TY - CONF A1 - Herrmann, Ralf T1 - Implementing a Structural Health Monitoring System using Digital Models of the BAM Large Drop Test Facility N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - System Identification KW - Digital Twin KW - Point Cloud KW - Drop Test PY - 2020 AN - OPUS4-51734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias ED - Papadrakakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Implementing a Structural Health Monitoring system using digital models of the BAM large drop test facility in Horstwalde N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - Drop Tests KW - System Identification KW - Digital Models KW - BIM PY - 2020 UR - https://generalconferencefiles.s3-eu-west-1.amazonaws.com/eurodyn_2020_ebook_procedings_vol1.pdf SN - 978-618-85072-0-3 VL - 1 SP - 1293 EP - 1304 PB - Institute of Structural Analysis and Antiseismic Research CY - Athen AN - OPUS4-51592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Herrmann, Ralf T1 - Sensorbasiertes Monitoring der Maintalbrücke Gemünden N2 - Monitoringsysteme erfassen kontinuierlich Bauwerksdaten wie z.B. Bauwerksbeschleunigungen, auf deren Grundlage Bauwerksschäden mit Hilfe von SHM-Methoden quantifiziert werden können. Mit den gewonnenen Informationen über den aktuellen Bauwerkszustand können Vorhersagen des Bauwerkszustandes und der Bauwerkszuverlässigkeit aktualisiert und erforderliche Inspektionen und Instandhaltungsmaßnahmen vorausschauend geplant werden. Im BMBF-Forschungsvorhaben AISTEC entwickeln der Fachbereich 7.2 „Ingenieurbau“ innovative Monitoringverfahren zur Systemidentifikation und automatischen Detektion, Lokalisierung und Quantifizierung von Schäden an Infrastrukturbauwerken anhand von gemessenen dynamischen und statischen Bauwerksdaten. Im Rahmen dieses Projektes werden die Verfahren an der Maintalbrücke bei Gemünden angewendet, welche Teil der ICE-Strecke Hannover-Würzburg ist. In diesem Vortrag wird das für die Maintalbrücke Gemünden geplante und umgesetzte Monitoingsystem vorgestellt. T2 - 4. Verbundtreffen AISTEC CY - Weimar, Germany DA - 24.09.2020 KW - Zivile Sicherheit KW - Brücken KW - Structural Health Monitoring PY - 2020 AN - OPUS4-51333 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Kontinuierliches Bauwerksmonitoring – Sensor-basiert (AP4) N2 - Kontinuierliche sensorbasierte Bauwerksmessungen leisten einen wichtigen Beitrag zur Sicherheit von Verkehrsbauwerken. Hierzu werden im Vorhaben AISTEC Referenzbauwerke und Referenzverfahren untersucht mit Schwerpunkt auf den Einfluss klimatischer Bedingungen. Der Vortrag stellt den aktuellen Projektstand des FB 7.2 vor. T2 - 3. Verbundtreffen AISTEC CY - Online meeting DA - 05.05.2020 KW - Zivile Sicherheit KW - Brücken KW - Structural Health Monitoring PY - 2020 AN - OPUS4-50796 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - A risk-based framework for optimizing inspection and maintenance of deteriorating structures monitored by vibration-based monitoring systems N2 - In this presentation, a framework for integrating vibration-based structural health monitoring data into the optimization of inspection and maintenance of deteriorating structural systems is presented. The framework is demonstrated in an illustrative example considering a steel frame subject to fatigue. T2 - EERA JP Wind WORKSHOP on Ongoing research in offshore wind structures CY - Online meeting DA - 16.09.2021 KW - Structural Health Monitoring KW - Inspection KW - Maintenance KW - Deterioration KW - Vibration KW - Structural Systems PY - 2021 AN - OPUS4-53749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf T1 - Vorstellung des Bauwerksmonitoring der Maintalbrücke Gemünden im Vorhaben AISTEC N2 - Im Abteilungsseminar wird der aktuelle Umsetzungsstand des Bauwerksmonitorings an der Maintalbrücke Gemünden vorgestellt, sowie die nächsten Schritte zur Systemintegration von Konzepten an Realbauwerken. T2 - Abteilungs-Vortragsseminar Abteilung 7. Bauwerkssicherheit CY - Online meeting DA - 03.03.2021 KW - Structural Health Monitoring KW - Maintalbrücke Gemünden KW - Bauwerksüberwachung KW - Datenmanagement PY - 2021 AN - OPUS4-52221 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Sensorbasiertes Monitoring (AP4 + AP7): Ein Überblick N2 - Im AISTEC Projekt erforscht der FB 7.2 Verfahren zur Bewertung von Verkehrsbrücken auf der Gruandlage von sensorbasierten Bauwerksmessungen. In diesem Vortrag wird ein Überlick über die Forschungsarbeiten des FB 7.2 präsentiert. Des Weiteren wird ein Ausblick zur quantitativen Integration von sensorbasierten Bauwerksmessungen in die risiko-basierte prädiktive Planung von Inspektionen und Reparaturen von Ingenieurbauwerken gegeben. T2 - AISTEC 5. Verbundtreffen CY - Online meeting DA - 24.06.2021 KW - AISTEC KW - Structural Health Monitoring KW - Brücken PY - 2021 AN - OPUS4-52982 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf T1 - AISTEC 5. Verbundtreffen - Messfahrt auf der Maintalbrücke Gemünden N2 - Der Vortrag stellt die Durchführung und die ersten Ergebnisse der Belastungsfahrten der BAM im Rahmen des AISTEC Projekts an der Maintalbrücke am 19.05. und 20.05.2021 vor. Es wurden Tragwerksreaktionen des Bauwerks mit dem installierten Dauermonitoringsystem und insbesondere dem Betongelenk mit zusätzlich installierter Sensorik aufgezeichnet. Für die Ermittlung der Lastposition wurden mehrere Verfahren eingesetzt und verglichen. T2 - AISTEC 5. Verbundtreffen CY - Online meeting DA - 24.06.2021 KW - AISTEC KW - Structural Health Monitoring KW - Einflusslinie KW - Messfahrt KW - Belastungszug PY - 2021 AN - OPUS4-52927 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Said, Samir A1 - Baeßler, Matthias ED - Curbach, M. ED - Marx, S. ED - Scheerer, S. ED - Hampel, T. T1 - Structural Health Monitoring der Maintalbrücke Gemünden zur Unterstützung einer prädiktiven Instandhaltung N2 - Nach den bisherigen Regeln werden Bauwerksprüfungen von Brücken in starr definierten Intervallen durchgeführt. Diese starre, periodische, zustandsbasierte Instandhaltungsstrategie soll zukünftig durch eine flexible und prädiktive Instandhaltung ersetzt werden. Hierbei sollen Inspektionen und Instandhaltungsmaßnahmen unterstützt durch autonome Systeme auf der Grundlage von Monitoringdaten geplant und zusätzlich bei unvorhergesehenen Ereignissen ausgelöst werden. Im Rahmen des Verbundforschungsvorhabens AISTEC wird ein Vorgehen für Großbauwerke und kleinere Regelbauwerke zur Umsetzung eines kombinierten globalen, schwingungsbasierten und quasistatischen Monitorings entworfen. An der Maintalbrücke Gemünden – einer semiintegralen Rahmenbrücke aus Spannbeton auf der Schnellfahrstrecke Hannover–Würzburg – wurde als Demonstrator ein Dauermonitoring realisiert. T2 - 11. Symposium Experimentelle Untersuchungen von Baukonstruktionen (SEUB) CY - Online meeting DA - 08.03.2021 KW - Structural Health Monitoring KW - Umwelteinflüsse KW - Prädiktive Instandhaltung PY - 2021 UR - https://tu-dresden.de/bu/bauingenieurwesen/imb/ressourcen/dateien/veranstaltungen/seub/11-seub-2021/2021_SEUB11_06_Herrmann_et_al.pdf?lang=de VL - 55 SP - 66 EP - 76 PB - Technische Universität Dresden CY - Dresden AN - OPUS4-52810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul T1 - Der Weg vom Labor zur industriellen Einsetzbarkeit der Risslumineszenz N2 - Der Vortrag beschreibt die Relevanz der Zuverlässigkeitsbewertung von klassischen ZfP- und SHM-Verfahren. Diese Zuverlässigkeitsbewertung soll auch für das an der BAM entwickelte Risslumineszenzverfahren durchgeführt werden. Die Risslumineszenz wird zunächst vorgestellt und es wird beschrieben welchen Weg man beschreiten muss, um eine Zuverlässigkeitsbewertung für eine Technik durchzuführen, die nicht nur als ZfP-Verfahren genutzt werden soll, sondern auch für die Dauerüberwachung unter der Einbindung einer KI-basierten automatisierten Risserkennung. Die mit dieser Erweiterung des Einsatzspektrums einhergehenden Faktoren für Messunsicherheit und -variabilität wird als Problematik erkannt und als zukünftige Aufgabe, die es zu lösen gilt, definiert. T2 - ZfP-Seminar Prof. Große TU München WS22 CY - Online meeting DA - 15.12.2022 KW - Rissprozes KW - Structural Health Monitoring KW - Risslumineszenz KW - Ermüdungsprüfung KW - Rissprozess PY - 2022 AN - OPUS4-56643 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Helmrich, M. A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Lorelli, S. A1 - Morgenthal, G. T1 - Maintalbrücke Gemünden: Bauwerksmonitoring und -identifikation aus einem Guss T1 - Maintalbrücke Gemünden – Integrated structural health monitoring and UAS diagnostics N2 - Die Infrastruktursysteme der Industriestaaten erfordern heute und in Zukunft ein effizientes Management bei alternder Bausubstanz, steigenden Lasten und gleichbleibend hohem Sicherheitsniveau. Digitale Technologien bieten ein großes Potenzial zur Bewältigung der aktuellen und künftigen Herausforderungen im Infrastrukturmanagement. Im BMBF-geförderten Projekt Bewertung alternder Infrastrukturbauwerke mit digitalen Technologien (AISTEC) wird untersucht, wie unterschiedliche Technologien und deren Verknüpfung gewinnbringend eingesetzt werden können. Am Beispiel der Maintalbrücke Gemünden werden ein sensorbasiertes Bauwerksmonitoring, bildbasierte Inspektion mit durch Kameras ausgestatteten Drohnen (UAS) und die Verknüpfung digitaler Bauwerksmodelle umgesetzt. Die aufgenommenen Bilder dienen u. a. als Grundlage für spätere visuelle Anomaliedetektionen und eine 3D-Rekonstruktion, welche wiederum für die Kalibrierung und Aktualisierung digitaler Tragwerksmodelle genutzt werden. Kontinuierlich erfasste Sensordaten werden ebenfalls zur Kalibrierung und Aktualisierung der Tragwerksmodelle herangezogen. Diese Modelle werden als Grundlage für Anomaliedetektionen und perspektivisch zur Umsetzung von Konzepten der prädiktiven Instandhaltung verwendet. Belastungsfahrten und historische Daten dienen in diesem Beitrag der Validierung von kalibrierten Tragwerksmodellen. N2 - Infrastructure systems of industrialised countries today and in the future require efficient management with an ageing stock, increasing loads while simultaneously maintaining a high level of safety. Digital technologies offer great potential for the current and future challenges in infrastructure management. The BMBF-funded project AISTEC is investigating how the individual technologies and their interconnection can be used beneficially. With the Maintalbrücke in Gemünden as an exemplary application, sensor-based structural monitoring, image-based inspection using unmanned aircraft systems (UAS) equipped with cameras and the integration of digital structural models are being implemented. The recorded images serve, among others, as basis for subsequent anomaly detection and a 3D reconstruction, which in turn are used for updating digital structural models. Continuously recorded sensor data is used to update the parameters of the structural models, which in turn provide the basis for predictive maintenance. Load tests are used to validate the models. KW - Bauwerksüberwachung KW - Strukturmonitoring KW - Structural Health Monitoring KW - Modell-Update KW - UAS KW - Belastungstest KW - Structural system identification KW - Structural health monitoring KW - Model update KW - UAS KW - Load tests PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554924 DO - https://doi.org/10.1002/bate.202100102 SN - 0932-8351 VL - 99 IS - 3 SP - 163 EP - 172 PB - Ernst & Sohn CY - Berlin AN - OPUS4-55492 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Wille, Frank T1 - Dynamisches Verhalten und Überwachung des Großen Fallturms der BAM in Horstwalde N2 - Falltürme sind Bauwerke, die als Versuchsanlagen sehr speziellen, impulsartigen Belastungen ausgesetzt sind. Am Fallturm auf dem Testgelände Technische Sicherheit (TTS) der BAM wurde bei Routineinspektionen eine Abnahme der strukturellen Integrität in Form von Vorspannungsverlusten in den Bolzen der Stahlverbindungen festgestellt. Um ein Verständnis für die zugrundeliegenden Trag- und Schädigungsmechanismen zu erlangen, wurde ein umfassendes Structural Health Monitoring (SHM) System geplant und am Bauwerk installiert unter Nutzung von digitalen Bauwerksmodellen. Für die Auslegung des Überwachungssystems, insbesondere aber zur Unterstützung der Untersuchung des Schädigungsprozesses, wurden Finite-Elemente-Modelle erstellt. Um sicherzustellen, dass die FE-Modelle das reale Tragwerksverhalten mit ausreichender Genauigkeit abbilden, mussten sie jedoch in Bezug auf die gemessenen Antworten des Tragwerks kalibriert werden. Der vorliegende Beitrag beschreibt experimentelle und numerische Untersuchungen zur Identifizierung des strukturellen Systems des Stahlrohrgitterturms in Vorbereitung einer Überwachungskampagne. Die Auswertung von gemessenen Schwingungen unter ambienter Anregung ermöglichte die Identifizierung der Eigenfrequenzen mehrerer globaler Schwingungsmoden des Fallturms. Zur Modellvalidierung wurde zunächst eine Sensitivitätsanalyse durchgeführt, um die Parameter mit dem größten Einfluss zu ermitteln. Anschließend wurde ein evolutionärer Algorithmus (EA) zur Optimierung nach dem Prinzip der Minimierung der Differenzen zwischen gemessenen und simulierten charakteristischen Antworten eingesetzt. Das aktualisierte Modell wurde schließlich an der dynamischen Reaktion der Turmstruktur infolge einer realen Falltest-induzierten Stoßbelastung validiert. Die Ergebnisse zeigten eine gute Übereinstimmung zwischen numerischen und experimentellen Ergebnissen. N2 - Drop test towers are structures subjected to very specific dynamic loadings. At the drop test tower at the Test Site Technical Safety (TTS) of BAM routine inspections revealed a decline of structural integrity in form of loss of pretension in bolts of structural steel connections. To get an understanding about the underlying damage mechanisms as well as to assure the structural safety in operation, a multifaceted Structural Health Monitoring (SHM) system was planned and installed at the structure with the help of digital models. For planning the monitoring system but especially for supporting the investigation of the damaging process finite element models are deployed. Though, to ensure the capability of the FE model to reproduce the real structural behavior in sufficient accuracy, it needs to be calibrated in respect to measured responses of the structure. The present contribution describes experimental and numerical investigations to identify the structural system of the steel tube lattice tower in preparation of the monitoring campaign. An ambient vibration test allowed the identification of the natural frequencies of several global vibrational modes of the drop test tower. For model updating first a sensitivity analysis is applied to identify the most influencing parameter. In succession a genetic algorithm was applied for optimization in the sense of minimization of the difference between measured and simulated characteristic responses. The updated model is finally validated on the dynamic response of the tower structure to a real drop test induced impact loading. The results showed a good agreement between numerical and experimental results though the robustness of the simulation should be improved by more sophisticated numerical modelling. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.04.2022 KW - Großer Fallturm Horstwalde KW - Structural Health Monitoring KW - Belastungsversuch KW - Modalanalyse KW - Schwingungsdynamik KW - Finite Elemente Simulation PY - 2022 SN - 978-3-18-092379-6 SN - 978-3-18-102379-2 DO - https://doi.org/10.51202/9783181023792-265 SN - 0083-5560 VL - 2379 SP - 265 EP - 284 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-55472 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Baeßler, Matthias T1 - Optimal sensor placement for vibration-based structural health monitoring obtained via value of information analysis as part of a digital structural integrity management of offshore structures N2 - A digital structural integrity management of offshore structures enables an optimized planning of inspections and repairs with risk-based methods. In a risk-based approach, the inspection and repair strategy that minimizes the expected lifetime costs consisting of the expected inspection, repair and failure costs is determined. In addition to inspections, information on the structural condition can be continuously obtained by monitoring the vibration response of the structural system. Changes in the vibration characteristics quantified in terms of modal properties can be an indication of structural damage. In risk-based inspection and repair planning, the effect of monitoring results is determined via Bayesian updating of the structural condition and reliability. This information should be applied to inform decisions on inspections and may result in a reduced inspection effort. The benefit of continuously monitoring the structural health can be quantified in terms of the value of information, which corresponds to the difference between the expected lifetime costs with and without monitoring. In this work, we demonstrate in a numerical example how an optimized sensor placement for a vibration-based structural health monitoring system can be determined by maximizing the value of information. T2 - 3rd International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2022) CY - Online meeting DA - 08.06.2022 KW - Structural Health Monitoring KW - Value of Information KW - Offshore Wind Energy KW - Optimal Sensor Placement KW - Bayesian System Identification PY - 2022 UR - https://www.researchgate.net/publication/362569906_Optimal_sensor_placement_for_vibration-based_structural_health_monitoring_obtained_via_value_of_information_analysis_as_part_of_a_digital_structural_integrity_management_of_offshore_structures SN - 978-1-8383226-7-0 SP - 23 EP - 32 AN - OPUS4-55465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas T1 - Optimal sensor placement for vibration-based structural health monitoring obtained via value of information analysis as part of a digital structural integrity management of offshore structures N2 - A digital structural integrity management of offshore structures enables an optimized planning of inspections and repairs with risk-based methods. In a risk-based approach, the inspection and repair strategy that minimizes the expected lifetime costs consisting of the expected inspection, repair and failure costs is determined. In addition to inspections, information on the structural condition can be continuously obtained by monitoring the vibration response of the structural system. Changes in the vibration characteristics quantified in terms of modal properties can be an indication of structural damage. In risk-based inspection and repair planning, the effect of monitoring results is determined via Bayesian updating of the structural condition and reliability. This information should be applied to inform decisions on inspections and may result in a reduced inspection effort. The benefit of continuously monitoring the structural health can be quantified in terms of the value of information, which corresponds to the difference between the expected lifetime costs with and without monitoring. In this work, we demonstrate in a numerical example how an optimized sensor placement for a vibration-based structural health monitoring system can be determined by maximizing the value of information. T2 - 3rd International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2022) CY - Online meeting DA - 08.06.2022 KW - Bayesian System Identification KW - Offshore Wind Energy KW - Optimal Sensor Placement KW - Structural Health Monitoring KW - Value of Information PY - 2022 AN - OPUS4-55473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk T1 - Structural Health Monitoring am Großen Fallturm der BAM N2 - Am Fallturm auf dem Testgelände Technische Sicherheit (TTS) der BAM wurden bei Inspektionen Vorspannungsverluste in den Bolzen der Stahlverbindungen festgestellt. Um ein Verständnis für die zugrundeliegenden Trag- und Schädigungsmechanismen zu erlangen und um den Zustand der vorgespannten Schraubverbindungen langzeitlich zu überwachen, wurde am Fallturm ein Structural Health Monitoring (SHM) System installiert. Für die Auslegung des Monitoringsystems sowie zur Unterstützung der Untersuchung des Schädigungsprozesses wurde ein numerisches Modell erstellt und in Bezug auf die gemessenen Antworten des Tragwerks kalibriert. Im Vortrag werden die experimentellen und numerischen Untersuchungen zur Systemidentifikation des Stahlrohrgitterturms als auch die Überwachungskampagne mit dem eingesetzten Monitoringsystem sowie die Messergebnisse und deren Bewertung vorgestellt. T2 - Seminar "Zerstörungsfreie Prüfung" am Lehrstuhl für Zerstörungsfreie Prüfung ,Technische Universität München CY - Online meeting DA - 13.01.2022 KW - Structural Health Monitoring KW - Schadensüberwachung KW - Schwingungsmonitoring PY - 2022 AN - OPUS4-56667 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias T1 - Dynamisches Verhalten und Überwachung des Großen Fallturms der BAM in Horstwalde N2 - Falltürme sind Bauwerke, die als Versuchsanlagen sehr speziellen, impulsartigen Belastungen ausgesetzt sind. Am Fallturm auf dem Testgelände Technische Sicherheit (TTS) der BAM wurde bei Routineinspektionen eine Abnahme der strukturellen Integrität in Form von Vorspannungsverlusten in den Bolzen der Stahlverbindungen festgestellt. Um ein Verständnis für die zugrundeliegenden Trag- und Schädigungsmechanismen zu erlangen, wurde ein umfassendes Structural Health Monitoring (SHM) System geplant und am Bauwerk installiert unter Nutzung von digitalen Bauwerksmodellen. Für die Auslegung des Überwachungssystems, insbesondere aber zur Unterstützung der Untersuchung des Schädigungsprozesses, wurden Finite-Elemente-Modelle erstellt. Um sicherzustellen, dass die FE-Modelle das reale Tragwerksverhalten mit ausreichender Genauigkeit abbilden, mussten sie jedoch in Bezug auf die gemessenen Antworten des Tragwerks kalibriert werden. Der vorliegende Beitrag beschreibt experimentelle und numerische Untersuchungen zur Identifizierung des strukturellen Systems des Stahlrohrgitterturms in Vorbereitung einer Überwachungskampagne. Die Auswertung von gemessenen Schwingungen unter ambienter Anregung ermöglichte die Identifizierung der Eigenfrequenzen mehrerer globaler Schwingungsmoden des Fallturms. Zur Modellvalidierung wurde zunächst eine Sensitivitätsanalyse durchgeführt, um die Parameter mit dem größten Einfluss zu ermitteln. Anschließend wurde ein evolutionärer Algorithmus (EA) zur Optimierung nach dem Prinzip der Minimierung der Differenzen zwischen gemessenen und simulierten charakteristischen Antworten eingesetzt. Das aktualisierte Modell wurde schließlich an der dynamischen Reaktion der Turmstruktur infolge einer realen Falltest-induzierten Stoßbelastung validiert. Die Ergebnisse zeigten eine gute Übereinstimmung zwischen numerischen und experimentellen Ergebnissen. N2 - Drop test towers are structures subjected to very specific dynamic loadings. At the drop test tower at the Test Site Technical Safety (TTS) of BAM routine inspections revealed a decline of structural integrity in form of loss of pretension in bolts of structural steel connections. To get an understanding about the underlying damage mechanisms as well as to assure the structural safety in operation, a multifaceted Structural Health Monitoring (SHM) system was planned and installed at the structure with the help of digital models. For planning the monitoring system but especially for supporting the investigation of the damaging process finite element models are deployed. Though, to ensure the capability of the FE model to reproduce the real structural behavior in sufficient accuracy, it needs to be calibrated in respect to measured responses of the structure. The present contribution describes experimental and numerical investigations to identify the structural system of the steel tube lattice tower in preparation of the monitoring campaign. An ambient vibration test allowed the identification of the natural frequencies of several global vibrational modes of the drop test tower. For model updating first a sensitivity analysis is applied to identify the most influencing parameter. In succession a genetic algorithm was applied for optimization in the sense of minimization of the difference between measured and simulated characteristic responses. The updated model is finally validated on the dynamic response of the tower structure to a real drop test induced impact loading. The results showed a good agreement between numerical and experimental results though the robustness of the simulation should be improved by more sophisticated numerical modelling. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.04.2022 KW - Großer Fallturm Horstwalde KW - Structural Health Monitoring KW - Belastungsversuch KW - Modalanalyse KW - Schwingungsdynamik KW - Finite Elemente Simulation PY - 2022 AN - OPUS4-55470 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lehmann, F. A1 - Hille, Falk T1 - Dauerüberwachung von Ingenieurbauwerken - Das neue Merkblatt B 09 der DGZfP T1 - Permanent monitoring of engineering structures The new leaflet B 09 of the DGZFP N2 - Messtechnische Systeme zur Dauerüberwachung von Bauwerken ermöglichen Einblicke in deren reale Trag- und Verformungsverhalten. Die Planung und technische Umsetzung solcher Maßnahmen erfordern für die erfolgreiche Erfüllung der Aufgabenstellungen eine hohe Fachkompetenz, sowohl auf der planerischen Seite, als auch für die fachliche Bewertung von angebotenen Monitoringlösungen. Als Hilfestellung dafür wurde von der Deutschen Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) das Merkblatt „Dauerüberwachung von Ingenieurbauwerken“ erarbeitet, welches nun verfügbar ist. In diesem Beitrag werden die Inhalte des neuen Merkblatts vorgestellt und dieses in die vorhandene Literatur eingeordnet. KW - Structural Health Monitoring KW - Brücken KW - Windenergieanlagen KW - Merkblatt KW - Bauwerksüberwachung KW - Richtlinie PY - 2023 DO - https://doi.org/10.1002/best.202200122 VL - 118 IS - 4 SP - 275 EP - 280 PB - Ernst & Sohn AN - OPUS4-57302 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ratkovac, Mirjana T1 - Perspectives on Wind and Wave Load Reconstruction from SHM Data for Offshore Wind Turbines N2 - As many wind turbines approach the end of their design lifetime, from a technical point of view, comprehensive fatigue analysis of all critical parts is necessary to decide what comes after – continued operation, repowering, or decommissioning. Typically, it is a two-stage evaluation process consisting of a physical inspection of the structure and an analytical part to compare the design and actually experienced loading conditions. Structural health monitoring helps to reduce the uncertainties in the estimations by providing insight into deviations between the designed and the built structure. Furthermore, it allows the evaluation of the consumed fatigue lifetime by analyzing the strain measurements that mirror the actual structural response to experienced environmental and operational conditions. However, the measurement values are limited to a sparse number of instrumented spots on the structure, and further extrapolation to the non-instrumented (critical) sections is required to perform a complete fatigue assessment. One known approach is the external force reconstruction, which has only scarcely been considered for application in offshore wind turbines. In order to extend the previously developed thrust force reconstruction framework, this work discusses the possibilities and challenges of wind and wave loading reconstruction in offshore wind turbine support structures. T2 - 4th International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2023) CY - Online meeting DA - 12.06.2023 KW - Wind turbines KW - Force reconstruction KW - Structural Health Monitoring PY - 2023 AN - OPUS4-57687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul T1 - A framework for assessing the reliability of crack luminescence – an automated fatigue crack detection system N2 - The new crack luminescence method offers the possibility of making fatigue surface cracks in metallic materials more visible during inspections through a special coating system. This coating system consists of two layers, whereby the first layer has fluorescent properties and emits visible light as soon as it is irradiated by UV light. The top layer is black and is designed to prevent the fluorescent layer from emitting if no crack develops in the underlying material. The technique proved particularly useful in a wide variety of fatigue tests of steel components under laboratory conditions. Moreover, it has the potential to be used in various industrial applications. To enable industrial deployment and integration into maintenance strategies, a concept study is developed in this contribution, resulting in a qualification framework that can serve as a foundation for determining the reliability of the crack luminescence system in terms of a probability of detection curve. Within this study, factors causing measurement variability and uncertainty are being determined and their influences assessed. Due to the extension of the system by a moving computer vision system for automated crack detection using artificial intelligence, additional long-term effects associated with structural health monitoring systems need to be incorporated into an extended probability of detection study as part of the technical justification. Finally, important aspects and findings related to design of experiments are discussed, and a framework for reliability assessment of a new optical crack monitoring method is presented, emphasizing the influence of various uncertainty parameters, including long-term effects such as system ageing. T2 - SPIE Conference Smart Structures + Nondestructive Evaluation 2023 CY - Long Beach, CA, USA DA - 24.03.2023 KW - Structural Health Monitoring KW - Non-Destructive Evaluation KW - Probability of Detection KW - Reliability KW - Artificial Intelligence KW - Computer Vision KW - Crack Luminescence PY - 2023 AN - OPUS4-57245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul A1 - Ratkovac, Mirjana A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for assessing the reliability of crack luminescence – an automated fatigue crack detection system N2 - The new crack luminescence method offers the possibility of making fatigue surface cracks in metallic materials more visible during inspections through a special coating system. This coating system consists of two layers, whereby the first layer has fluorescent properties and emits visible light as soon as it is irradiated by UV light. The top layer is black and is designed to prevent the fluorescent layer from emitting if no crack develops in the underlying material. The technique proved particularly useful in a wide variety of fatigue tests of steel components under laboratory conditions. Moreover, it has the potential to be used in various industrial applications. To enable industrial deployment and integration into maintenance strategies, a concept study is developed in this contribution, resulting in a qualification framework that can serve as a foundation for determining the reliability of the crack luminescence system in terms of a probability of detection curve. Within this study, factors causing measurement variability and uncertainty are being determined and their influences assessed. Due to the extension of the system by a moving computer vision system for automated crack detection using artificial intelligence, additional long-term effects associated with structural health monitoring systems need to be incorporated into an extended probability of detection study as part of the technical justification. Finally, important aspects and findings related to design of experiments are discussed, and a framework for reliability assessment of a new optical crack monitoring method is presented, emphasizing the influence of various uncertainty parameters, including long-term effects such as system ageing. T2 - SPIE Conference Smart Structures + Nondestructive Evaluation 2023 CY - Long Beach, CA, USA DA - 24.03.2023 KW - Structural Health Monitoring KW - Non-Destructive Evaluation KW - Probability of Detection KW - Reliability KW - Artificial Intelligence KW - Computer Vision KW - Crack Luminescence KW - Wind PY - 2023 SN - 978-1-5106-6086-1 DO - https://doi.org/10.1117/12.2658390 SP - 1 EP - 15 AN - OPUS4-57244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas T1 - LUKAS’ JACKET: A test structure for model and monitoring based lifetime management of offshore jacket support structures N2 - The goal of the experiments is to demonstrate that systems like three-dimensional jackets possess redundancies that, despite the reduced fatigue life of individual components, enable reliable operation if an appropriate maintenance concept is in place. In practice, individual potentially faulty components in the structure have been handled conservatively so far. To move away from this approach, methods and strategies in the field of life cycle management that enable economically optimal and reliable operation must be transferred from scientific research to practice. Experiments are the preferred method to establish the proof of concept. To realistically simulate the operational lifetime of a jacket structure through an experiment, cyclic loads must be applied to the structure to replicate typical fatigue processes. To ensure that the test structure is not a "disposable product" and can undergo multiple test cycles, the experimental concept includes system-level and component-level tests. The latter are conducted on removable joints. These elements at the nodes of the structure have been manufactured in multiple variations, both to potentially contain mentioned flaws and to undergo more load cycles individually than the main structure. Once the removable joint is sufficiently pre-damaged and thus the reduced remaining fatigue life is established, the element is inserted into the overall structure. The defined maintenance strategy is then implemented on the entire system. This strategy consists of structural health monitoring (SHM), inspections, and repairs. At defined intervals, cyclic loading is interrupted to apply dynamic loads. Using the installed monitoring system and coupled operational modal analysis (OMA), the modal parameters of the structure are determined, which can help identify potential system damage. Optimal sensor placement (OSP) can be determined based on a maximum value of information (VoI) across the entire pre-posterior predicted service life. For detailed investigations at the hotspots, inspections are conducted using non-destructive methods, among others. Overall global and local information about the structure's condition is gathered these methods, which are then incorporated into models describing the structure through Bayesian updating. This allows for initial system identification based on different system responses and later updating of the predicted parameters of analytical and numerical models. Utilizing the updated models, decisions regarding maintenance actions, such as further inspections or repairs, are made, which are subject to uncertainties. The probabilistic models enable a reliability- and risk-based maintenance strategy, where, for example, maximum failure rates can act as triggers for maintenance actions. These decisions are relevant for the planned duration of the simulated operational lifetime, as well as for potential lifetime extensions, which are currently of significant importance in practice. Optimizing the maintenance strategy for the operational lifetime of the structures with these methods will lead to a higher utility of the offshore wind farm. The work associated with the test structure encompasses a variety of topics (including fatigue, damage detection and identification, reliability, Bayesian updating, system identification, SHM, maintenance planning, decisions under uncertainties), which are integrated through corresponding models and methods. All these models have been and are being applied in the numerical accompaniment of the experiments. By applying them to a structure that includes the relevant locations and aspects of real-world structures, both well-functioning and suboptimal parts of the established framework will be revealed. T2 - 20th EAWE PhD Seminar on Wind Energy CY - Visby, Sweden DA - 23.09.2024 KW - Offshore Jacket Support Structure KW - Test Structure KW - Fatigue KW - Lifetime Management KW - Structural Health Monitoring PY - 2024 AN - OPUS4-61146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartels, Jan-Hauke A1 - Xu, Ronghua A1 - Kang, Chongjie A1 - Herrmann, Ralf A1 - Marx, Steffen T1 - Experimental Investigation on the Transfer Behavior and Environmental Influences of Low-Noise Integrated Electronic Piezoelectric Acceleration Sensors N2 - Acceleration sensors are vital for assessing engineering structures by measuring properties like natural frequencies. In practice, engineering structures often have low natural frequencies and face harsh environmental conditions. Understanding sensor behavior on such structures is crucial for reliable masurements. The research focus is on understanding the behavior of acceleration sensors in harsh environmental conditions within the low-frequency acceleration range. The main question is how to distinguish sensor behavior from structural influences to minimize errors in assessing engineering structure conditions. To investigate this, the sensors are tested using a long-stroke calibration unit under varying temperature and humidity conditions. Additionally, a mini-monitoring system configured with four IEPE sensors is applied to a small-scale support structure within a climate chamber. For the evaluation, a signal-energy approach is employed to distinguish sensor behavior from structural behavior. The findings show that IEPE sensors display temperature-dependent nonlinear transmission behavior within the low-frequency acceleration range, with humidity having negligible impact. To ensure accurate engineering structure assessment, it is crucial to separate sensor behavior from structural influences using signal energy in the time domain. This study underscores the need to compensate for systematic effects, preventing the underestimation of vibration energy at low temperatures and overestimation at higher temperatures when using IEPE sensors for engineering structure monitoring. KW - Acceleration sensors KW - Environmental influence KW - IEPE KW - Structural Health Monitoring KW - Low-frequency shaker PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594623 UR - https://www.mdpi.com/2673-8244/4/1/4/ DO - https://doi.org/10.3390/metrology4010004 SN - 2673-8244 VL - 4 IS - 1 SP - 46 EP - 65 PB - MDPI CY - Basel AN - OPUS4-59462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wedel, F. A1 - Pitters, S. A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Hindersmann, I. T1 - Guideline for the strategic application of monitoring of road bridges in Germany N2 - Engineering structures are an important part of our transport infrastructure. Their failure is associated with high safety risks and economic damage. Ensuring the availability of these constructions and guaranteeing their operational safety are thus important tasks. Currently, maintenance of engineering structures is a reactive process and therefore not yet a predictive process. Every 3 to 6 years, the structures are visually inspected, all damages are documented and a condition grade is assigned to the structure based on the detected damages. Continuous data-providing methods such as monitoring are used only very occasionally. With the help of monitoring, condition data about the structures are continuously collected, which can be used for a better assessment of the structures. On the one hand, this would increase safety of engineering structures, and on the other hand, it makes the shift towards predictive maintenance management based on real-time data and predictions, where the onset of damage is detected before it occurs, possible in the first place. Monitoring plays therefore an important role in the management of the infrastructure. It is a crucial a step towards the digitalisation of our infrastructure and existing processes. Although there are many use cases for monitoring that have already been successfully implemented, monitoring is not yet widely used by German road authorities due to several challenges that were also identified within the scope of the project. Therefore, a guide has been developed in which the current obstacles related to monitoring are identified and possibilities for integrating monitoring into existing processes are offered. To ensure optimal alignment with the needs of road authorities, both an online survey and a workshop have been conducted. The results are summarised in a brochure that is made available to authorities to improve the use of monitoring in Germany. This paper presents the guideline and the brochure. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Verkehrsinfrastrukturen KW - Engineering Structures KW - Bridges KW - Structural Health Monitoring KW - Guideline PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612821 UR - https://www.ndt.net/search/docs.php3?id=29582 DO - https://doi.org/10.58286/29582 SN - 1435-4934 VL - 29 IS - 7 SP - 1 EP - 8 PB - NDT.net GmbH & Co. KG CY - Mayen AN - OPUS4-61282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Pitters, S. A1 - Ramasetti, Eshwar Kumar A1 - Schneider, Ronald A1 - Wedel, F. A1 - Hindersmann, I. ED - Rogge, Andreas ED - Meng, Birgit T1 - Föderiertes Datenmanagement von Monitoringdaten aus Structural Health Monitoring Anwendungen und daraus gewonnenen Trainingsdaten bei Spannbetonbrücken N2 - Beim Structural Health Monitoring entstehen eine Vielzahl von Daten, Metadaten und Modellen mit hohem Wert für die Beurteilung des Bauwerkszustands und der Prognose von Veränderungen. Kontinuierlich anwachsende Datenbestände müssen nachhaltig geteilt, genutzt und über die Bauwerkslebensdauer archiviert werden. Dabei stellen die Vielfalt der Messaufgaben, die Heterogenität der Daten, die dezentrale Erfassung und z. T. der Umfang eine Herausforderung für die beteiligten Akteure dar. Für den Datentransfer der Monitoringdaten zwischen der Straßenbauverwaltung und den Monitoringausführenden wird ein flexibles Abstimmungsverfahren vorgeschlagen und ein Lösungskonzept für ein föderiertes Datenmanagement skizziert. Eine weitere Herausforderung stellt die bauwerksübergreifende Zusammenstellung von Trainingsdaten für konkrete KI-Anwendungen dar. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Structural Health Monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612902 SN - 978-3-9818564-7-7 SP - 178 EP - 185 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-61290 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartels, Jan-Hauke A1 - Gündogdu, Berk A1 - Herrmann, Ralf A1 - Marx, Steffen T1 - Beschleunigungssensoren zur Zustandsüberwachung von Ingenieurbauwerken unter Einfluss von Umweltfaktoren bei tiefen Frequenzen T1 - Acceleration sensors for structural health monitoring of engineering structures under the influence of environmental factors at low frequencies N2 - Structural Health Monitoring (SHM) wird zunehmend zur kontinuierlichen Zustandsbewertung von Ingenieurbauwerken eingesetzt. Wichtige Bewertungsparameter sind globale Systemeigenschaften, wie z. B. Eigenfrequenzen, zu deren Bestimmung Beschleunigungssensoren eingesetzt werden. Häufig werden sog. MEMS-Sensoren (Micro Electro Mechanical Systems) verwendet, die jedoch ein hohes Rauschniveau aufweisen. Alternativ können rauschärmere IEPE-Sensoren (Integrated Electronics Piezo Electric) eingesetzt werden, die auch bei geringster Strukturanregung Schwingungen zuverlässig erfassen. Ferner besteht das Problem, dass Änderungen der Eigenfrequenzen infolge Bauwerksschädigung schwer von Änderungen der Eigenfrequenzen infolge Umwelteinflüssen zu unterscheiden sind. Letztere verändern die Eigenschaften der Struktur und die des Messsystems. Um Umwelteinflüsse auf das Messsystem im Anwendungsgebiet Ingenieurbau zu untersuchen, wurden IEPE-Beschleunigungsaufnehmer hinsichtlich ihres Übertragungsverhaltens im niederfrequenten Beschleunigungsbereich analysiert. Es zeigt sich, dass das Verhalten nicht nur frequenz-, sondern auch temperaturabhängig ist, während die Luftfeuchte keinen Einfluss hat. Diese für das Bauwerk unbedenklichen Einflüsse müssen für eine robuste Zustandsüberwachung kompensiert werden. Für die Anwendung im Ingenieurbau werden IEPE-Sensoren empfohlen, da sie ein hohes Signal-zu-Rausch-Verhältnis aufweisen und niederfrequente Bauwerksschwingungen zuverlässig erfassen. N2 - Acceleration sensors for structural health monitoring of engineering structures under the influence of environmental factors at low frequencies. Structural health monitoring (SHM) is increasingly used to continuously assess the condition of engineering structures. Important assessment parameters are global system properties, such as eigenfrequency, which are measured by accelerometers. Micro-electro-mechanical systems (MEMS) sensors are often used, but have a high noise level. Alternatively, low-noise IEPE (integrated electronics piezo electric) sensors can be used, which reliably detect vibrations even with the slightest structural excitation. Another problem is that changes in eigenfrequency due to structural damage are difficult to distinguish from changes in eigenfrequency due to environmental effects. The latter change the properties of both the structure and the measurement system. In order to investigate environmental effects on the measurement system in the field of civil engineering, IEPE accelerometers have been analyzed for their transmission behavior in the low-frequency acceleration range. It was found that the behavior is not only frequency dependent, but also temperature dependent, while humidity has no influence. These nonstructural effects must be compensated for to ensure robust condition monitoring. IEPE sensors are recommended for civil engineering applications because of their high signal-to-noise ratio and ability to reliably detect low-frequency structural vibrations. KW - Beschleunigungssensoren KW - Kalibrierung KW - Structural Health Monitoring KW - Umwelteinflüsse KW - Übertragungsverhalten KW - acceleration sensors KW - calibration KW - environmental influences KW - transmission behavior PY - 2024 DO - https://doi.org/10.1002/bate.202300056 SN - 1437-0999 SN - 0932-8351 VL - 101 IS - 10 SP - 1 EP - 11 PB - Ernst & Sohn CY - Berlin AN - OPUS4-60772 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramasetti, Eshwar Kumar A1 - Herrmann, Ralf A1 - Degener, Sebastian A1 - Baeßler, Matthias T1 - Development of generic AI models to predict the movement of vehicles on bridges N2 - For civil, mechanical, and aerospace structures to extend operation times and to remain in service, structural health monitoring (SHM) is vital. SHM is a method to examining and monitoring the dynamic behavior of essential constructions. Because of its versatility in detecting unfavorable structural changes and enhancing structural dependability and life cycle management, it has been extensively used in many engineering domains, especially in civil bridges. Due to the recent technical developments in sensors, high-speed internet, and cloud computing, data-driven approaches to structural health monitoring are gaining appeal. Since artificial intelligence (AI), especially in SHM, was introduced into civil engineering, these modern and promising methods have attracted significant research attention. In this work, a large dataset of acceleration time series using digital sensors was collected by installing a structural health monitoring (SHM) system on Nibelungen Bridge located in Worms, Germany. In this paper, a deep learning model is developed for accurate classification of different types of vehicle movement on the bridge from the data obtained from accelerometers. The neural network is trained with key features extracted from the acceleration dataset and classification accuracy of 98 % was achieved. KW - Structural Health Monitoring KW - Artifical Intelligence KW - Machine Learning KW - Nibelungen Bridge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-620289 DO - https://doi.org/10.1016/j.prostr.2024.09.307 VL - 64 SP - 557 EP - 564 PB - Elsevier B.V. AN - OPUS4-62028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf T1 - Föderiertes Datenmanagement von Monitoringdaten aus Structural Health Monitoring Anwendungen und daraus gewonnenen Trainingsdaten bei Spannbetonbrücken N2 - Beim Structural Health Monitoring entstehen eine Vielzahl von Daten, Metadaten und Modellen mit hohem Wert für die Beurteilung des Bauwerkszustands und der Prognose von Veränderungen. Kontinuierlich anwachsende Datenbestände müssen nachhaltig geteilt, genutzt und über die Bauwerkslebensdauer archiviert werden. Dabei stellen die Vielfalt der Messaufgaben, die Heterogenität der Daten, die dezentrale Erfassung und z. T. der Umfang eine Herausforderung für die beteiligten Akteure dar. Für den Datentransfer der Monitoringdaten zwischen der Straßenbauverwaltung und den Monitoringausführenden wird ein flexibles Abstimmungsverfahren vorgeschlagen und ein Lösungskonzept für ein föderiertes Datenmanagement skizziert. Eine weitere Herausforderung stellt die bauwerksübergreifende Zusammenstellung von Trainingsdaten für konkrete KI-Anwendungen dar. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Structural Health Monitoring KW - Spannbetonbrücke KW - Datenmanagement KW - Auftraggeber-Daten-Anforderungen (ADA) KW - Bauwerkschäden PY - 2024 AN - OPUS4-61780 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick T1 - Temperatureinfluss auf Strukturmonitoring – aktuelle Versuche N2 - Strukturmonitoring kann wertvolle Daten für die Zustandsbewertung und Schadensdetektion von Infrastruk-turbauwerken liefern. Umgebungsbedingungen wie die Temperatur beeinflussen die Bauwerke und somit die Messdaten jedoch erheblich. Um Methoden für den Umgang mit Temperatureinflüssen zu entwickeln, wurden an der BAM Versuche an Stahlbeton- und Asphaltbalken unter kontrollierten Temperaturen von -40 °C bis 60 °C und definierten Schädigungen durchgeführt. Die Daten ermöglichen die Erforschung und Validierung neuer, auch unter Temperatureinfluss zuverlässiger Methoden des Strukturmonitorings. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Structural Health Monitoring KW - Strukturmonitoring KW - Temperatureinfluss KW - Klimakammer KW - Bayesian Updating PY - 2024 AN - OPUS4-61573 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Munsch, Sarah Mandy A1 - Telong, Melissa A1 - Unger, Jörg F. A1 - Andrés Arcones, Daniel A1 - Pirskawetz, Stephan T1 - 63. DAfStb-Forschungskolloquium in der BAM - Themenblock 4: Digitalisierung im Bauwesen N2 - Die Digitalisierung hat sich in vielen Bereichen des Bauwesens durchgesetzt. So sind Planung und Entwurf selbst kleinerer Bauvorhaben heute vollständig digitalisiert. Auch das Monitoring von Bestandsbauwerken ist ohne digitale Datenerfassung, -verarbeitung und -speicherung nicht denkbar. Trotzdem sind Fragen hinsichtlich der strukturierten Speicherung und künftigen Nutzung von Daten noch offen. Einige Aspekte der Digitalisierung wurden im Rahmen des 63. DAfStb-Forschungskolloquiums (Tagungsband: DOI 10.26272/opus4-61338) in Vorträgen und Veröffentlichungen aufgegriffen und werden im Folgenden zusammengefasst. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Digitalisierung KW - Infrastruktur KW - Structural Health Monitoring KW - Digitaler Zwilling PY - 2025 SN - 0005-9846 VL - 75 IS - 4 SP - 136 EP - 138 PB - concrete content UG CY - Schermbeck AN - OPUS4-63070 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lehmann, Frank A. A1 - Hille, Falk A1 - Glisic, Branco ED - Lienhart, Werner ED - Krüger, Markus T1 - Global Perspectives on Structural Monitoring in Civil Engineering N2 - Structural Monitoring (SM) is crucial in civil engineering for ensuring the safety, functionality, and longevity of civil infrastructure, especially bridges. As its importance grows, SM practices are guided mainly by national standards, leading to fragmented approaches and limited global integration. This paper examines SM guidelines, focusing on contributions from Germany, while exploring the broader international framework. In Germany, key guidelines such as the DGZfP Merkblatt B09 and others offer structured methods and practice examples for long-term monitoring and performance assessment. Internationally, countries have developed their own SM frameworks. Amongst others, Austria’s RVS Richtlinie 13.03.01, France’s COFREND Livre Blanc, Canada’s ISIS Guidelines, the ACI Report 444.2-21 from the USA, the TRB Circular E-C246 and the CIRIA Guideline from the UK contribute to a global understanding of SM. These guidelines address common technical, theoretical, and economic challenges across regions. This paper highlights the need for international collaboration, identifying synergies and gaps to promote a unified approach to SM. It offers insights into global standards and how successful strategies can foster innovation and cohesion in SM practices worldwide. T2 - 13th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Graz, Austria DA - 01.09.2025 KW - Structural Health Monitoring KW - bridge structures KW - guidelines PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643859 DO - https://doi.org/10.3217/978-3-99161-057-1-063 SP - 411 EP - 419 PB - Verlag der Technischen Universität Graz AN - OPUS4-64385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Wedel, Frederik A1 - Lehmann, Frank A. A1 - Pirskawetz, Stephan ED - Lienhart, Werner ED - Krüger, Markus T1 - Structural health monitoring guidelines for bridges in Germany N2 - With the advancement of digitalization and related technological developments, Structural Health Monitoring (SHM) has become a useful and increasingly widespread tool to assist in the maintenance management of bridges and other engineering structures. The process of implementing monitoring requires expertise in many fields such as civil engineering, bridge operation and maintenance, monitoring technology, and data analysis. In recent years, monitoring has moved from method and technology development to standard practice. However, the implementation of monitoring as a standardized process can be an obstacle, especially for bridge operators, due to a lack of practical experience combined with the various expertise required. This can affect several areas, such as determining the cost-effectiveness of a monitoring measure, proper tendering and contracting, quality control, analysis and evaluation of measurement data, and last but not least, data management. In order to support the introduction of monitoring technologies into the practice of infrastructure operators, several guidelines have been developed in Germany in recent years by different interest groups, each with a different focus and essentially complementing each other. This paper aims to provide an overview of four different recently published guidelines and to highlight their strengths and advantages. T2 - 13th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Graz, Austria DA - 01.09.2025 KW - Structural Health Monitoring KW - Bridge structures KW - Guidelines PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643809 DO - https://doi.org/10.3217/978-3-99161-057-1-064 SP - 420 EP - 427 PB - Verlag der Technischen Universität Graz AN - OPUS4-64380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk T1 - Structural health monitoring guidelines for bridges in Germany N2 - With the advancement of digitalization and related technological developments, Structural Health Monitoring (SHM) has become a useful and increasingly widespread tool to assist in the maintenance management of bridges and other engineering structures. The process of implementing monitoring requires expertise in many fields such as civil engineering, bridge operation and maintenance, monitoring technology, and data analysis. In recent years, monitoring has moved from method and technology development to standard practice. However, the implementation of monitoring as a standardized process can be an obstacle, especially for bridge operators, due to a lack of practical experience combined with the various expertise required. This can affect several areas, such as determining the cost-effectiveness of a monitoring measure, proper tendering and contracting, quality control, analysis and evaluation of measurement data, and last but not least, data management. In order to support the introduction of monitoring technologies into the practice of infrastructure operators, several guidelines have been developed in Germany in recent years by different interest groups, each with a different focus and essentially complementing each other. This paper aims to provide an overview of four different recently published guidelines and to highlight their strengths and advantages. T2 - 13th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Graz, Austria DA - 01.09.2025 KW - Structural Health Monitoring KW - Bridge structures KW - Guidelines PY - 2025 AN - OPUS4-64384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Joyal K. A1 - von Wangenheim, Kristian A1 - Kaplan, Felix A1 - Schneider, Ronald A1 - Hindersmann, Iris ED - Lienhart, Werner ED - Krüger, Markus T1 - Monitoring of civil engineering structures - current and future use cases N2 - Monitoring represents an effective approach for addressing the diverse challenges associated with the maintenance of civil engineering structures. It contributes to improving both the availability and safety of these structures. By increasing the amount of information available about the structure, monitoring supports better-informed decisions regarding its preservation. Due to the complexity of monitoring applications, specific use cases are outlined. A key advantage of these use cases is that new technologies can be tested within well-defined and limited scopes. The use cases monitoring of known, localized damage, monitoring of known deficits identified through reassessment or resulting from outdated design procedures and monitoring aimed at assessing traffic loads and their effects currently account for the majority of implemented monitoring measures. Their practical implementation is demonstrated through case studies from the Brandenburg State Road Authority. Additional use cases, such as monitoring to support structural inspections and monitoring of major structures, such as large viaducts, are gaining importance, with initial practical examples already present in Europe. Future applications reveal potential for expanded use, particularly in the context of monitoring to support predictive lifecycle management. This will become increasingly important in the implementation of digital twins, as announced in the national BIM master plan. Furthermore the concept of a Birth Certificate is intended to establish a reference state of the structure prior to commissioning, which can then be used for comparison with future measurements over time. The integration and interaction of these individual use cases pave the way for the implementation of digital twins. T2 - 13th International Conference on Structural Health Monitoring of Intelligent Infrastructure CY - Graz, Austria DA - 01.09.2025 KW - Structural Health Monitoring KW - Use Cases KW - Bridges KW - Digital Twin PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-644422 DO - https://doi.org/10.3217/978-3-99161-057-1-033 SP - 203 EP - 208 PB - Verlag der Technischen Universität Graz CY - Graz AN - OPUS4-64442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -