TY - CONF A1 - Agasty, Amit A1 - Costard, René A1 - Hering, Marcus A1 - Hüsken, Götz A1 - Chruscick, Sebastian A1 - Hicke, Konstantin T1 - Dynamic response of reinforced concrete (RC) components in scaled-down blast tests N2 - Current capabilities for full-scale field testing are highly resource intensive. Reliable small-scale experiments are an effective alternative. Characterization of the dynamic response and damage of RC elements to scaled blast loads was investigated in scaled-down field experiments. Spatially resolved information on the dynamic structural response using distributed fiber optic acoustic sensing (DAS) and acceleration as well as blast loading by piezoelectric pressure sensors. T2 - 45. Informationstagung Sprengtechnik CY - Siegen, Germany DA - 05.04.2024 KW - Blast tests KW - Reinforced concrete KW - Acceleration sensors PY - 2024 AN - OPUS4-59808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Hering, Marcus A1 - Costard, Rene A1 - Hüsken, Götz A1 - Hicke, Konstantin T1 - Experimental and Numerical Analysis of Reinforced Concrete Structures Under Blast Loading: Scopes and Challenges N2 - Protection against terrorist or accidental scenarios in industrial settings requires suitable designs of structures to resist blast loads. Field testing as well as finite element simulations are among the techniques available to engineers in the understanding of the structural behavior against blast loading. As blast testing of complex scenarios can be very resource intensive, tests are generally performed for simplified scenarios. Numerical tools can be used to model these scenarios in order to get a better insight into blast loading, structural response and the resulting damage to the structure. In the next steps, the simplified scenario is successively modified in numerical simulations to incorporate complexities that cannot be covered in blast testing experiments. One of the conditions for this approach to work is that the original simplified numerical simulation is valid. The scopes and challenges encountered in such a validation are the focus of this presentation. A relatively ‘simple’ field test of a horizontal reinforced concrete (RC) slab subjected to blast loading is taken as an example for validation of the performance of numerical tools. The blast test incorporated various measurement techniques to quantify the blast load as well as the behavior of the RC slab. Blast load was measured using flush-mounted piezoelectric pressure gauges, whereas acceleration sensors and fiber-optic sensor cables were used to characterize the dynamic behavior of the slab under blast loading. Additionally, damage characteristics were ascertained also using fiber-optic sensing. The application of such measurement techniques, along with different numerical software available for the analysis of the scenario in question, demonstrate the scope of our contribution. T2 - 24th International Physical Security Forum Brussels CY - Brussels, Belgium DA - 15.04.2024 KW - Blast KW - Reinforced Concrete Structures KW - Numerical simulations PY - 2024 AN - OPUS4-60880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -