance structure leveraging the Linear Model of Coregionalization, and (iii) predicts a USCS based stratigraphy and CPT parameters at any location within the 3D domain. The results demonstrate that integrating geotechnical and geological data into a unified model yields more reliable predictions of subsurface stratification, enabling the parallel interpretation of both USCS classification and CPT profiles. Importantly, the model demonstrates its potential to integrate multiple variables from different sources and data types, contributing to the advancement of methodologies for the joint modeling of geotechnical, geological, and geophysical data. KW - Geotechnical site-characterization KW - Cone Penetration Tests KW - Stratigraphy prediction KW - Multivariate Gaussian process KW - Variational inference KW - Linear Model of Coregionalization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-629456 DO - https://doi.org/10.1016/j.enggeo.2025.108052 SN - 1872-6917 VL - 352 SP - 1 EP - 19 PB - Elsevier B.V. AN - OPUS4-62945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Multivariate Gaussian Process for 3D subsurface stratigraphy prediction from CPT and labelled borehole data N2 - Quantifying uncertainties in subsurface properties and stratigraphy can lead to better understanding of the ground conditions and enhance the design and assessment of geotechnical structures. Several studies have utilized Cone Penetration Test (CPT) data and employed Bayesian and Machine Learning methods to quantify the geological uncertainty, based on the Robertson’s soil classification charts and the Soil Behaviour Type Index (Ic). The incorporation of borehole data can reduce the stratigraphic uncertainty. Significant challenges can arise, however, mainly due to the intrinsic differences between field and laboratory-based soil classification systems, which can potentially lead to inconsistent soil classification. To this end, this study proposes a multivariate Gaussian Process model that utilizes site-specific data and: i) jointly models multiple categorical (USCS labels) and continuous (Ic) variables, ii) learns a (shared) spatial correlation structure and the betweenoutputs covariance, and iii) produces two types of dependent classification outputs. The results indicate that the integration of geotechnical and geological information into a unified model can provide more reliable predictions of the subsurface stratification, by allowing simultaneous interpretation of USCS and Ic profiles. Importantly, the model demonstrates the potential to integrate multiple variables of different types, aiming to contribute to the development of a methodology for joint modeling of geotechnical, geological and geophysical data. T2 - 7th International Conference on Geotechnical and Geophysical Site Characterization CY - Barcelona, Spain DA - 18.06.2024 KW - Geotechnical site-characterization KW - Probabilistic KW - Soil classification KW - Gaussian Process PY - 2024 SP - 1733 EP - 1740 AN - OPUS4-60712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Papaioannou, Iason A1 - Schneider, Ronald A1 - Cuéllar, Pablo T1 - Spatial modeling of heterogeneous geotechnical site investigation data using multivariate Gaussian Process N2 - This presentation is part of the Engineering Risk Analysis group open seminars. It aims to showcase the results of an ongoing study centered on developing a novel probabilistic methodology for 3D geotechnical site characterization. This methodology integrates data from Cone Penetration Tests (CPTs) and categorical borehole data. The presentation covers the mathematical details of the proposed Multivariate Gaussian Process model and demonstrates its application to a real geotechnical site in New Zealand. T2 - ERA Seminars CY - Munich, Germany DA - 24.07.2024 KW - Geotechnical site-characterization KW - CPT KW - Boreholes KW - Gaussian Process PY - 2024 AN - OPUS4-60716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis T1 - 3D Probabilistic Site Characterization N2 - The aim of the study is to infer the soil stratification from the provided CPT and borehole data. We infer the soil type at any location within the domain of interest from the SBT index Ic (Robertson, 2009). This index can be directly related to the CPT data through an empirical correlation model. In addition, the soil classes contained in the borehole logs can be expressed as bounds on Ic. A log-transformation was applied to Ic, Y = ln(Ic), and Y was modelled by a 3D Random Field, with a fully Bayesian hierarchical Gaussian Process model to explicitly capture uncertainties. T2 - 19th eawe PhD Seminar CY - Hannover, Germany DA - 06.09.2023 KW - Wind Energy KW - Site-characterization KW - Probabilistic PY - 2023 AN - OPUS4-58940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis T1 - 3D spatial modelling of CPT data for probabilistic preliminary assessment of potential pile tip damage upon collision with boulders N2 - Tip damage of monopiles from boulder collisions during installation has emerged as a critical design issue, primarily due to the combination of the widespread use of large-diameter piles and the complexity of the ground conditions at the available sites. Recently, a framework relating potential pile tip damage to cone tip resistance from Cone Penetration Tests (CPTs) has been proposed in the literature. Gaussian processes are powerful stochastic models that enable probabilistic spatial interpolation of soil data at any location within a site. On this basis, this study utilizes sparse CPT data from a site in the North Sea, to first develop an efficient Gaussian process regression model, which is used to derive a three-dimensional (3D) probabilistic predictive map of the cone tip resistance. Assuming deterministic loading conditions and a factual collision with a boulder of pre-defined properties, the cone tip resistance predictive model is subsequently used for a probabilistic preliminary assessment of potential pile tip damage. Results of the analysis are realistic 3D probability maps of potential damage that aim to support engineering judgment and contribute towards cost-effective site investigation planning and offshore wind farm design. T2 - 5th International Symposium on Frontiers in Offshore Geotechnics (ISFOG) CY - Nantes, France DA - 09.06.2025 KW - CPT data KW - Gaussian process regression KW - Boulder impact KW - Preliminary pile tip damage assessment PY - 2025 AN - OPUS4-63444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis T1 - Stochastic variational Gaussian process for 3D site characterization N2 - This work was presented at the the 2nd Workshop on Future of Machine Learning in Geotechnics (2FOMLIG) & the 5th Machine Learning in Geotechnics Dialogue (5MLIGD), in Chengdu, China. In this study, we propose an efficient multivariate Gaussian process regression model, utilizing the Linear Model of Coregionalization, stochastic variational inference and Dirichlet-based transformations, to jointly model continuous CPT and categorical (USCS) borehole variables. The predictive performance of the model is assessed using a real dataset from a site located in Christchurch, New Zealand. T2 - 2nd Workshop on Future of Machine Learning in Geotechnics (2FOMLIG) & the 5th Machine Learning in Geotechnics Dialogue (5MLIGD) CY - Chengdu, China DA - 11.10.2024 KW - Geotechnical site-characterization KW - Cone Penetration Tests KW - Multivariate Gaussian process regression KW - Categorical borehole data KW - Stratigraphy prediction KW - Linear Model of Coregionalization PY - 2024 AN - OPUS4-61775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis T1 - CPT-based probabilistic analysis of monopile foundations considering spatial and transformation uncertainties N2 - This study utilizes cone penetration testing data data from a real offshore windfarm project in the North Sea and presents a method for incorporating both, statistical and spatial uncertainties, in a reliability-based assessment of monopile foundations. Initially, a Gaussian Process regression model is constructed to predict a 3D map of the cone tip resistance and the associated uncertainties in the predictions and the hyperparameters, leveraging Markov Chain Monte Carlo methods. The CPT-based prediction is combined with a correlation derived from data collected at a nearby site to predict the probability distribution of the friction angle at a test location, which is subsequently used to evaluate the probability of failure for a monopile foundation with a finite element model. T2 - 9th International Symposiumon Geotechnical Safety and Risk (ISGSR) CY - Oslo, Norway DA - 25.08.2025 KW - Monopile design KW - Cone Penetration Test KW - Gaussian process regression KW - Bayesian Inference PY - 2025 AN - OPUS4-64001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis T1 - Potentials of probabilistic approaches in offshore foundation installation N2 - This presentation discusses the potentials of probabilistic methods in offshore foundation installation, from the perspective of probabilistic ground models and data-driven site characterization. We discuss about methodologies for utilizing site-specific geotechnical (CPT) and geological data, aiming to construct an integrated ground model that can predict stratigraphic profiles and useful for geotechnical design parameters at any location within a 3D domain. The predicted parameters and stratigraphy are then used to predict the probability of potential pile tip damage, upon collision with a boulder. T2 - Colloquium Buckling of Offshore Wind Energy Structures CY - Berlin, Germany DA - 14.02.2024 KW - Wind KW - Offshore KW - Buckling KW - Probabilistic KW - Ground PY - 2024 AN - OPUS4-59538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis T1 - A Modular Gaussian Process Regression Toolbox for Uncertainty Aware Geotechnical Site Characterization N2 - A modular Gaussian Process Regression toolbox for efficient large-scale geotechnical site characterization from sparse 1D data was presented at the Third Future of Machine Learning in Geotechnics (3FOMLIG), Florence, Italy, October 16, 2025. The PyTorch/GPyTorch-based framework enables multivariate modeling of correlated soil properties and joint regression-classification of continuous CPT parameters with categorical soil units through Dirichlet transformations. Stochastic Variational Inference reduces computational complexity from O(N³) to O(M³), enabling GPU-accelerated processing of 100,000+ measurements. Validated on a 33 km² North Sea offshore wind farm site with 100+ sparse investigation points, the toolbox generates uncertainty-aware 3D predictions, supporting univariate, multivariate (LMC), and sequential multi-group modeling strategies. T2 - Third Future of Machine Learning in Geotechnics (3FOMLIG) CY - Florence, Italy DA - 15.10.2025 KW - Probabilistic site-characterization KW - Gaussian process regression KW - Bayesian inference KW - Offshore Wind Farms PY - 2025 AN - OPUS4-64423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiehle, Philipp A1 - Simon, Sebastian A1 - Baier, J. A1 - Dennin, L. ED - Forde, M. T1 - Influence of relative humidity on the strength and stiffness of unstabilised earth blocks and earth masonry mortar N2 - Aim of this study is to provide information about moisture dependent material behaviour of unstabilised loadbearing earth blocks and mortars. Compressive strength and Young’s modulus were investigated after conditioning in varying relative humidity reaching from 40 % up to 95 %. The material composition and physical properties were investigated to understand the influence of relative humidity onto the mechanical properties. A normalisation of strength and stiffness by the values obtained at 23 ◦C and 50 % relative humidity reveals a linear dependence of compressive strength and Young’s modulus that is regardless of the material composition. Thus, it is possible to describe the influence of relative humidity onto the load-bearing behaviour of unstabilised earth masonry materials in a generally valid formulation. KW - Earth block masonry KW - Load-bearing behaviour KW - Compressive strength KW - Moisture content KW - Sorption isotherm PY - 2022 DO - https://doi.org/10.1016/j.conbuildmat.2022.128026 SN - 0950-0618 VL - 342 IS - Part A SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-54949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiehle, Philipp A1 - Härder, Michelle A1 - Strangfeld, Christoph T1 - Quantification of moisture content in earth block masonry under natural climatic conditions N2 - The aim of this study is to accurately predict the moisture content in earth block masonry exposed to natural climatic conditions, which is a key factor in assessing its load-bearing capacity. Nuclear magnetic resonance relaxometry and humidity sensor measurements were carried out to quantify the moisture content. In addition, a customised test setup was developed to determine the capillary water absorption of earth blocks. This approach takes into account the deceleration of water absorption due to the swelling of clay minerals and organic additives, which leads to realistic transport coefficients in the hygroscopic range. This allows the moisture content of earth block masonry to be predicted accurately. With regard to the moisture behaviour of typical exterior wall constructions in living spaces, it was found that the equilibrium moisture content in earth block masonry is always lower than 65 % relative humidity, which corresponds to the permissible limit of the recently published German design standard for load-bearing earth block masonry. KW - Earth block masonry KW - NMR relaxometry KW - Hygrothermal simulation KW - Load-bearing capacity KW - Moisture content KW - Embedded humidity sensors PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623518 DO - https://doi.org/10.1016/j.conbuildmat.2024.139513 VL - 459 SP - 1 EP - 10 PB - Elsevier Ltd. AN - OPUS4-62351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiehle, Philipp A1 - Härder, M. A1 - Strangfeld, Christoph T1 - Moisture behaviour of earth block masonry under natural climate conditions – experimental and numerical studies N2 - The compressive stength of unstabilised earth masonry depends on the moisture content. Knowledge of the moisture content is necessary in order to be able to account for the impact of moisture on the structural design of earth block masonry. For conventional building materials it is possible to precisely forecast the component moisture according to the layered structure on the basis of hygrothermal simulations. However , it is still not clear to what degree these numerical calculations can offer valid results for earth building materials. Earth building materials have a number of special properties related to moisture storage and moisture transport that differ significantly from the physical simplifications that are a component of existing material models. The swelling and shrinking of earth materials and their organic components results in changes to the pore space, the sorption behaviour exhibits a clear hysteresis, and the experimental determination of hygrothermal parameters in continuous contact with liquid water is almost impossible. To adequately forecast the moisture content of earth block masonry under natural climate conditions, extensive investigations of the moisture behaviour of load-bearing earth block masonry have been carried out within the framework of this project. These efforts began with the performance of magnetic resonance spectroscopic tests on two load-bearing earth blocks, in order to quantify the adsorption and desorption processes at relative humidities of between 50 % and 90 % under controlled, isothermal laboratory conditions. Once this had been done, a modified test setup was used to determine the water absorption coefficient , from which the liquid transport coefficients were derived. Based on the hygrothermal parameters values that were thus determined, the model was calibrated using the WUFI software program [7]. Finally, long-term moisture measurements were conducted on an earth block masonry wall that was ex-Increasing shortages of raw materials and rising energy prices are resulting in continuous growth in the demand for earth construction. In comparison to conventional building materials, earth building materials offer three significant advantages that have become even more important in light of the energy crisis in 2021 and the associated increase in the price of building supplies by approx. 40 percent [1]. Firstly, water solubility makes it possible to fully separate and recover all of the material components, and in particular the sand component. Secondly, energy-intensive firing processes, such as those required for cement production or brick manufacture, are eliminated. And thirdly, earth is a local raw material that is available in large quantities [1]. However, the load-bearing capacity of earth building materials is very much dependent on the moisture content. An increase in the relative humidity results in a reduction in the clay mineral cohesion , and this in turn results in a decline in both the compressive strength and the modulus of elasticity. In this regard, the mechanical properties of earth block masonry change in inverse proportion to the relative humidity. In other words, with every percentage point increase in relative humidity, both the compressive strength and the modulus of elasticity decline by one percent [2] [4]. The internal walls of heated living areas are generally only subject to relatively small fluctuations in relative humidity (between 40 % and 60 %) [5], and short periods in excess of these levels (such as in bathrooms or kitchens) only lead to a significant increase in the moisture content of the uppermost layers [6]. Exterior walls, on the other hand, are subject to large seasonal fluctuations in temperate climates, with a relative humidity in excess of 90 % in winter months. However, the exterior walls of heated living areas must be insulated in accordance with the German Buildings Energy Act (GEG), and with masonry this is generally done us T2 - LEHM 2024 – 9. Internationale Fachtagung für Lehmbau CY - Weimar, Germany DA - 27.09.2024 KW - Earth stone KW - Masonry KW - Material moisture KW - Moisture monitoring KW - Hygrothermal simulations PY - 2024 SP - 1 EP - 10 AN - OPUS4-61220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiehle, Philipp A1 - Härder, M. A1 - Strangfeld, Christoph T1 - Feuchteverhalten von Lehmsteinmauerwerk unter natürlichen Klimabedingungen – Experimentelle und numerische Untersuchungen N2 - Druckfestigkeit und Elastizitätsmodul von Lehmsteinmauerwerk nehmen mit steigendem Feuchtegehalt ab, weswegen die Mauerwerksdruckfestigkeit bei der Bemessung gemäß DIN 18940 in Abhängigkeit der maximal zu erwartenden Ausgleichsfeuchte abgemindert wird. Da bisher allerdings keine Messdaten zum Feuchtegehalt von Lehmsteinmauerwerk unter natürlichen Klimabedingungen vorliegen, stellen die normativen Grenzwerte lediglich eine konservative Abschätzung dar. Um die Feuchtegehalte von Lehmsteinmauerwerk und somit die Tragfähigkeit realitätsnah einschätzen zu können, wurden im Rahmen der vorliegenden Arbeit sowohl experimentelle als auch numerische Untersuchungen zum feuchtetechnischen Verhalten durchgeführt. Dabei wurden erstmalig magnetresonanzspektroskopische Untersuchungen an tragenden Lehmsteinen unterschiedlicher Herstellungsmethoden angewandt Weiterhin wurden Luftfeuchtesensoren in Lehmsteinmauerwerk eingebettet, um hygrische Langzeitfeuchtemessungen unter natürlichen Klimabedingungen durchzuführen. Auf Basis dieser Erkenntnisse wurde schließlich ein numerisches Modell kalibriert und Parameterstudien durchgeführt, um den unter realen Klimabedingungen tatsächlich auftretenden Feuchtegehalt im Lehmmauerwerk sowie dessen Verteilung über den Querschnitt einschätzen zu können und die normativen Grenzwerte zu überprüfen. Gezeigt wurde, dass die realitätsnahe instationäre Berechnung des Feuchtetransports mit üblichen hygrothermischen Simulationsprogrammen auf Basis einfacher feuchtetechnischer Kennwerte auch bei Lehmbaustoffen möglich ist. Der Einfluss des Quellens und Schwindens der enthaltenen Tonminerale und organischen Bestandteile wurde durch eine Modifikation bei der Ermittlung des Wasseraufnahmekoeffizienten explizit berücksichtigt und ist somit auch in den daraus abgeleiteten Transportkoeffizienten enthalten. Darüber hinaus wurde die Feuchtespeicherfunktion im überhygroskopischen Bereich auf Grundlage der Porenvolumenverteilung abgeschätzt. Die Approximation der Transportkoeffizienten und der Feuchtespeicherfunktion stellt dabei eine wesentliche Vereinfachung für Lehmbaustoffe dar, da ihre experimentelle Bestimmung aufgrund des Kontaktes mit Flüssigwasser kaum möglich ist. In Bezug auf das Feuchteverhalten üblicher Außenwandaufbauten von Wohnräumen konnte festgestellt werden, dass die Ausgleichsfeuchte im Lehmsteinmauerwerk stets unterhalb des in Nutzungsklasse 1 gemäß DIN 18940 zulässigen Grenzwertes von 65 % liegt. Je nach Putzsystem und Dämmstoff reduziert sich die Ausgleichsfeuchte auf Werte unter 60 %, wobei sich eine annähernd gleichmäßige Verteilung der Feuchte über den Mauerwerksquerschnitt hinweg einstellt. Bei Außenwänden von unbeheizten Räumen ergab sich eine maximale Ausgleichsfeuchte, die über weite Teile des Querschnitts unterhalb von 80 % lag. Der Ansatz einer maximalen Ausgleichsfeuchte von 90 % in Nutzungsklasse 2 ist folglich zu hoch angesetzt. Die zulässige Ausgleichsfeuchte bzw. der Umgebungsfeuchtefaktor in Nutzungsklasse 2 sollte dementsprechend angepasst werden T2 - LEHM 2024 – 9. Internationale Fachtagung für Lehmbau CY - Weimar, Germany DA - 27.09.2024 KW - Lehmstein KW - Mauerwerk KW - Materialfeuchte KW - Feuchtemonitoring KW - hygrothermische Simulation PY - 2024 SP - 1 EP - 10 AN - OPUS4-61217 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiehle, Philipp A1 - Brinkmann, M. T1 - Tragfähigkeit von Lehmmauerwerk - Experimentelle und numerische Analyse T1 - Load-bearing capacity of earth masonry – An experimental and numerical analysis N2 - Die Bemessung von tragendem Lehmmauerwerk erfolgt in Deutschland auf Basis der Lehmbau Regeln. Das dort verankerte Nachweisverfahren beruht auf einem globalen Sicherheitskonzept, welches aus zuverlässigkeitstheoretischer Sicht nicht mehr dem Stand der Technik entspricht. Auf Grund dessen wird das Bemessungskonzept für Lehmmauerwerk vom Deutschen Institut für Bautechnik (DIBt) voraussichtlich 2023 außer Kraft gesetzt. Ein statischer Nachweis von tragenden Lehmbauten wäre in Deutschland dann ausschließlich mit einer Zustimmung im Einzelfall (ZiE) oder vorhabenbezogener Bauartgenehmigung (vBg) möglich. Beides ist mit erheblichem Mehraufwand und höheren Kosten verbunden, was für den Lehmmauerwerksbau einen entscheidenden Nachteil im Vergleich zum konventionellen Mauerwerksbau darstellt. Um eine unkomplizierte Praxisanwendung von Lehmmauerwerk zu ermöglichen, werden innerhalb eines Forschungsvorhabens, welches von der Bundesanstalt für Materialforschung und -prüfung (BAM), dem Institut für Massivbau der Technischen Universität Darmstadt sowie dem Ingenieurbüro ZRS durchgeführt wird, auf Basis der Produktnormen für Lehmsteine und Lehmmauermörtel Grundlagen für ein aktualisiertes Bemessungskonzept entwickelt. Im Rahmen des Projekts wird ebenfalls untersucht, inwiefern die Bemessungsregeln nach den vereinfachten Berechnungsmethoden für unbewehrtes Mauerwerk gemäß DIN EN 1996-3 / NA auf den Lehmmauerwerksbau übertragbar sind. Falls eine Anwendung des normativen Nachweisverfahrens bei Lehmmauerwerk möglich ist, wäre zukünftig eine Aufnahme von Lehmsteinen und Lehmmauermörtel in den nationalen Anhang des Eurocode 6 denkbar, was eine bedeutsame Erweiterung des Anwendungsbereichs von Lehmmauerwerk zur Folge hätte. Diverse wissenschaftliche Untersuchungen konnten zeigen, dass bemessungsrelevante Festigkeits- und Verformungseigenschaften von Lehmmauerwerksbaustoffen stark von der vorherrschenden Materialfeuchte abhängen, welche im hygroskopischen Wassergehaltsbereich im Wesentlichen von der relativen Luftfeuchte (RLF) bestimmt wird. Auch die Zwischenergebnisse des laufenden Forschungsvorhabens zur Entwicklung eines Bemessungskonzepts für Lehmmauerwerk ergaben eine deutlich erkennbare Abhängigkeit zwischen der Materialfeuchte und den relevanten Festigkeits- und Verformungseigenschaften. Eine detaillierte Kenntnis des feuchteabhängigen Materialverhaltens von Lehmsteinen, -mörtel und -mauerwerk ist zwingend erforderlich, um ein konsistentes und zuverlässiges Bemessungskonzept für Lehmmauerwerk zu entwickeln. Im Rahmen des laufenden Forschungsprojektes werden deshalb umfangreiche Versuche zum Drucktragverhalten von Lehmsteinen und -mörtel sowie Lehmmauerwerk nach Konditionierung bei unterschiedlichen RLF durchgeführt und analysiert. Weiterhin werden auf Basis der experimentellen Ergebnisse numerische Modelle kalibriert, welche die detaillierte Analyse der Biegedrucktragfähigkeit von Lehmmauerwerk ermöglichen. In diesem Beitrag werden zunächst die bisherigen Zwischenergebnisse bezüglich der experimentell ermittelten feuchteabhängigen Materialkennwerte von Lehmsteinen, -mörtel und -mauerwerk dargelegt. Darauf aufbauend werden numerische Untersuchungen zur Bestimmung der Systemtragfähigkeit von Lehmmauerwerk unter Feuchteeinflusses durchgeführt und erläutert. N2 - The structural design of load-bearing earthen masonry in Germany is based on the Lehmbau Regeln. The verification procedure outlined in these regulations is based on a global safety concept that no longer corresponds to the state of the art from a reliability theory perspective. As a result, the structural design concept for earthen masonry will most likely be discontinued by the German Institute for Building Technology (DIBt) in 2023. A structural verification of load-bearing earthen buildings would then only be possible in Germany with an approval for individual cases (ZiE) or a project-related permit type (vBg). Both methods are associated with considerable additional work and higher costs, which is a decisive disadvantage for earthen masonry construction compared to conventional masonry construction. In order to enable a straightforward practical application of earthen masonry, the Federal Institute for Materials Research and Testing (BAM), the Institute for Solid Construction of the Technical University of Darmstadt and ZRS Engineers are laying the groundwork for an updated structural design concept based on the product standards for earth blocks and earthen masonry mortar. The project will also investigate the extent to which the design rules based on the simplified calculation methods for unreinforced masonry according to DIN EN 1996-3 / NA can be transferred to earthen masonry construction. If the normative verification procedure can be applied to earthen masonry, it would be conceivable to include earth blocks and earthen masonry mortar in the national appendix of Eurocode 6 in the future, which would result in a significant expansion of the field of application of earthen masonry. Various scientific studies have shown that the strength and deformation properties of earthen masonry building materials relevant to structural design are strongly dependent on the prevailing material moisture level, which is essentially determined by the relative humidity (RH) in the hygroscopic water content range. The interim results of the current research project for the development of a structural design concept for earthen masonry also showed a clearly recognisable dependency between the material moisture level and the relevant strength and deformation properties. Detailed knowledge of the moisture-dependent material behaviour of earth blocks, earthen mortar and masonry is absolutely essential to developing a consistent and reliable structural design concept for earthen masonry. Within the framework of the current research project, extensive tests on the pressure load bearing capacity of earth blocks and earthen mortar as well as earthen masonry after conditioning at different RH levels are therefore being carried out and analysed. Furthermore, numerical models are being calibrated on the basis of the experiment results, which facilitate a detailed analysis of the bending pressure bearing capacity of earthen masonry. This paper presents, firstly, the interim results obtained so far concerning the experimentally determined moisture-dependent material characteristics of earth blocks, earthen mortar and masonry. Based on this material, numerical investigations for determining the system bearing capacity of earthen masonry under the influence of moisture are carried out and explained. T2 - LEHM 2020 CY - Weimar, Germany DA - 30.10.2020 KW - Lehm KW - Earth KW - Tragfähigkeit KW - Mauerwerk KW - Feuchte KW - Load-bearing KW - Moisture KW - Strength PY - 2020 SP - 1 EP - 12 PB - Dachverband Lehm CY - Weimar AN - OPUS4-53231 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiehle, Philipp A1 - Brinkmann, M. T1 - Material behaviour of unstabilised earth block masonry and its components under compression at varying relative humidity N2 - block and mortar types is analysed with particular regard to the influence of varying relative humidity. The uniaxial compressive strength and deformation characteristics of unstabilised earth blocks and mortars as well as of unstabilised earth block masonry are studied in detail and compared to conventional masonry to evaluate whether the structural design can be made accordingly. An increase of 30 % points in relative humidity leads to a reduction of the masonry´s compressive strength between 33 % and 35 % whereas the Young´s modulus is reduced by 24–29 %. However, the ratio between the Young´s modulus and the characteristic compressive strength of earth block masonry ranges between E33/fk = 283–583 but is largely independent of the relative humidity. The results show that the mechanical properties of the investigated unstabilised earth block masonry are sufficient for load-bearing structures, yielding a masonry compressive strength between 2.3 MPa and 3.7 MPa throughout the range of moisture contents investigated. In general, the design concept of conventional masonry can be adapted for unstabilised earth masonry provided that the rather low Young´s modulus as well as the moisture dependence of both, compressive strength and Young´s modulus, are sufficiently taken into account. KW - Compressive strength KW - Earth block masonry KW - Compression tests KW - Stress-strain relation KW - Relative humidity KW - Moisture content PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562417 DO - https://doi.org/10.1016/j.cscm.2022.e01663 SN - 2214-5095 VL - 17 SP - 1 EP - 15 PB - Elsevier B.V. CY - Netherlands AN - OPUS4-56241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiehle, Philipp A1 - Baier, Johanna A1 - Thiele, Marc T1 - Structural Design of Earth Masonry in Accordance with Eurocode 6 – Considering Moisture Content and E/fk Ratio N2 - The load‐bearing behaviour of earth masonry is similar to conventional masonry, with two key differences: compressive strength and Young's modulus are dependent on moisture content, and the ratio between Young's modulus and characteristic compressive strength (E/fk) is significantly lower. The current design concept according to the Lehmbau Regeln does not explicitly address these factors, relying instead on a general safety margin, leading to an underestimation of the load‐bearing capacity of modern earth masonry.Compression tests on small‐scale masonry specimens and storey‐high walls revealed that compressive strength and Young's modulus decrease inversely proportional to the increase in relative humidity. Additionally, it was found that conventional masonry design guidelines overestimate the buckling resistance of earth masonry due to its low E/fk ratio of ∼440. However, this ratio remains independent of moisture content, simplifying structural design, as the load‐bearing capacity is only influenced by wall slenderness.The study's findings form the foundation for the newly published German design standard DIN 18940, which explicitly considers moisture content through service classes with moisture factors and addresses the low E/fk ratio with a bilinear adaptation of the reduction factor considering the slenderness. Along with the introduction of the semi‐probabilistic design concept and rigid‐plastic determination of cross‐sectional load‐bearing capacity, modern earth masonry can now be applied in buildings up to four storeys. T2 - Earth Builder Summit CY - Biberach, Germany DA - 06.03.2025 KW - Service class KW - Earth masonry KW - Structural design KW - Moisture PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637803 DO - https://doi.org/10.1002/cepa.3287 SN - 2509-7075 VL - 8 IS - 1 SP - 9 EP - 21 PB - Ernst & Sohn GmbH AN - OPUS4-63780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiehle, Philipp T1 - Feuchteverhalten von Lehmsteinmauerwerk unter natürlichen Klimabedingungen N2 - Druckfestigkeit und Elastizitätsmodul von Lehmsteinmauerwerk nehmen mit steigendem Feuchtegehalt ab, weswegen die Mauerwerksdruckfestigkeit bei der Bemessung gemäß DIN 18940 in Abhängigkeit der maximal zu erwartenden Ausgleichsfeuchte abgemindert wird. Da bisher allerdings keine Messdaten zum Feuchtegehalt von Lehmsteinmauerwerk unter natürlichen Klimabedingungen vorliegen, stellen die normativen Grenzwerte lediglich eine konservative Abschätzung dar. Um die Feuchtegehalte von Lehmsteinmauerwerk und somit die Tragfähigkeit realitätsnah einschätzen zu können, wurden im Rahmen der vorliegenden Arbeit sowohl experimentelle als auch numerische Untersuchungen zum feuchtetechnischen Verhalten durchgeführt. Dabei wurden erstmalig magnetresonanzspektroskopische Untersuchungen an tragenden Lehmsteinen unterschiedlicher Herstellungsmethoden angewandt Weiterhin wurden Luftfeuchtesensoren in Lehmsteinmauerwerk eingebettet, um hygrische Langzeitfeuchtemessungen unter natürlichen Klimabedingungen durchzuführen. Auf Basis dieser Erkenntnisse wurde schließlich ein numerisches Modell kalibriert und Parameterstudien durchgeführt, um den unter realen Klimabedingungen tatsächlich auftretenden Feuchtegehalt im Lehmmauerwerk sowie dessen Verteilung über den Querschnitt einschätzen zu können und die normativen Grenzwerte zu überprüfen. Gezeigt wurde, dass die realitätsnahe instationäre Berechnung des Feuchtetransports mit üblichen hygrothermischen Simulationsprogrammen auf Basis einfacher feuchtetechnischer Kennwerte auch bei Lehmbaustoffen möglich ist. Der Einfluss des Quellens und Schwindens der enthaltenen Tonminerale und organischen Bestandteile wurde durch eine Modifikation bei der Ermittlung des Wasseraufnahmekoeffizienten explizit berücksichtigt und ist somit auch in den daraus abgeleiteten Transportkoeffizienten enthalten. Darüber hinaus wurde die Feuchtespeicherfunktion im überhygroskopischen Bereich auf Grundlage der Porenvolumenverteilung abgeschätzt. Die Approximation der Transportkoeffizienten und der Feuchtespeicherfunktion stellt dabei eine wesentliche Vereinfachung für Lehmbaustoffe dar, da ihre experimentelle Bestimmung aufgrund des Kontaktes mit Flüssigwasser kaum möglich ist. In Bezug auf das Feuchteverhalten üblicher Außenwandaufbauten von Wohnräumen konnte festgestellt werden, dass die Ausgleichsfeuchte im Lehmsteinmauerwerk stets unterhalb des in Nutzungsklasse 1 gemäß DIN 18940 zulässigen Grenzwertes von 65 % liegt. Je nach Putzsystem und Dämmstoff reduziert sich die Ausgleichsfeuchte auf Werte unter 60 %, wobei sich eine annähernd gleichmäßige Verteilung der Feuchte über den Mauerwerksquerschnitt hinweg einstellt. Bei Außenwänden von unbeheizten Räumen ergab sich eine maximale Ausgleichsfeuchte, die über weite Teile des Querschnitts unterhalb von 80 % lag. Der Ansatz einer maximalen Ausgleichsfeuchte von 90 % in Nutzungsklasse 2 ist folglich zu hoch angesetzt. Die zulässige Ausgleichsfeuchte bzw. der Umgebungsfeuchtefaktor in Nutzungsklasse 2 sollte dementsprechend angepasst werden. T2 - LEHM 2024 - 9. Internationale Fachtagung für Lehmbau CY - Weimar, Germany DA - 27.09.2024 KW - Lehm KW - Mauerwerk KW - Feuchte KW - Tragverhalten KW - Bemessung PY - 2024 AN - OPUS4-61904 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Wiehle, Philipp T1 - Einfluss der Feuchtigkeit auf das Tragverhalten von Lehmmauerwerk N2 - Im Mittelpunkt der vorliegenden Arbeit steht der Einfluss der Feuchte auf die mechanischen Eigenschaften von Lehmmauerwerk. Der Wissensstand zum feuchteabhängigen Tragverhalten von Lehm(mauerwerk) ist bisher lückenhaft, sodass keine explizite Berücksichtigung der Bauteilfeuchte bei der Bemessung tragender Konstruktionen erfolgt. Aktuelle und verlässliche Daten zum Einfluss der Feuchte auf die mechanischen Kenngrößen moderner Lehmbaustoffe fehlen bisher ebenso wie Messwerte in Bezug auf die Bauteilfeuchte unter natürlichen Klimabedingungen. Deswegen wurden im Rahmen dieser Arbeit umfangreiche Untersuchungen zum mechanischen und hygrothermischen Verhalten von Lehmmauerwerk durchgeführt. Die experimentellen Untersuchungen bestehen im Wesentlichen aus Druckversuchen an Lehmsteinen, -mörteln, kleinformatigen Lehmmauerwerksprobekörpern und geschosshohen Lehmmauerwerkswänden. Um das Feuchteverhalten beschreiben zu können, fanden außerdem erstmalig magnetresonanzspektroskopische Messungen an Lehmsteinen statt und es wurden die tatsächlich auftretenden Feuchtegehalte an einer Lehmmauerwerkswand unter natürlichen Klimabedingungen in Form von Langezeitmessungen ermittelt. Es konnte festgestellt werden, dass ein linearer Zusammenhang zwischen Druckfestigkeit und relativer Luftfeuchte besteht, wobei sich die Druckfestigkeit umgekehrt proportional zur relativen Luftfeuchte verhält. Je Prozent Steigerung der relativen Luftfeuchte kommt es zur Abnahme von einem Prozent der Druckfestigkeit. Gleiches gilt für das Elastizitätsmodul. Weiterhin konnte auf Basis der feuchtetechnischen Untersuchungen ein numerisches Modell zur Berechnung des instationären hygrothermischen Verhaltens für Lehmbaustoffe kalibriert werden. Anhand dieses Modells gelang es die bemessungsrelevanten Feuchtegehalte unter Berücksichtigung des instationären hygrothermischen Verhaltens realitätsnah zu berechnen. Die maximalen Feuchtegehalte im Lehmmauerwerk konnten somit in Form einer Parameterstudie in Abhängigkeit des Anwendungsfalls ermittelt werden, wodurch eine explizite Berücksichtigung des Feuchtegehaltes bei der Bemessung ermöglicht wurde. Die Verknüpfung der Erkenntnisse aus den mechanischen und hygrothermischen Untersuchungen dieser Arbeit bildet die Grundlage für das Bemessungskonzept der im Juni 2023 veröffentlichten DIN 18940: Tagendes Lehmsteinmauerwerk. KW - NMR KW - Lehm KW - Mauerwerk KW - Druckfestigkeit KW - Feuchtigkeit PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637794 DO - https://doi.org/10.14279/depositonce-20800 SP - 1 EP - 114 CY - Berlin AN - OPUS4-63779 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weise, Frank A1 - Stelzner, Ludwig A1 - Recknagel, Christoph A1 - Pittrich, Tim A1 - Neugum, Tim A1 - Hering, Marcus A1 - Fiedler, Georg A1 - Thiele, Marc A1 - Simon, Patrick A1 - Maack, Stefan T1 - 63. DAfStb-Forschungskolloquium in der BAM - Themenblock 5: Bauteile und Bauwerke N2 - Ein weiterer Fokus des 63. DAfStb-Forschungskolloquiums (Tagungsband: DOI 10.26272/opus4-61338) lag auf den Bauteil- und Bauwerksuntersuchungen. Insbesondere wurde hier ein Einblick in die Forschungsaktivitäten in den BAM-Themenfeldern „Infrastruktur“ und „Energie“ gegeben. Thematisch wird dabei der Bogen von der Dauerhaftigkeit von Betonfahrbahndecken über die Extrembeanspruchung von Bauteilen und Bauwerken mittels Brand und Impact bis zum Bauwerksmonitoring und der Zustandsanalyse von Bestandsbauwerken gespannt. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Dauerhaftigkeit von Betonfahrbahndecken KW - Alkali-Kieselsäurereaktion KW - Brand Impact KW - Bauwerksmonitoring PY - 2025 SN - 0005-9846 VL - 75 IS - 4 SP - 138 EP - 140 PB - concrete content UG CY - Schermbeck AN - OPUS4-63071 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wedel, F. A1 - Pitters, S. A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Hindersmann, I. T1 - Guideline for the strategic application of monitoring of road bridges in Germany N2 - Engineering structures are an important part of our transport infrastructure. Their failure is associated with high safety risks and economic damage. Ensuring the availability of these constructions and guaranteeing their operational safety are thus important tasks. Currently, maintenance of engineering structures is a reactive process and therefore not yet a predictive process. Every 3 to 6 years, the structures are visually inspected, all damages are documented and a condition grade is assigned to the structure based on the detected damages. Continuous data-providing methods such as monitoring are used only very occasionally. With the help of monitoring, condition data about the structures are continuously collected, which can be used for a better assessment of the structures. On the one hand, this would increase safety of engineering structures, and on the other hand, it makes the shift towards predictive maintenance management based on real-time data and predictions, where the onset of damage is detected before it occurs, possible in the first place. Monitoring plays therefore an important role in the management of the infrastructure. It is a crucial a step towards the digitalisation of our infrastructure and existing processes. Although there are many use cases for monitoring that have already been successfully implemented, monitoring is not yet widely used by German road authorities due to several challenges that were also identified within the scope of the project. Therefore, a guide has been developed in which the current obstacles related to monitoring are identified and possibilities for integrating monitoring into existing processes are offered. To ensure optimal alignment with the needs of road authorities, both an online survey and a workshop have been conducted. The results are summarised in a brochure that is made available to authorities to improve the use of monitoring in Germany. This paper presents the guideline and the brochure. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Verkehrsinfrastrukturen KW - Engineering Structures KW - Bridges KW - Structural Health Monitoring KW - Guideline PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612821 UR - https://www.ndt.net/search/docs.php3?id=29582 DO - https://doi.org/10.58286/29582 SN - 1435-4934 VL - 29 IS - 7 SP - 1 EP - 8 PB - NDT.net GmbH & Co. KG CY - Mayen AN - OPUS4-61282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vollmer, Malte A1 - Degener, Sebastian A1 - Bolender, Artjom A1 - Bauer, Andre A1 - Liehr, Alexander A1 - Stark, Andreas A1 - Schell, Norbert A1 - Barriobero-Vila, Pere A1 - Requena, Guillermo A1 - Niendorf, Thomas T1 - Time resolved insights into abnormal grain growth by in situ synchrotron measurements N2 - Large oligo-crystalline or single-crystalline metallic materials are of great interest for numerous applications, and a recently developed strategy for promoting abnormal grain growth induced by a cyclic heat treatment opens up new opportunities to manufacture single crystals with a size of several centimeters. So far, the entire available knowledge on this kind of abnormal grain growth has been elaborated based on time discrete observations and, thus, detailed insights into the interplay of elementary mechanisms are still lacking in open literature. The present study reveals time resolved insights into this kind of abnormal grain growth for the first time. It was possible to break down the influence of the individual heat treatment phases by in situ synchrotron high energy X-ray diffraction analysis during cyclic heat reatment. The results obtained not only help to gain a deep understanding of the abnormal grain growth mechanisms, they will also be the basis for an adjustment of the cyclic heat treatment process to improve its efficiency and to eventually obtain even larger single crystals. KW - Single crystals KW - Grain growth method KW - Synchrotron diffraction KW - High-energy X-ray diffraction KW - Grain boundary migration PY - 2023 DO - https://doi.org/10.1016/j.actamat.2023.119168 SN - 1359-6454 VL - 257 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-62188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Mevel, L. ED - Cunha, A. ED - Caetano, E. T1 - Stochastic subspace-based damage detection of a temperature affected beam structure N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably. T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 SP - 1 EP - 6 AN - OPUS4-52999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models – each estimated from data measured in a reference state – are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Online meeting DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detectionchanging KW - Process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524652 DO - https://doi.org/10.1016/j.ifacol.2020.12.868 SN - 2405-8963 VL - 53 IS - 2 SP - 13668 EP - 13673 PB - Elsevier AN - OPUS4-52465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models -- each estimated from data measured in a reference state -- are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - IFAC World Congress 2020 CY - Online meeting DA - 11.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 SP - 13858 AN - OPUS4-51617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Statistical subspace-based damage detection with estimated reference N2 - The statistical subspace-based damage detection technique has shown promising theoretical and practical results for vibration-based structural health monitoring. It evaluates a subspacebased residual function with efficient hypothesis testing tools, and has the ability of detecting small changes in chosen system parameters. In the residual function, a Hankel matrix of Output covariances estimated from test data is confronted to its left null space associated to a reference model. The hypothesis test takes into account the covariance of the residual for decision making. Ideally, the reference model is assumed to be perfectly known without any uncertainty, which is not a realistic assumption. In practice, the left null space is usually estimated from a reference data set to avoid model errors in the residual computation. Then, the associated uncertainties may be non-negligible, in particular when the available reference data is of limited length. In this paper, it is investigated how the statistical distribution of the residual is affected when the reference null space is estimated. The asymptotic residual distribution is derived, where its refined covariance term considers also the uncertainty related to the reference null space estimate. The associated damage detection test closes a theoretical gap for real-world applications and leads to increased robustness of the method in practice. The importance of including the estimation uncertainty of the reference null space is shown in a numerical study and on experimental data of a progressively damaged steel frame. KW - Damage detection KW - Uncertainty quantification KW - Statistical tests KW - Ambient excitation KW - Vibration measurement PY - 2022 DO - https://doi.org/10.1016/j.ymssp.2021.108241 SN - 0888-3270 VL - 164 SP - 108241 PB - Elsevier Ltd. AN - OPUS4-52998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Viefhues, Eva T1 - Subspace-based damage detection in engineering structures considering reference uncertainties and temperature effects N2 - Automated vibration-based damage detection is of increasing interest for structural health monitoring of engineering structures. In this context, stochastic subspace-based damage detection (SSDD) compares measurements from a testing state to a data-driven reference model in a statistical framework. In this thesis theoretical developments have been proposed to improve the robustness of SSDD for realistic applications conditions. First, a statistical test has been proposed considering the statistical uncertainties about the model obtained from the reference data. This leads to a precise description of the test’s distribution properties and damage detection thresholds. Second, an approach has been developed to account for environmental effects in SSDD. Based on reference measurements at few different environmental conditions, a test is derived with respect to an adequate interpolated reference. The proposed methods are validated in numerical simulations and applied to experimental data from the laboratory and outdoor structures. KW - Damage detection KW - Subspace methods KW - Vibrations KW - Uncertainty quantification KW - Environmental effects KW - Civil structures PY - 2021 SP - 1 EP - 191 CY - Universite de Rennes AN - OPUS4-55774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only Systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models { each estimated from data measured in a reference state { are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then con icts May arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Berlin, Germany DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 AN - OPUS4-52366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva T1 - Stochastic subspace-based damage detection of a temperature affected beam structure N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 AN - OPUS4-53000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titscher, Thomas A1 - van Dijk, T. A1 - Kadoke, Daniel A1 - Robens-Radermacher, Annika A1 - Herrmann, Ralf A1 - Unger, Jörg F. T1 - Bayesian model calibration and damage detection for a digital twin of a bridge demonstrator N2 - Using digital twins for decision making is a very promising concept which combines simulation models with corresponding experimental sensor data in order to support maintenance decisions or to investigate the reliability. The quality of the prognosis strongly depends on both the data quality and the quality of the digital twin. The latter comprises both the modeling assumptions as well as the correct parameters of these models. This article discusses the challenges when applying this concept to realmeasurement data for a demonstrator bridge in the lab, including the data management, the iterative development of the simulation model as well as the identification/updating procedure using Bayesian inference with a potentially large number of parameters. The investigated scenarios include both the iterative identification of the structural model parameters as well as scenarios related to a damage identification. In addition, the article aims at providing all models and data in a reproducibleway such that other researcher can use this setup to validate their methodologies. KW - Damage detection KW - Finite element analysis KW - Load identification KW - Model updating KW - Estimation KW - System identification KW - Variational Bayesian statistics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574496 DO - https://doi.org/10.1002/eng2.12669 SN - 2577-8196 SP - 1 EP - 27 PB - Wiley CY - Hoboken, NJ AN - OPUS4-57449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiele, Marc A1 - Pirskawetz, Stephan T1 - Analysis of damage evolution in concrete under fatigue loading by acoustic emission and ultrasonic testing N2 - The fatigue process of concrete under compressive cyclic loading is still not completely explored. The corresponding damage processes within the material structure are especially not entirely investigated. The application of acoustic measurement methods enables a better insight into the processes of the fatigue in concrete. Normal strength concrete was investigated under compressive cyclic loading with regard to the fatigue process by using acoustic methods in combination with other nondestructive measurement methods. Acoustic emission and ultrasonic signal measurements were applied together with measurements of strains, elastic modulus, and static strength. It was possible to determine the anisotropic character of the fatigue damage caused by uniaxial loading based on the ultrasonic measurements. Furthermore, it was observed that the fatigue damage seems to consist not exclusively of load parallel oriented crack structures. Rather, crack structures perpendicular to the load as well as local compacting are likely components of the fatigue damage. Additionally, the ultrasonic velocity appears to be a good indicator for fatigue damage beside the elastic modulus. It can be concluded that acoustic methods allow an observation of the fatigue process in concrete and a better understanding, especially in combination with further measurement methods. KW - Concrete KW - Fatigue KW - Damage evolution KW - Ultrasonic testing KW - Acoustic emission PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541891 DO - https://doi.org/10.3390/ma15010341 SN - 1996-1944 VL - 15 IS - 1 SP - 341 EP - 355 PB - MDPI CY - Basel AN - OPUS4-54189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Makris, Ralf ED - Aign, J. T1 - Reinforcement bar and reinforcement bar splicing systems under impact loading – Experimental tests and test specification N2 - Reinforced concrete is a widely used material for power generation structures, where load scenarios like impact loadings need to be considered. In this context mechanical splicing systems for the connection of reinforcement bars are of specific interest and impact resistance for the splicing systems has to be verified. High speed tensile tests need to be performed on splicing systems for reinforcement bars to confirm the capability of the coupler to resist impact loading. Furthermore, the ability of the reinforcement steel to dissipate energy by ductile behaviour with pronounced plastic strains should be confirmed by these tests. During the last decades comprehensive experiences were developed at BAM performing high speed tensile tests on reinforcement bars as well as on several splicing systems. For the lack of available standards defining these tests in detail an appropriate test procedure was developed and continuously optimized during this period at BAM. The test procedure is partially based on testing principles adapted from available standards. The main intention behind this test procedure is to perform high-speed tensile tests with a specific constant strain rate generated at the specimen. Furthermore, main objective was to establish a procedure to guarantee the comparability of test results for different diameter of reinforcement as well as for different types of couplers. Besides the pure execution of the high-speed tensile tests, the test specification also declares how to evaluate the measurements and the test results. Finally, some typical results will be presented in this contribution. T2 - SMIRT 26 CY - Potsdam, Germany DA - 10.07.2022 KW - Impact KW - Coupler systems KW - High-speed KW - Reinforcement PY - 2022 SP - 1 EP - 10 AN - OPUS4-55422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Thiele, Marc A1 - Makris, Ralf T1 - Specification for high-speed tensile tests on reinforcement bar coupler systems N2 - This document presents the specification for the execution and evaluation of high-speed tensile tests on reinforcement bar coupler systems. This specification was developed at BAM - Bundesanstalt für Materialforschung und -prüfung (Federal Institute for Materials Research and Testing, Germany) - following test principles from related international standards. The present document represents the latest status of the test specification. It is noted that until 2010 the test procedure was characterised on a test velocity based on L0. In an improved test conception and after intensive investigations in cooperation with industry partners, this procedure has been updated to consider instead a test velocity based on Lr, since this warrants more comparable and meaningful results. KW - Test specification KW - Coupler systems KW - High-speed KW - Tensile test KW - Reinforcement PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525075 DO - https://doi.org/10.26272/opus4-52507 SP - 1 EP - 29 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin ET - V01 AN - OPUS4-52507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Herrmann, Ralf A1 - Degener, Sebastian A1 - Pirskawetz, Stephan A1 - Loewe, Anna ED - Rogge, Andreas ED - Meng, Birgit T1 - Monitoring an Türmen von Onshore Windenergieanlagen in Betonbauweise im Hinblick auf Ermüdung N2 - Der Beitrag stellt das Messkonzept sowie dessen Umsetzung für ein umfassendes Monitoringsystem an einer onshore Windenergieanlage mit einem Hybridturm vor. Dieses ist Bestandteil des Forschungsvorhabens Win-ConFat – Structure, welches neben der Validierung geeigneter Sensorik auch die Bewertung des Zustands und der möglichen Restlebensdauer der ermüdungsbeanspruchten Betonstruktur zum Ziel hat. Neben dem Monitoringsystem werden erste Messergebnisse aus den Betriebsdaten sowie vom Verhalten der Turmstruktur vorgestellt. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Monitoring KW - Windenergieanlage und Hybridturm KW - Ermüdung KW - WinConFat – Structure PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613276 SN - 978-3-9818564-7-7 SP - 286 EP - 293 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61327 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc T1 - Detection and monitoring of the fatigue crack growth on welds – Application-oriented use of NDT methods N2 - Early detection of fatigue cracks and accurate measurements of the crack growth play an important role in the maintenance and repair strategies of steel structures exposed to cyclic loads during their service life. Observation of welded connections is especially of high relevance due to their higher susceptibility to fatigue damage. The aim of this contribution was to monitor fatigue crack growth in thick welded specimens during fatigue tests as holistically as possible, by implementing multiple NDT methods simultaneously in order to record the crack initiation and propagation until the final fracture. In addition to well-known methods such as strain gauges, thermography, and ultrasound, the crack luminescence method developed at the Bundesanstalt für Materialforschung und -prüfung (BAM), which makes cracks on the surface particularly visible, was also used. For data acquisition, a first data fusion concept was developed and applied in order to synchronize the data of the different methods and to evaluate them to a large extent automatically. The resulting database can ultimately also be used to access, view, and analyze the experimental data for various NDT methods. During the conducted fatigue tests, the simultaneous measurements of the same cracking process enabled a comprehensive comparison of the methods, highlighting their individual strengths and limitations. More importantly, they showed how a synergetic combination of different NDT methods can be beneficial for implementation in large-scale fatigue testing but also in monitoring and inspection programs of in-service structures - such as the support structures of offshore wind turbines. T2 - Fatigue Design 2023 CY - Senlis, France DA - 29.11.2023 KW - Crack growth KW - Fatigue KW - NDT KW - Welded PY - 2023 AN - OPUS4-62374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc T1 - Monitoring an Türmen von Onshore Windenergieanlagen in Betonbauweise im Hinblick auf Ermüdung N2 - Der Beitrag stellt das Messkonzept sowie dessen Umsetzung für ein umfassendes Monitoringsystem an einer onshore Windenergieanlage mit einem Hybridturm vor. Dieses ist Bestandteil des Forschungsvorhabens Win-ConFat–Structure, welches neben der Validierung geeigneter Sensorik auch die Bewertung des Zustands und der möglichen Restlebensdauer der ermüdungsbeanspruchten Betonstruktur zum Ziel hat. Neben dem Monitoringsystem werden erste Messergebnisse aus den Betriebsdaten sowie vom Verhalten der Turmstruktur vorgestellt. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Onshore Windenergieanlagen KW - Ermüdung KW - Lebensdauerbewertung KW - Monitoring KW - WinConFat PY - 2024 AN - OPUS4-61773 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc T1 - Fatigue crack detection methods for high-cyclic loaded steel structures and challenges in mechanical testing N2 - For the generation of renewable energy offshore wind farms play an important role. The majority of these wind generators are connected to steel foundation structures. Steady increasing power output of these wind turbines leads to new challenges as well for engineers of the related support structures. Caused by the high-cyclic loading of these structures by wind and waves fatigue plays a very important role. Besides the consideration of fatigue within the design process it is additionally an important topic and challenge to monitor the existing steel structures relating to potential fatigue cracks occurring during their lifetime. This plays a role for a fundamental understanding of mechanisms as investigated in testing but also for inspection in real structures. Since the structures of the offshore wind generators are very large and in addition partially under water effective and reliable methods for fatigue crack detection are required. This contribution will present results of recent investigations on different crack detection methods applied on high-cycle fatigue tests on small welded steel samples as well as on welded steel components. The comparison of these measurements will show what are the advantages and disadvantages of the different methods and which method is potentially more suitable for the application on real offshore wind structures. It is outlined where challenges for detection methods exist. Furthermore, in this context the resulting challenges for the execution of material testing especially caused by the increasing dimensions of wind energy converters will by exemplarily presented. T2 - EERA JP Wind & SETWind Online Annual Event 2020 CY - Online meeting DA - 14.09.2020 KW - Fatigue KW - Crack detection KW - Steel structures PY - 2020 AN - OPUS4-51356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thibaux, Philippe A1 - Van Wittenberghe, Jeroen A1 - Fricke, Wolfgang A1 - Thiele, Marc A1 - Nielsen, Lars Peter A1 - Conti, Fabien T1 - Results of the JaCo project: fatigue strength of robot‑welded tubular joints for offshore wind energy converters N2 - Jacket foundations requires the welding of a large number of tubular joints. These foundations type is suitable to support wind energy converters in deeper water. In order to increase the production speed and its quality, robot systems were developed to produce tubular joints. Since fatigue is dominating the design of these structures, an assessment of the performance of tubular joints produced by robots was performed and compared with the performance of manually welded joints. 18 large-scale tests were performed on joints with dimensions representative for offshore structures, which were produced in industrial environment. Breakthrough cracks occurred through the chord, with cracks initiated at the weld toe, although in some cases cracks were also initiated between weld beads. The measured fatigue strengths of joints produced by robot were similar or higher than the T-curve of DNV-RP-C203. Some delivered components showed fatigue strength that was more than 20% higher than the standard curve. These results emphasize that mastering the welding process with robots is necessary to achieve superior levels of fatigue strength. KW - Fatigue KW - Tubular joint KW - Robot welding KW - Hot spot method KW - Large-scale testing PY - 2024 DO - https://doi.org/10.1007/s40194-024-01903-5 SN - 1878-6669 SP - 1 EP - 14 PB - Springer CY - Berlin ; Heidelberg AN - OPUS4-62319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thibaux, Philippe A1 - Thiele, Marc A1 - Van Wittenberghe, Jeroen A1 - Baeßler, Matthias T1 - Comparison of resonance and hydraulic testing on large scale fatigue tests of welded tubular joints for offshore wind turbine foundations N2 - Jackets structures as foundations for offshore wind energy converters are efficient solutions. But these structures require the welding of a large number of joints. The design of the Jacket structures is typically driven by fatigue. Therefore, consequently the fatigue strength of the joints is a primary parameter for an optimized design. The present paper investigates if tubular joints produced by manual welding using the current techniques have an improved performance compared to the relevant standards that are applied for the design of the foundations. To investigate this, 4 full-scale tests in geometry representative of a structure were performed, 2 using a resonance method and 2 using a three-point bending method with hydraulic actuators. The results are similar, with cracks initiated early and extending extensively before failure. The results are very close to the current T-curve from DNV RP-C203 applied for tubular joints. KW - Fatigue KW - Tubular joints KW - Resonance testing KW - Steel welds PY - 2025 DO - https://doi.org/10.1016/j.ijfatigue.2024.108797 SN - 0142-1123 VL - 193 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-62373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suffa, Philipp A1 - Kemmler, Samuel A1 - Koestler, Harald A1 - Ruede, Ulrich T1 - Large-scale simulations of fully resolved complex moving geometries with partially saturated cells N2 - We employ the Partially Saturated Cells Method to model the interaction between the fluid flow and solid moving objects as an extension to the conventional lattice Boltzmann method. We introduce an efficient and accurate method for mapping complex moving geometries onto uniform Cartesian grids suitable for massively parallel processing. A validation of the physical accuracy of the solid–fluid coupling and the proposed mapping of complex geometries is presented. The implementation is integrated into the code generation pipeline of the waLBerla framework so that highly optimized kernels for Central Processing Unit (CPU) and Graphical Processing Unit (GPU) architectures become available. We study the node-level performance of the automatically generated solver routines. 71% of the theoretical peak performance can be achieved on CPU nodes and 86% on GPU accelerated nodes. Only a moderate overhead is observed for the processing of the solid–fluid coupling when compared to the fluids simulations without moving objects. Finally, a counter-rotating open rotor is presented as a prototype industrial scenario, resulting in a mesh size involving up to 4.3 × 109 fluid grid cells. For this scenario, excellent parallel efficiency is reported in a strong scaling study on up to 32 768 CPU cores on the LUMI-C supercomputer and on up to 1024 NVIDIA A100 GPUs on the JUWELS Booster system. KW - Computational fluid dynamics KW - Lattice Boltzmann methods KW - Fluid coupling KW - Turbulent flows KW - Supercomputer PY - 2025 DO - https://doi.org/10.1063/5.0268021 SN - 1070-6631 VL - 37 IS - 5 SP - 1 EP - 13 PB - AIP Publishing AN - OPUS4-63188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straub, D. A1 - Schneider, Ronald A1 - Bismut, E. A1 - Kim, H.-J. T1 - Reliability analysis of deteriorating structural systems N2 - Reliability analysis of deteriorating structural systems requires the solution of time-variant reliability problems. In the general case, both the capacity of and the loads on the structure vary with time. This analysis can be approached by approximation through a series of time-invariant reliability problems, which is a potentially effective strategy for cases where direct solutions of the time-variant reliability problem are challenging, e.g. for structural systems with many elements or arbitrary load processes. In this contribution, we thoroughly Review the formulation of the equivalent time-invariant reliability problems and extend this approximation to structures for which inspection and monitoring data is available. Thereafter, we present methods for efficiently evaluating the reliability over time. In particular, we propose the combination of sampling-based methods with a FORM (first-order reliability method) approximation of the series system reliability problem that arises in the computation of the lifetime reliability. The framework and algorithms are demonstrated on a set of numerical examples, which include the computation of the reliability conditional on inspection data. KW - Monitoring KW - Reliability KW - Deterioration KW - Structural systems KW - Bayesian analysis KW - Inspection PY - 2020 DO - https://doi.org/10.1016/j.strusafe.2019.101877 VL - 82 SP - Paper 101877, 1 PB - Elsevier Ltd. AN - OPUS4-48952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Wiehle, Philipp T1 - Closure of "Quantification of moisture content in earth block masonry under natural climatic conditions" N2 - In January 2025, the research paper “Quantification of moisture content in earth block masonry under natural climatic conditions” was published in Construction and Building Materials. The central theme was the moisture monitoring of a masonry wall made of unstabilised earth blocks over a period of around 18 months. The experimental results were compared to WUFI simulations, and the moisture transport in layered wall constructions was eventually studied in WUFI. Prof. Janssen discussed this publication in Construction and Building Materials. He raised concerns about the experiments and modelling of moisture transport. In this closure, the capillary adsorption coefficient was recalculated, and deviations from the initial value were quantified. Sensitivity analyses were conducted in WUFI to evaluate the influence of different water vapour resistances and water adsorption coefficients. The resulting moisture transport was then compared to material moisture profiles measured using 1H NMR relaxometry. Finally, the water adsorption behaviour of different earth materials is discussed in respect to material moisture and corresponding relative humidity. KW - Earth masonry KW - Moisture transport KW - Capillary water absorption KW - Embedded humidity sensors KW - NMR KW - WUFI KW - Material moisture KW - Water vapour diffusion resistance KW - Sustainable building materials PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637569 DO - https://doi.org/10.1016/j.conbuildmat.2025.142552 SN - 0950-0618 VL - 491 SP - 1 EP - 6 PB - Elsevier Ltd. AN - OPUS4-63756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Stolpe, Heiko A1 - Wiehle, Philipp T1 - Moisture diffusion affected by the Knudsen effect in temporal changing pore networks N2 - Almost all building materials in civil engineering have an open porosity and interact with or are affected by the environmental conditions. Structures might suffer from effects such as moisture adsorption, carbonation, corrosion, penetration of salt ions and chemical substances, etc. In the hygroscopic range, these processes are mostly driven by diffusion. Due to the confinement of small pores (< 1 µm), the Knudsen effect reduces the molecular diffusion. This reduction can become more significant in case of temporal changing pore systems because of physisorption of water vapor, carbonation, or chemisorption. In this study, unstabilised earth blocks and earth masonry are investigated. In a first step, the pore size distribution of the blocks is measured and sorption isotherms are recorded in experiments. Besides the ordinary physisorption, the involved clay minerals undergo swelling or shrinking due to chemisorption. The following two effects must be considered: first, the reduction of the available pore space by the adsorbed water layer. For this, the Hillerborg sorption theory is used, which is a combination of the well-known Brunauer-Emmett-Teller sorption theory and the Kelvin equation. This allows the computation of adsorbed water layers even in curved pore geometries. Second, the variation of the initial pore size distribution due to chemisorption needs to be modelled. Based on these two models, the effective diffusion coefficient can be predicted. For validation, arrays of relative humidity sensors were embedded into a free-standing earth masonry wall. This monitoring was carried out over more than a year to have a broad variety of environmental conditions and was located in Berlin, Germany. The prediction of the effective diffusion coefficient can also be transferred to other processes and allows the investigation of materials having temporarily changing pore systems. Examples are the carbonation of cementitious materials, alkali silica reaction, calcium leaching of long-lasting structures, etc. This effect becomes most prominent in the meso-pore range and might alter the effective diffusion coefficient by more than 100 %. T2 - 4th International Congress on Materials & Structural Stability CY - Rabat, Morocco DA - 08.03.2023 KW - Earth masonry KW - Material moisture KW - Molecular diffusion KW - Chemisoprtion KW - Knudsen effect KW - Physisorption PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571391 SP - 1 EP - 8 PB - RILEM CY - Champs-sur-Marne AN - OPUS4-57139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Stolpe, Heiko A1 - Wiehle, Philipp T1 - Moisture diffusion affected by the Knudsen effect in temporal changing pore networks N2 - Almost all building materials in civil engineering have an open porosity and interact with or are affected by the environmental conditions. Structures might suffer from effects such as moisture adsorption, carbonation, corrosion, penetration of salt ions and chemical substances, etc. In the hygroscopic range, these processes are mostly driven by diffusion. Due to the confinement of small pores (less than1 µm), the Knudsen effect reduces the molecular diffusion. This reduction can become more significant in case of temporal changing pore systems because of physisorption of water vapor, carbonation, or chemisorption. In this study, unstabilised earth blocks and earth masonry are investigated. In a first step, the pore size distribution of the blocks is measured and sorption isotherms are recorded in experiments. Besides the ordinary physisorption, the involved clay minerals undergo swelling or shrinking due to chemisorption. The following two effects must be considered: first, the reduction of the available pore space by the adsorbed water layer. For this, the Hillerborg sorption theory is used, which is a combination of the well-known Brunauer-Emmett-Teller sorption theory and the Kelvin equation. This allows the computation of adsorbed water layers even in curved pore geometries. Second, the variation of the initial pore size distribution due to chemisorption needs to be modelled. Based on these two models, the effective diffusion coefficient can be predicted. For validation, arrays of relative humidity sensors were embedded into a free-standing earth masonry wall. This monitoring was carried out over more than a year to have a broad variety of environmental conditions and was located in Berlin, Germany. The prediction of the effective diffusion coefficient can also be transferred to other processes and allows the investigation of materials having temporarily changing pore systems. Examples are the carbonation of cementitious materials, alkali silica reaction, calcium leaching of long-lasting structures, etc. These effects are prominent in the meso-pore range and might significantly alter the effective diffusion coefficient. KW - Earth material KW - Material moisture KW - Physisoprtion KW - Chemisorption PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583811 DO - https://doi.org/10.1016/j.matpr.2023.09.034 SN - 2214-7853 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-58381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - Moisture diffusion affected by the Knudsen effect in temporal changing pore networks N2 - Almost all building materials in civil engineering have an open porosity and interact with or are affected by the environmental conditions. Structures might suffer from effects such as moisture adsorption, carbonation, corrosion, penetration of salt ions and chemical substances, etc. In the hygroscopic range, these processes are mostly driven by diffusion. Due to the confinement of small pores ( 1 m), the Knudsen effect reduces the molecular diffusion. This reduction can become more significant in case of temporal changing pore systems because of physisorption of water vapor, carbonation, or chemisorption. In this study, unstabilised earth blocks and earth masonry are investigated. In a first step, the pore size distribution of the blocks is measured and sorption isotherms are recorded in experiments. Besides the ordinary physisorption, the involved clay minerals undergo swelling or shrinking due to chemisorption. The following two effects must be considered: first, the reduction of the available pore space by the adsorbed water layer. For this, the Hillerborg sorption theory is used, which is a combination of the well-known Brunauer-Emmett-Teller sorption theory and the Kelvin equation. This allows the computation of adsorbed water layers even in curved pore geometries. Second, the variation of the initial pore size distribution due to chemisorption needs to be modelled. Based on these two models, the effective diffusion coefficient can be predicted. For validation, arrays of relative humidity sensors were embedded into a free-standing earth masonry wall. This monitoring was carried out over more than a year to have a broad variety of environmental conditions and was located in Berlin, Germany. The prediction of the effective diffusion coefficient can also be transferred to other processes and allows the investigation of materials having temporarily changing pore systems. Examples are the carbonation of cementitious materials, alkali silica reaction, calcium leaching of long-lasting structures, etc. This effect becomes most prominent in the meso-pore range and might alter the effective diffusion coefficient by more than 100 %. T2 - 4th International Congress on Materials & Structural Stability CY - Rabat, Morocco DA - 08.03.2023 KW - Earth masonry KW - Material moisture KW - Molecular diffusion KW - Chemisoprtion KW - Knudsen effect KW - Physisorption PY - 2023 AN - OPUS4-57140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Papadrakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Structural health monitoring KW - Bayesian methods KW - Environmental effects PY - 2020 SN - 978-618-85072-2-7 SN - 978-618-85072-0-3 SP - 1254 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA) CY - Athens, Greece AN - OPUS4-51590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Recknagel, Christoph ED - Cunha, Á. ED - Caetano, E. T1 - Enhancing structural models with material tests and static response data - a case study considering a steel beam with asphalt layer subject to temperature variations N2 - Gradual or sudden changes in the state of structural systems caused, for example, by deterioration or accidental load events can influence their load-bearing capacity. Structural changes can be inferred from static and/or dynamic response data measured by structural health monitoring systems. However, they may be masked by variations in the structural response due to varying environmental conditions. Particularly, the interaction of nominally load-bearing components with nominally non-load bearing components exhibiting characteristics that vary as a function of the environmental conditions can significantly affect the monitored structural response. Ignoring these effects may hamper an inference of structural changes from the monitoring data. To address this issue, we adopt a probabilistic model-based framework as a basis for developing digital twins of structural systems that enable a prediction of the structural behavior under varying ambient condition. Within this framework, different types of data obtained from real the structural system can be applied to update the digital twin of the structural system using Bayesian methods and thus enhance predictions of the structural behavior. In this contribution, we implement the framework to develop a digital twin of a simply supported steel beam with an asphalt layer. It is formulated such that it can predict the static response of the beam in function of its temperature. In a climate chamber, the beam was subject to varying temperatures and its static response wass monitored. In addition, tests are performed to determine the temperature-dependent properties of the asphalt material. Bayesian system identification is applied to enhance the predictive capabilities of the digital twin based on the observed data. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) CY - Online meeting DA - 30.06.2021 KW - Digital twin KW - Structural health monitoring KW - Material tests KW - Bayesian updating PY - 2021 SN - 2564-3738 SP - 1537 EP - 1544 AN - OPUS4-54126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Morgenthal, Guido ED - Cha, Young-Jin T1 - A Bayesian Probabilistic Framework for Building Models for Structural Health Monitoring of Structures Subject to Environmental Variability N2 - Managing aging engineering structures requires damage identification, capacity reassessment, and prediction of remaining service life. Data from structural health monitoring (SHM) systems can be utilized to detect and characterize potential damage. However, environmental and operational variations impair the identification of damages from SHM data. Motivated by this, we introduce a Bayesian probabilistic framework for building models and identifying damage in monitored structures subject to environmental variability. The novelty of our work lies (a) in explicitly considering the effect of environmental influences and potential structural damages in the modeling to enable more accurate damage identification and (b) in proposing a methodological workflow for model‐based structural health monitoring that leverages model class selection for model building and damage identification. The framework is applied to a progressively damaged reinforced concrete beam subject to temperature variations in a climate chamber. Based on deflections and inclinations measured during diagnostic load tests of the undamaged structure, the most appropriate modeling approach for describing the temperature‐dependent behavior of the undamaged beam is identified. In the damaged state, damage is characterized based on the identified model parameters. The location and extent of the identified damage are consistent with the cracks observed in the laboratory. A numerical study with synthetic data is used to validate the parameter identification. The known true parameters lie within the 90% highest density intervals of the posterior distributions of the model parameters, suggesting that this approach is reliable for parameter identification. Our results indicate that the proposed framework can answer the question of damage identification under environmental variations. These findings show a way forward in integrating SHM data into the management of infrastructures. KW - Verkehrsinfrastukturen KW - SHM KW - Model Updating KW - Environmental and Operational Variability KW - Damage Identification KW - Model Building PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605027 DO - https://doi.org/10.1155/2024/4204316 SN - 1545-2255 VL - 2024 IS - 1 SP - 1 EP - 23 PB - Wiley AN - OPUS4-60502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Morgenthal, Guido T1 - Parallelized adaptive Bayesian updating with structural reliability methods for inference of large engineering models N2 - The reassessment of engineering structures, such as bridges, now increasingly involve the integration of models with realworld data. This integration aims to achieve accurate ‘as-is’ analysis within a digital twin framework. Bayesian model updating combines prior knowledge and data with models to enhance the modelling accuracy while consistently handling uncertainties. When updating large engineering models, numerical methods for Bayesian analysis present significant computational challenges due to the need for a substantial number of likelihood evaluations. The novelty of this contribution is to parallelize adaptive Bayesian Updating with Structural reliability methods combined with subset simulation (aBUS) to improve its computational efficiency. To demonstrate the efficiency and practical applicability of the proposed approach, we present a case study on the Maintalbrücke Gemünden, a large railway bridge. We leverage modal property data to update a linear-elastic dynamic structural model of the bridge. The parallelized aBUS approach significantly reduces computational time, making Bayesian updating of large engineering models feasible within reasonable timeframes. The improved efficiency allows for a wider implementation of Bayesian model updating in structural health monitoring and maintenance decision support systems. KW - Bayesian model updating KW - Bayesian updating with structural reliability methods KW - Structural health monitoring KW - Parallelization KW - Modal analysis KW - Railway bridge PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-633686 DO - https://doi.org/10.1177/13694332251346848 SN - 1369-4332 SN - 2048-4011 SP - 1 EP - 26 PB - Sage AN - OPUS4-63368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -