TY - CONF A1 - Cuéllar, Pablo T1 - Wind energy challenges. An offshore perspective and some possible solutions N2 - This talk provides a brief introduction on general engineering challenges for the offshore (marine) wind energy production, focusing on material, structural and hydromechanical aspects. The talk begins with a broad overview on general trends for offshore wind-farms, with insights on some characteristic structural features and their associated loads. Then, some particular open issues for the foundation of the offshore wind turbines into the seabed are introduced. Here, different research approaches are discussed, from experimental investigations to coupled computational analysis at micro- and macroscopic scales. In the second part of the seminar, both the hydromechanical Wave–Tower interaction and some general aspects of the windfarm aerodynamics (wake analysis) are discussed. Some modelling possibilities in the frame of CFD (computational fluid dynamics) are introduced and the relevance of such analyses for a proper windfarm layout optimization is pointed out. Summing up, this seminar aims to show that: i) Numerical analysis of the turbine’s interaction with wind/waves and with the seabed is both useful and affordable. ii) Simplified models can provide an insight into windfarm aerodynamics. iii) Turbulent wake analysis is very relevant for the windfarm layout. T2 - Bad Honnef Physics School „Energy Science – an interdisciplinary challenge“ CY - Physikzentrum Bad Honnef, Bad Honnef, Germany DA - 01.09.2019 KW - Offshore wind energy KW - Mechanical challenges KW - Offshore foundations KW - Soil-water-structure interaction PY - 2019 AN - OPUS4-48873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Stutz, H. H. T1 - Modelling and calibration for cyclic soil-structure interface behaviour N2 - The structural performance of many geotechnical systems (e.g. axially-loaded pile foundations), depends on the shearing resistance at the soil interface, which may govern the load bearing capacity of the foundation. Experimental investigations have shown that this interaction is mainly localised within a narrow shear band next to the structure. Under cyclic loading, a contraction of the soil at the interface may arise (net volume loss), possibly leading to a stress relaxation and thus to a reduction of the load bearing capacity (the so-called friction fatigue). Based on the constitutive similarities between soil continua and interfaces, we propose here the adaption of a Generalized Plasticity model for sandy soils for the numerical analysis of interface problems. In this contribution, the results of an experimental campaign for the parameter calibration of the constitutive model are presented. The tests have been conducted with a ring shear device involving different normal stresses, roughness of the steel plates as well as cyclic loading. The new modelling approach shows promising results and has the additional practical advantage that the interface zone and the soil continuum can both be described with the same constitutive model in general boundary value problems. T2 - Konferenz 7th International Symposium on Deformation Characteristics of Geomaterials CY - Glasgow, Scotland DA - 26.06.2019 KW - Soil-structure interaction KW - Offshore foundations PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-489096 VL - 92 SP - 13007 EP - 13013 PB - EDP Sciences CY - Glasgow, Scotland AN - OPUS4-48909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Stutz, Hans Henning T1 - Modelling and calibration for cyclic soil-structure interface behavior N2 - The structural performance of many geotechnical systems (e.g. axially-loaded pile foundations), depends on the shearing resistance at the soil interface, which may govern the load bearing capacity of the foundation. Experimental investigations have shown that this interaction is mainly localised within a narrow shear band next to the structure. Under cyclic loading, a contraction of the soil at the interface may arise (net volume loss), possibly leading to a stress relaxation and thus to a reduction of the load bearing capacity (the so-called friction fatigue). Based on the constitutive similarities between soil continua and interfaces, we propose here the adaption of a Generalized Plasticity model for sandy soils for the numerical analysis of interface problems. In this contribution, the results of an experimental campaign for the parameter calibration of the constitutive model are presented. The tests have been conducted with a ring shear device involving different normal stresses, roughness of the steel plates as well as cyclic loading. The new modelling approach shows promising results and has the additional practical advantage that the interface zone and the soil continuum can both be described with the same constitutive model in general boundary value problems. T2 - Konferenz :International Symposium of Geomaterials CY - Glasgow, Scotland, UK DA - 26.06.2019 KW - Offshore foundations KW - Soil-structure interaction PY - 2019 AN - OPUS4-48446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -