TY - JOUR A1 - Hu, W.-H A1 - Tang, D.-H. A1 - Wang, M. A1 - Liu, J.-L. A1 - Li, Z.-H. A1 - Lu, W. A1 - Teng, J. A1 - Said, Samir A1 - Rohrmann, R. G. T1 - Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis N2 - A strain-based automated operational modal analysis algorithm is proposed to track the long-term dynamic behavior of a horizontal wind turbine under operational conditions. This algorithm is firstly validated by a scaled wind turbine model, and then it is applied to the dynamic strain responses recorded from a 5 MW wind turbine system. We observed variations in the fundamental frequency and 1f, 3f excitation frequencies due to the mass imbalance of the blades and aerodynamic excitation by the tower dam or tower wake. Inspection of the Campbell diagram revealed that the adverse resonance phenomenon and Sommerfeld effect causing excessive vibrations of the wind tower. KW - Strain KW - Automated operational modal analysis KW - Resonance KW - Horizontal wind turbine PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503350 DO - https://doi.org/10.3390/en13030579 VL - 13 IS - 3 SP - 579 EP - 584 PB - MDPI CY - Schweiz, Basel AN - OPUS4-50335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Characteristics of train passages over slab tracks from measurements and different track-soil models - Damage detection and ground vibration reduction N2 - The train passages over intact or damaged slab tracks on different soils have been calculated by the finite-element boundary-element or the wavenumber-domain method. The influence of track and soil parameters on the distribution of the track displacements and the soil forces has been analysed. The measured and calculated displacement time histories of train passages could be used to identify track damages such as lose sleepers or a lose track plate. The time histories and spectra of the soil forces can explain the measured ground vibration reduction of slab tracks. The calculated displacement and force distributions of slab tracks on continuous soils do not fulfil the Winkler hypothesis and Winkler models should not be used for track analysis. KW - Wavenumber domain KW - Continuous soil KW - Slab track KW - Soil forces KW - Track displacements KW - Track filter KW - Vehicle–track interaction PY - 2020 DO - https://doi.org/10.1177/0954409719835036 SN - 0954-4097 VL - 234 IS - 2 SP - 142 EP - 160 PB - Sage CY - London AN - OPUS4-50266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, W.-H. A1 - Xu, Z.-M. A1 - Liu, M.-Y. A1 - Tang, D.-H. A1 - Lu, W. A1 - Li, Z.-H. A1 - Teng, J. A1 - Han, X.-H. A1 - Said, Samir A1 - Rohrmann, R. G. T1 - Estimation of the Lateral Dynamic Displacement of High-Rise Buildings underWind Load Based on Fusion of a Remote Sensing Vibrometer and an Inclinometer N2 - This paper proposes a novel method to estimate the lateral displacement of high-rise structures under wind loads. The coefficient β(x) is firstly derived, reflecting the relation between the structural lateral dynamic displacement and the inclination angle at the height x of a structure. If the angle is small, it is the ratio between the structural fundamental mode shape and its first-order derivative without influence of external loads. Several dynamic experiments of structures are performed based on a laser remote sensing vibrometer and an inclinometer, which shows that the fundamental mode is dominated in the structural displacement response under different types of excitations. Once the coefficient β(x) is curve-fitted by measuring both the structural lateral dynamic displacement and the inclination angle synchronously, the real-time structural lateral displacement under operational conditions is estimated by multiplying the coefficient β(x) with the inclination angle. The advantage of the proposed method is that the coefficient β(x) can be identified by lateral dynamic displacement measured in high resolution by the remote sensing vibrometer, which is useful to reconstruct the displacement accurately by the inclination angle under operational conditions KW - Inclination angle KW - High-rise building KW - Lateral dynamic displacement KW - Remote sensing vibrometer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506833 DO - https://doi.org/10.3390/rs12071120 VL - 12 IS - 7 SP - 1120 PB - MDPI CY - 4052 Basel, Schweiz AN - OPUS4-50683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Slab track behaviour under train passage and hammer impact – Measurements at different sites and calculated track interaction with continuous soils N2 - This contribution intends to give an overview on the vibration behaviour of slab tracks in comparison of measurements and calculations and also by comparison of different track types at more than ten different measuring sites. In theory, tracks on continuous soil are calculated by the frequency-wavenumber domain method. In experiment, geophone measurements are transformed to displacement results. Two aspects of track behaviour are considered, the frequency-dependant compliance of the track, measured by hammer impact, and the deflection under a passing axle load. In theory, the response to a single axle can be calculated, whereas in experiment, only the passage of the whole train can be measured. For comparison of theory and experiment, the calculated deflection under a single axle is superposed to get the response of the whole train. As a result, the slab track characteristics are completely different from the ballast track characteristics where each axle can be seen in the time histories. The slab track has a more global behaviour where only a whole bogie can be found in the track response and moreover, the two neighbouring bogies are not completely separated. The measurement of the different track elements (rail, sleeper, track plate, base layer) and the frequency-dependant compliances with possible resonances yield further information About the properties of the track elements. The calculations show that the soil has the dominant influence on the amplitudes and the width of the track-plate displacements. In the measurement results, the following parameters are analysed: slab track vs. ballast track, different types of slab tracks, damaged slab tracks, different trains, switches at different measuring points, voided sleepers, an elastic layer, the mortar layer, and different soils at different places. Finally, a good agreement between measured and calculated results is found for the normal and some special (damaged, floating) slab tracks. KW - Slab track KW - Train passage KW - Hammer impact KW - Compliance function KW - Track deflection PY - 2020 UR - https://iiav.org/ijav/index.php?va=viewpage&vaid=177&id_number=95 DO - https://doi.org/10.20855/ijav.2020.25.31622 SN - 1027-5851 VL - 25 IS - 3 SP - 341 EP - 354 PB - International Institute of Acoustics and Vibration CY - Gliwice AN - OPUS4-51346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle-Track-Soil Interaction of Isolated, Un-isolated and Damaged Railway Tracks N2 - This article deals with two topics of vehicle-track-soil interaction, the mitigation of railway induced ground vibration by soft track elements, and the identification of track damage. Theoretical results have been achieved by a combined finite-element boundary-element method (FEBEM). The theoretical results are confronted with measurements at four sites. Improved mitigation effects have been found for soft rail pads under heavy sleepers. The insertion loss, however, can be too optimistic if a strong vehicle track resonance occurs for the un-isolated reference track. Two measurement sites show this strong vehicle-track resonance at about 80 Hz, which has been approximated by using the results of a wide parameter study including the rail pad, ballast, and soil stiffness, as well as the ballast model and the soil layering. – The detection of slab track damage is mainly based on the differences of the receptance or compliance functions. Theoretical results have been confirmed by measurements at one site where a loss of contact between track plate and base layer was visible. Measurements at a second site with a hidden damage have been compared with the theoretical results of a loose sleeper. The differences between intact (or repaired) and damaged tracks are strong enough to encourage the further development of this method for the identification of track damages. KW - Railway track KW - Track-soil interaction KW - Ground vibration KW - Mitigation KW - Under-sleeper pads KW - Track damage monitoring PY - 2020 DO - https://doi.org/10.4203/ijrt.6.3.2 SN - 2049-5358 VL - 2 IS - 20 SP - 21 EP - 49 PB - Saxe-Coburg Publications CY - London AN - OPUS4-51257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Simple and fast prediction of train-induced track forces, ground and building vibrations N2 - A simple and fast prediction scheme is presented for train induced ground and building vibrations. Simple models such as (1-dimensional) transfer matrices are used for the vehicle-track-soil interaction and for the building-soil interaction. The wave propagation through layered soils is approximated by a frequency-dependent homogeneous half-space. The prediction is divided into the parts “emission” (excitation by railway traffic), “transmission” (wave propagation through the soil) and “immission” (transfer into a building). The link between the modules is made by the excitation force between emission and transmission, and by the free-field vibration between transmission and immission. All formula for the simple vehicle-track, soil and building models are given in this article. The behaviour of the models is demonstrated by typical examples, that is the mitigation of train vibrations by elastic track elements, the low- and high-frequency cut-offs characteristic for layered soils, and the interacting soil, wall and floor resonances of multi-storey buildings. It is shown that the results of the simple prediction models can well represent the behaviour of the more time-consuming detailed models, the finite-element boundary-element models of the track, the wavenumber integrals for the soil, and the three-dimensional finite-element models of the building. In addition, measurement examples are given for each part of the prediction confirming that the methods provide reasonable results. As the prediction models are fast in calculation, many predictions can be done, for example to assess the environmental effect along a new railway line. The simple models have the additional advantage that the user needs to know only a minimum of parameters. So, the prediction is fast and user-friendly, but also theoretically and experimentally well-founded. KW - Railway induced vibration KW - Ground vibration KW - Layered soil KW - Building response KW - Excitation forces KW - Track and vehicle irregularities PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513340 DO - https://doi.org/10.1007/s40534-020-00218-7 SN - 2662-4745 VL - 28 IS - 3 SP - 232 EP - 250 PB - Springer AN - OPUS4-51334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Train-induced ground vibration due to the irregularities of the soil N2 - Many measurements of train induced ground vibrations show high amplitudes for a certain mid-frequency range. This ground vibration component cannot be well explained by dynamic loads of the train. Many characteristics indicate that the axle impulses, which are scattered by an irregular soil, are the excitation. This new understanding of railway-induced ground vibration is verified by numerical analysis. The response of the regular homogeneous and irregular inhomogeneous soils has been calculated by the finite-element method in frequency domain. A specific superposition of the impulse responses has been invented including time shift, axle sequence, track filter and hanning filter. The superposition yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil of which the stiffness varies randomly in space, the superposition yields a mid-frequency ground vibration component from the scattering of the axle impulses. The existence and the importance of this component can thus be demonstrated by the calculations. Some rules of the influence of distance, train speed, soil stiffness, strength and width of the stiffness variation have been derived from the calculations. Many measurements show the unique explanation of the mid-frequency ground vibration component by the scattered axle impulses. KW - Train-induced ground vibration KW - Static axle loads KW - Quasi-static response; KW - Axle impulses KW - Irregular soil KW - Random stiffness variation KW - Scattered axle impulses PY - 2021 DO - https://doi.org/10.1016/j.soildyn.2020.106438 SN - 0267-7261 VL - 140 SP - 106438 PB - Elsevier Ltd. CY - London AN - OPUS4-52006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Dynamic track-soil interaction – calculations and measurements about slab and ballast tracks N2 - The dynamic behaviour of slab and ballast tracks has been investigated by measurements and calculations. Hammer impacts and train passages have been analysed. Measurements have been performed by geophones (velocity transducers) which have been time-integrated to displacements. The calculations are done in frequency-wavenumber domain for multi-beam-on-continuous soil models. The characteristics of the different tracks and track elements have been established in theory and experiment. The frequency-dependent compliances (displacement transfer functions) show clear rail-on-rail-pad resonances or highly damped track-soil resonances. Compared to the rail and sleeper, the track plate has much lower amplitudes. The slab track has usually the highest rail amplitudes due to soft rail pads. The train passage yields track displacements which are a superposition of the axle loads from the two neighbouring axles of a bogie and from the two bogies of two neighbouring carriages. This global behaviour is characteristic for the track plate of the slab track whereas the rails of the slab and the ballast track behave more local with only one bogie of influence. The measurements agree very well with the theory of the continuous soil in case of the six measured slab tracks and acceptably well for the six measured ballast tracks. The measurements allow to find appropriate model parameters and to check the models, for example the Winkler model of the soil has been found less appropriate as it reacts more locally. KW - Slab track KW - Ballast track KW - Train passage KW - Hammer impact KW - Track-soil interaction PY - 2021 DO - https://doi.org/10.1631/jzus.A1900651 SN - 1673-565X VL - 22 IS - 1 SP - 21 EP - 36 PB - Zhejiang University Press CY - Hangzhou AN - OPUS4-52107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straub, D. A1 - Schneider, Ronald A1 - Bismut, E. A1 - Kim, H.-J. T1 - Reliability analysis of deteriorating structural systems N2 - Reliability analysis of deteriorating structural systems requires the solution of time-variant reliability problems. In the general case, both the capacity of and the loads on the structure vary with time. This analysis can be approached by approximation through a series of time-invariant reliability problems, which is a potentially effective strategy for cases where direct solutions of the time-variant reliability problem are challenging, e.g. for structural systems with many elements or arbitrary load processes. In this contribution, we thoroughly Review the formulation of the equivalent time-invariant reliability problems and extend this approximation to structures for which inspection and monitoring data is available. Thereafter, we present methods for efficiently evaluating the reliability over time. In particular, we propose the combination of sampling-based methods with a FORM (first-order reliability method) approximation of the series system reliability problem that arises in the computation of the lifetime reliability. The framework and algorithms are demonstrated on a set of numerical examples, which include the computation of the reliability conditional on inspection data. KW - Monitoring KW - Reliability KW - Deterioration KW - Structural systems KW - Bayesian analysis KW - Inspection PY - 2020 DO - https://doi.org/10.1016/j.strusafe.2019.101877 VL - 82 SP - Paper 101877, 1 PB - Elsevier Ltd. AN - OPUS4-48952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Resonances of railway bridges analysed in frequency domain by the modal-force-excitation, bridge-transfer and axle-sequence spectra N2 - In this article, the passage of different trains over different bridges will be studied for resonant excitation. The intensity of the resonance will be estimated in frequency domain by using three separated spectra. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of the train. The influences of train speed, bridge length, bridge support, track irregularities, and train type on the resonance amplitudes will be analysed for each of these spectra separately for getting a better insight. A variety of axle-sequence spectra and corresponding rules will be presented for different vehicles and trains. As examples, the passage of a slow freight train over a long-span bridge, a normal passenger train over a medium-span bridge, and a high-speed train over a short bridge will be analysed. Corresponding measurements show the amplification, but also the cancellation of the subsequent axle responses. Namely in one of the measurement examples, the first mode of the bridge was amplified and the second mode was cancelled at a low speed of the train and vice versa at a higher speed. KW - Railway bridge KW - Bridge vibration KW - Train passage KW - Axle sequence KW - Resonance KW - Cancellation KW - Fequency domain PY - 2021 DO - https://doi.org/10.1016/j.engstruct.2021.113282 SN - 0141-0296 VL - 249 SP - 1 EP - 9 PB - Elsevier Ltd. CY - London AN - OPUS4-53766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The role of vehicle dynamics in train-induced ground vibrations and the detection of irregular axle-pulse responses due to a varying track support stiffness N2 - Train-induced ground vibrations are all generated by the vehicle, by static or dynamic vehicle loads. The most important and most accepted excitation are the dynamic wheel loads from the passage over track irregularities. Dynamic wheel loads will be compared from parallel axle-box and ground vibration measurements at more than seven sites. Some low-frequency excitation of ground vibrations, typically between 10 and 30 Hz, cannot be found in the axle-box measurements. Therefore, other vehicle modes, such as rigid bogie modes, flexible carriage modes, rigid and flexible wheelset modes, have been analysed for additional excitation forces. These vehicle dynamics analyses give an explanation for higher axle-box results at high frequencies, but not for the excitation of the higher low-frequency ground-vibration component. Finally, the effect of the moving static train loads will be analysed. For a regular track and soil, the moving static train loads yield the quasi-static response which exists only in the low-frequency nearfield of the track. If the support stiffness is randomly varying along the track, the pulses on the track generate an additional low-frequency component which is called the irregular pulse responses. This component will be demonstrated by numerical analysis where all axle pulses are superposed in frequency domain. KW - Wheelset KW - Vehicle-track interaction KW - Rail roughness KW - Random dynamics and vibrations KW - Modal analysis PY - 2022 DO - https://doi.org/10.1177/09544097221086064 SN - 0954-4097 VL - 236 IS - 10 SP - 1218 EP - 1233 PB - Sage CY - London AN - OPUS4-55000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiehle, Philipp A1 - Simon, Sebastian A1 - Baier, J. A1 - Dennin, L. ED - Forde, M. T1 - Influence of relative humidity on the strength and stiffness of unstabilised earth blocks and earth masonry mortar N2 - Aim of this study is to provide information about moisture dependent material behaviour of unstabilised loadbearing earth blocks and mortars. Compressive strength and Young’s modulus were investigated after conditioning in varying relative humidity reaching from 40 % up to 95 %. The material composition and physical properties were investigated to understand the influence of relative humidity onto the mechanical properties. A normalisation of strength and stiffness by the values obtained at 23 ◦C and 50 % relative humidity reveals a linear dependence of compressive strength and Young’s modulus that is regardless of the material composition. Thus, it is possible to describe the influence of relative humidity onto the load-bearing behaviour of unstabilised earth masonry materials in a generally valid formulation. KW - Earth block masonry KW - Load-bearing behaviour KW - Compressive strength KW - Moisture content KW - Sorption isotherm PY - 2022 DO - https://doi.org/10.1016/j.conbuildmat.2022.128026 SN - 0950-0618 VL - 342 IS - Part A SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-54949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Different types of continuous track irregularities as sources of train-induced ground vibration and the importance of the random variation of the track support N2 - Irregularities of the track are a main cause of train-induced ground vibration, and track maintenance is of great importance. Although geometric irregularities at the wheel-rail contact are widely used, other types of irregularities, such as stiffness irregularities, irregularities from different track positions and irregularities in the wave propagation, were analysed in the present study. The track behaviour was investigated by a multi-beam-on-soil model. This track model is coupled with a vehicle model to calculate the vehicle–track interaction. The track model was also used for the track filtering, which transfers a track support error to the equivalent rail irregularity or, conversely, the sharp axle pulse on the rail to a smoother pulse on the soil. In the case in which this filtering varies randomly along the track, the pulses of the moving static load induce a certain ground Vibration component (“the scatter of axle pulses”). This effect was calculated by the superposition of axle pulses in the frequency domain and by a stochastic simulation. Simultaneous vehicle, track and soil measurements at a certain site were used to evaluate the different excitation and ground Vibration components. The agreement between calculations and axle-box and soil measurements is good. The ground vibrations calculated from rail irregularities and corresponding dynamic loads, however, clearly underestimate the measured ground vibration amplitudes. Only the static load that is moving over a varying track support stiffness can produce the important mid-frequency ground Vibration component by the scatter of axle pulses. KW - Train-induced ground vibration KW - Geometric vehicle and track irregularities KW - Stiffness variation KW - Multi-beam track model KW - Track filtering KW - Dynamic axle loads KW - Static axle loads KW - layered soil PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543846 DO - https://doi.org/10.3390/app12031463 SN - 2076-3417 VL - 12 IS - 3 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Savidis, S. A1 - Bergmann, M. A1 - Schepers, Winfried A1 - Fontara, I.-K. T1 - Wave propagation in inhomogeneous media via FE/PML method N2 - The Perfectly Matched Layer (PML) method is an efficient approach to imposing radiation conditions at the bounded region of interest in case of wave propagation in unbounded domains. This paper presents and validates 3D FE/PML numerical schemes based on two different PML formulations for homogeneous and inhomogeneous geological media exhibiting discrete or continuous inhomogeneity. In the equation of motion for the PML domain the applied stretching behavior is expressed either as complex material properties or as complex coordinates. Both PML formulations are implemented in the FEM and verified against analytical solutions. Three different types of material inhomogeneity are considered: layered half-space, continuously inhomogeneous half-space with linear velocity profile and continuously inhomogeneous half-space with nonlinear velocity profile. Sensitivity analyses are conducted, and the performance of the developed numerical schemes is investigated taking into account a broad variation of the PML parameters. Recommendations are given for the optimal values of the PML parameters for the case of homogeneous and inhomogeneous geological media. KW - Perfectly Matched Layer (PML) KW - Unbounded domain KW - Finite elements KW - Continuously inhomogeneous geological media PY - 2022 DO - https://doi.org/10.1002/gete.202100028 VL - 45 IS - 2 SP - 98 EP - 107 PB - Ernst & Sohn CY - Berlin AN - OPUS4-54969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liehr, A. A1 - Wegener, T. A1 - Degener, Sebastian A1 - Bolender, A. A1 - Möller, N. A1 - Niendorf, T. T1 - Experimental Analysis of the Stability of Retained Austenite in a Low‐Alloy 42CrSi Steel after Different Quenching and Partitioning Heat Treatments N2 - Quenching and partitioning (Q&P) steels are characterized by an excellent combination of strength and ductility, opening up great potentials for advanced lightweight components. The Q&P treatment results in microstructures with a martensitic matrix being responsible for increased strength whereas interstitially enriched metastable retained austenite (RA) contributes to excellent ductility. Herein, a comprehensive experimental characterization of microstructure evolution and austenite stability is carried out on a 42CrSi steel being subjected to different Q&P treatments. The microstructure of both conditions is characterized by scanning electron microscopy as well as X‐ray diffraction (XRD) phase analysis. Besides macroscopic standard tensile tests, RA evolution under tensile loading is investigated by in situ XRD using synchrotron and laboratory methods. As a result of different quenching temperatures, the two conditions considered are characterized by different RA contents and morphologies, resulting in different strain hardening behaviors as well as strength and ductility values under tensile loading. In situ synchrotron measurements show differences in the transformation kinetics being rationalized by the different morphologies of the RA. Eventually, the evolution of the phase specific stresses can be explained by the well‐known Masing model. KW - Condensed Matter Physics KW - General Materials Science PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581618 DO - https://doi.org/10.1002/adem.202300380 SN - 1438-1656 VL - 25 IS - 17 SP - 1 EP - 16 PB - Wiley AN - OPUS4-58161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald T1 - Von der Datenerfassung bis zur Entscheidungsfindung: Jede Brücken-Überwachung bedarf einer Gesamtmethodik N2 - Brücken müssen laufend überwacht werden, damit die Unsicherheiten hinsichtlich ihres Zustands, ihrer Beanspruchung und ihrer Leistungsfähigkeit verringert werden können. Diese Aufgabe soll künftig mit digitalen Methoden erleichtert werden. Im folgenden Beitrag werden deshalb die digitale Bauwerksmodellierung und die Entscheidungsfindung beleuchtet. Dazu wird gezeigt, wie Zustandsdiagnosen und -prognosen digital ermöglicht werden und wie durch diagnostische und prognostische Modelle eine wissenschaftliche Basis für risikobasierte Entscheidungen über Erhaltungsmaßnahmen und für den Übergang vom reaktiven zum vorausschauenden Brückenmanagement gebildet werden kann. Dabei wird klar: Jede Brücken-Überwachung bedarf einer Gesamtmethodik, ihre wichtigsten Elemente sind: Datenerfassung, Datenmanagement, Datenanalyse, Bauwerksmodellierung, Bauwerksbewertung und die letztendlichen Entscheidungen über notwendige Erhaltungsmaßnahmen. KW - Prädiktive Instandhaltung KW - Brücken KW - Erhaltungsmanagement KW - Digitale Zwillinge PY - 2023 IS - 62 SP - 76 EP - 83 AN - OPUS4-57811 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brinkmann, M. A1 - Wiehle, Philipp T1 - Correlation between relative humidity and the strength and deformation characteristics of unstabilised earth masonry N2 - The mechanical properties of unstabilised earthen building materials are distinctively influenced by changes in material moisture content. However, this moisture-dependency often remains unconsidered in the calculation of the load-bearing capacity of earth constructions. This paper aims to derive a convenient way to sufficiently consider the impact of different material moisture contents on the mechanical properties of unstabilised earth masonry. Therefore, the influence of relative humidity and temperature on the strength and deformation characteristics of unstabilised earth blocks, earth mortar and earth masonry is evaluated by conducting compression tests under various climate conditions. The results show that the compressive strength and the modulus of elasticity are linearly correlated with the relative humidity, whereas changes in temperature at constant relative humidity have no significant influence. To account the distinct moisture-dependency, a general applicable modification factor for unstabilised earthen materials is provided, which enables the adjustment of the compressive strength and the modulus of elasticity in dependency of arbitrary hygroscopic material moisture contents. KW - Earth masonry KW - Earth blocks KW - Relative humidity KW - Modulus of elasticity KW - Moisture KW - Compressive strength KW - Stress–strain-relation PY - 2023 DO - https://doi.org/10.1016/j.conbuildmat.2022.130048 SN - 0950-0618 VL - 366 IS - 22 SP - 1 EP - 11 PB - Elsevier BV AN - OPUS4-56732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lesny, K. A1 - Arnold, P. A1 - Sorgatz, J. A1 - Schneider, Ronald T1 - Wie sicher sind unsere Bauwerke? - Strukturpapier des Arbeitskreises 2.15 der DGGT „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ N2 - Der zukünftige Eurocode 7 wird ausdrücklich die Nutzung zuverlässigkeitsbasierter Methoden in der geotechnischen Planung und Bemessung erlauben. In Deutschland gibt es bisher kaum Erfahrung in der praktischen Anwendung derartiger Verfahren und entsprechend sind die Vorbehalte gegenüber diesen Methoden oft groß. Der neue DGGT-Arbeitskreis (AK) 2.15 „Zuverlässigkeitsbasierte Methoden in der Geotechnik“ hat sich zum Ziel gesetzt, durch praxisorientierte Anleitungen und Empfehlungen sowie begleitende Aus- und Weiterbildungsangebote den praktischen Zugang zu diesen Verfahren zu unterstützen. Ziel ist es, Möglichkeiten und Grenzen zu verdeutlichen sowie vor allem ihre Potenziale zu erschließen. In dem vorliegenden Beitrag werden allgemeine Grundlagen und die zukünftigen Arbeitsfelder des AK 2.15 vorgestellt. Ausgehend von der Einführung relevanter Fachbegriffe wird zunächst die Einbettung zuverlässigkeitsbasierter Verfahren in den aktuellen Normungs- und Regelungskontext aufgezeigt. Anschließend werden anhand des Lebenszyklus eines geotechnischen Bauwerks die Unsicherheiten in den geotechnischen Prognosen und Bewertungen beschrieben. Daran anknüpfend wird aufgezeigt, an welchen Stellen zuverlässigkeitsbasierte Methoden als mögliches Werkzeug sinnvoll genutzt werden können, um Ingenieur:innen, Bauherr:innen und Prüfer:innen in Nachweis- und Entscheidungsprozessen zu unterstützen. Zu den sich daraus ableitenden Arbeitsthemen werden durch den AK 2.15 zukünftig Empfehlungen erarbeitet und sukzessive veröffentlicht KW - Brückensicherheit KW - Sicherheit KW - Wahrscheinlichkeit KW - Zuverlässigkeit KW - Bemessung KW - Bewertung KW - Offshore Wind PY - 2023 DO - https://doi.org/10.1002/gete.202300014 VL - 46 IS - 3 SP - 153 EP - 164 PB - Ernst & Sohn GmbH CY - Berlin AN - OPUS4-58208 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faghih-Naini, Sara A1 - Kuckuk, Sebastian A1 - Zint, Daniel A1 - Kemmler, Samuel A1 - Köstler, Harald A1 - Aizinger, Vadym T1 - Discontinuous Galerkin method for the shallow water equations on complex domains using masked block-structured grids N2 - We evaluate masked block-structured grids for ocean domains which allow to represent small-scale geometric features without resorting to very small blocks or excessive mesh resolution. The considered approach aims to combine the geometric flexibility of unstructured meshes with the computational efficiency of stencil-based discretizations and is implemented and tested in a quadrature-free discontinuous Galerkin shallow water solver. We investigate the accuracy and the computational performance of the scheme on a range of realistic ocean domains meshed with blocks of different size and provide some comparisons to results obtained on unmasked block-structured grids and unstructured meshes. KW - Water Science and Technology PY - 2023 DO - https://doi.org/10.1016/j.advwatres.2023.104584 VL - 182 SP - 1 EP - 11 PB - Elsevier AN - OPUS4-58884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sadowski, A. A1 - Seidel, M. A1 - Al-Lawati, H. A1 - Azizi, E. A1 - Balscheit, Hagen A1 - Böhm, M. A1 - Chen, Lei A1 - van Dijk, I. A1 - Doerich-Stavridis, C. A1 - Kunle Fajuyitan, O. A1 - Filippidis, A. A1 - Winther Fischer, A. A1 - Fischer, C. A1 - Gerasimidis, S. A1 - Karampour, H. A1 - Kathirkamanathan, L. A1 - Subramanian, S. A1 - Topkaya, Cem A1 - Wagner, H. N. R. A1 - Wang, J. A1 - Wang, J. A1 - Kumar Yadav, K. A1 - Yun, X. A1 - Zhang, P. T1 - 8-MW wind turbine tower computational shell buckling benchmark - Part 1: An international ‘round-robin’ exercise N2 - An assessment of the elastic-plastic buckling limit state for multi-strake wind turbine support towers poses a particular challenge for the modern finite element analyst, who must competently navigate numerous modelling choices related to the tug-of-war between meshing and computational cost, the use of solvers that are robust to highly nonlinear behaviour, the potential for multiple near-simultaneously critical failure locations, the complex issue of imperfection sensitivity and finally the interpretation of the data into a safe and economic design. This paper reports on an international ‘round-robin’ exercise conducted in 2022 aiming to take stock of the computational shell buckling expertise around the world which attracted 29 submissions. Participants were asked to perform analyses of increasing complexity on a standardised benchmark of an 8-MW multi-strake steel wind turbine support tower segment, from a linear elastic stress analysis to a linear bifurcation analysis to a geometrically and materially nonlinear buckling analysis with imperfections. The results are a showcase of the significant shell buckling expertise now available in both industry and academia. This paper is the first of a pair. The second paper presents a detailed reference solution to the benchmark, including an illustration of the Eurocode-compliant calibration of two important imperfection forms. KW - Wind turbine tower KW - Computational KW - Shell buckling KW - Benchmark PY - 2023 DO - https://doi.org/10.1016/j.engfailanal.2023.107124 SN - 1350-6307 VL - 148 SP - 1 EP - 23 PB - Elsevier Science CY - Oxford AN - OPUS4-57019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiehle, Philipp A1 - Brinkmann, M. T1 - Material behaviour of unstabilised earth block masonry and its components under compression at varying relative humidity N2 - block and mortar types is analysed with particular regard to the influence of varying relative humidity. The uniaxial compressive strength and deformation characteristics of unstabilised earth blocks and mortars as well as of unstabilised earth block masonry are studied in detail and compared to conventional masonry to evaluate whether the structural design can be made accordingly. An increase of 30 % points in relative humidity leads to a reduction of the masonry´s compressive strength between 33 % and 35 % whereas the Young´s modulus is reduced by 24–29 %. However, the ratio between the Young´s modulus and the characteristic compressive strength of earth block masonry ranges between E33/fk = 283–583 but is largely independent of the relative humidity. The results show that the mechanical properties of the investigated unstabilised earth block masonry are sufficient for load-bearing structures, yielding a masonry compressive strength between 2.3 MPa and 3.7 MPa throughout the range of moisture contents investigated. In general, the design concept of conventional masonry can be adapted for unstabilised earth masonry provided that the rather low Young´s modulus as well as the moisture dependence of both, compressive strength and Young´s modulus, are sufficiently taken into account. KW - Compressive strength KW - Earth block masonry KW - Compression tests KW - Stress-strain relation KW - Relative humidity KW - Moisture content PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-562417 DO - https://doi.org/10.1016/j.cscm.2022.e01663 SN - 2214-5095 VL - 17 SP - 1 EP - 15 PB - Elsevier B.V. CY - Netherlands AN - OPUS4-56241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schepers, Winfried A1 - Kulke, D. T1 - Cone penetration tests and dynamic soil properties N2 - ISO 14837-32:2015 and DIN EN 1998-1/NA:2021 as well as prEN 1997-2:2022 allow for us-ing correlations between the results of in-situ soil penetration tests and shear wave velocity (or shear modulus) to determine soil properties to be used in dynamic analyses. While the ISO and prEN standards even provide some recommendations on specific correlations to be used, the DIN standard does not. Due to the statistical nature of such correlations their general applica-bility has to be verified. We collected data sets from test sites from Germany as well as New Zealand at which cone penetration tests (CPT) as well as seismic site investigation methods were conducted. These sites comprise sandy soils as well as clayey soils, mixed soils as well as glacial soils. We compare the results of several correlations between CPT results and shear wave velocity. The accuracy of such correlations is assessed with respect to the accuracy of seismic in-situ tests. It turns out that for clean sands such correlations between CPT and Vs have a similar order of variability as seismic in-situ tests conducted at the same site. The higher the fines portion of the soil, the higher the variability of the statistical correlations, and conse-quently the less the general applicability. For glacial soils and other special soil types usage of statistical correlations to determine dynamic soil properties is not recommended. T2 - XII International Conference on Structural Dynamics CY - Delft, Netherlands DA - 02.07.2023 KW - Wave propagation KW - Soil properties KW - Dynamic excitation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604887 DO - https://doi.org/10.1088/1742-6596/2647/25/252005 VL - 2647 SP - 1 EP - 11 PB - IOP Publishing CY - Bristol AN - OPUS4-60488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schepers, Winfried A1 - Brinkgreve, RBJ A1 - Appel, S. T1 - Recommendations on finite element modelling of non-seismic excitation in soil-structure interaction problems N2 - Nowadays geotechnical engineering firms have powerful software tools to extent their consult-ing business also into dynamic soil-structure interaction, which before has been restricted to a rather small community of specialized experts in this field, and they certainly do. This is par-ticularly true with respect to non-seismic sources, that is all kinds of human induced vibrations. Hence, there is a demand from clients as well as from contractors to have guidance on the re-quirements as well as the limits of numerical modelling of soil-structure interaction. From the literature as well as from relevant standards, recommendations for the numerical modelling of soil-structure interaction problems involving seismic actions are well known, e. g. ASCE/SEI 4-16. There are, however, some particularities when dealing with human-induced vibrations, which are absent in seismic analyses. For human-induced excitations very little specific guid-ance has been published in the past. A machine foundation on a homogeneous half space ex-cited by harmonic loads with excitation frequency between 4 Hz and 64 Hz has been ana-lysed by means of several commercially available software packages. Parametric studies have been performed to verify if recommendations for seismic soil-structure analyses are valid for non-seismic analyses as well. This paper provides details on the benchmark example and the most important conclusions from the undertaken parametric studies. T2 - XII International Conference on Structural Dynamics CY - Delft, Netherlands DA - 02.07.2023 KW - Numerische Analysen KW - Referenzbeispiel KW - Maschinenfundament KW - Wellenausbreitung PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604931 DO - https://doi.org/10.1088/1742-6596/2647/8/082014 SN - 1742-6596 VL - 2647 IS - 25 SP - 1 EP - 13 PB - IOP Publishing AN - OPUS4-60493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vollmer, Malte A1 - Degener, Sebastian A1 - Bolender, Artjom A1 - Bauer, Andre A1 - Liehr, Alexander A1 - Stark, Andreas A1 - Schell, Norbert A1 - Barriobero-Vila, Pere A1 - Requena, Guillermo A1 - Niendorf, Thomas T1 - Time resolved insights into abnormal grain growth by in situ synchrotron measurements N2 - Large oligo-crystalline or single-crystalline metallic materials are of great interest for numerous applications, and a recently developed strategy for promoting abnormal grain growth induced by a cyclic heat treatment opens up new opportunities to manufacture single crystals with a size of several centimeters. So far, the entire available knowledge on this kind of abnormal grain growth has been elaborated based on time discrete observations and, thus, detailed insights into the interplay of elementary mechanisms are still lacking in open literature. The present study reveals time resolved insights into this kind of abnormal grain growth for the first time. It was possible to break down the influence of the individual heat treatment phases by in situ synchrotron high energy X-ray diffraction analysis during cyclic heat reatment. The results obtained not only help to gain a deep understanding of the abnormal grain growth mechanisms, they will also be the basis for an adjustment of the cyclic heat treatment process to improve its efficiency and to eventually obtain even larger single crystals. KW - Single crystals KW - Grain growth method KW - Synchrotron diffraction KW - High-energy X-ray diffraction KW - Grain boundary migration PY - 2023 DO - https://doi.org/10.1016/j.actamat.2023.119168 SN - 1359-6454 VL - 257 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-62188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liehr, Alexander A1 - Dingel, Kristina A1 - Kottke, Daniel A1 - Degener, Sebastian A1 - Meier, David A1 - Sick, Bernhard A1 - Niendorf, Thomas T1 - Data selection strategies for minimizing measurement time in materials characterization N2 - Every new material needs to be assessed and qualified for an envisaged application. A steadily increasing number of new alloys, designed to address challenges in terms of reliability and sustainability, poses significant demands on well-known analysis methods in terms of their efficiency, e.g., in X-ray diffraction analysis. Particularly in laboratory measurements, where the intensities in diffraction experiments tend to be low, a possibility to adapt the exposure time to the prevailing boundary conditions, i.e., the investigated microstructure, is seen to be a very effective approach. The counting time is decisive for, e.g., complex texture, phase, and residual stress measurements. Traditionally, more measurement points and, thus, longer data collection times lead to more accurate information. Here, too short counting times result in poor signal-to-background ratios and dominant signal noise, respectively, rendering subsequent evaluation more difficult or even impossible. Then, it is necessary to repeat experiments with adjusted, usually significantly longer counting time. To prevent redundant measurements, it is state-of-the-art to always consider the entire measurement range, regardless of whether the investigated points are relevant and contribute to the subsequent materials characterization, respectively. Obviously, this kind of approach is extremely time-consuming and, eventually, not efficient. The present study highlights that specific selection strategies, taking into account the prevailing microstructure of the alloy in focus, can decrease counting times in X-ray energy dispersive diffraction experiments without any detrimental effect on data quality for the subsequent analysis. All relevant data, including the code, are carefully assessed and will be the basis for a widely adapted strategy enabling efficient measurements not only in lab environments but also in large-scale facilities. KW - Materials characterization KW - Machine learning KW - X-ray diffraction KW - Measurement optimization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630831 DO - https://doi.org/10.1038/s41598-025-96221-1 SN - 2045-2322 VL - 15 IS - 1 SP - 1 EP - 12 PB - Springer Science and Business Media LLC AN - OPUS4-63083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liao, Chun-Man ED - Zhang, Jian T1 - Modal and Wave Propagation Analysis of Vibration Tests on a Laboratory Building Model Before and After Damage N2 - Weakened structural stiffness is often a consequence of building damage, particularly after severe events such as earthquakes, where compromised structural performance can pose significant risks. To prevent immediate structural failure, an early warning system is essential, which requires inspection of local components. This research aims to achieve that by exploring the wave propagation analysis method, specifically seismic interferometry. Previous studies have applied this method to building structures, treating them as homogeneous layers of grouped floors. By analyzing the wave travel time along the height of these layers, the fundamental period of the building was estimated. However, this approach did not account for local damage or the variability of structural components, similar to the limitations of vibration‐based damage detection methods, which mainly identify global changes. Thus, the goal of this paper is to improve structural health monitoring by examining the sensitivity of wave screening, bridging the gap between nondestructive testing and vibration‐based damage detection. A half‐scale, seven‐story building model, characterized by vertical stiffness irregularity and transverse plan asymmetry, was tested in a laboratory setting. Two vertical sensor arrays were placed near corner columns of different sizes, representing both strong and weak structural areas. These arrays recorded floor accelerations in three directions. The study confirmed the effectiveness of wave propagation analysis for detecting damage along the sensor arrays before and after the earthquake. A transmissibility damage indicator was used to correlate changes in wave velocity, providing a quantitative assessment of damage levels along the wave propagation path. KW - Damage location KW - Laboratory test KW - Soft story KW - Stifness irregular structure KW - Structural health monitoring PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624931 DO - https://doi.org/10.1155/stc/3453150 SN - 1545-2263 VL - 2025 IS - 1 SP - 1 EP - 17 PB - John Wiley & Sons Ltd. AN - OPUS4-62493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titscher, Thomas A1 - van Dijk, T. A1 - Kadoke, Daniel A1 - Robens-Radermacher, Annika A1 - Herrmann, Ralf A1 - Unger, Jörg F. T1 - Bayesian model calibration and damage detection for a digital twin of a bridge demonstrator N2 - Using digital twins for decision making is a very promising concept which combines simulation models with corresponding experimental sensor data in order to support maintenance decisions or to investigate the reliability. The quality of the prognosis strongly depends on both the data quality and the quality of the digital twin. The latter comprises both the modeling assumptions as well as the correct parameters of these models. This article discusses the challenges when applying this concept to realmeasurement data for a demonstrator bridge in the lab, including the data management, the iterative development of the simulation model as well as the identification/updating procedure using Bayesian inference with a potentially large number of parameters. The investigated scenarios include both the iterative identification of the structural model parameters as well as scenarios related to a damage identification. In addition, the article aims at providing all models and data in a reproducibleway such that other researcher can use this setup to validate their methodologies. KW - Damage detection KW - Finite element analysis KW - Load identification KW - Model updating KW - Estimation KW - System identification KW - Variational Bayesian statistics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574496 DO - https://doi.org/10.1002/eng2.12669 SN - 2577-8196 SP - 1 EP - 27 PB - Wiley CY - Hoboken, NJ AN - OPUS4-57449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Strangfeld, Christoph A1 - Stolpe, Heiko A1 - Wiehle, Philipp T1 - Moisture diffusion affected by the Knudsen effect in temporal changing pore networks N2 - Almost all building materials in civil engineering have an open porosity and interact with or are affected by the environmental conditions. Structures might suffer from effects such as moisture adsorption, carbonation, corrosion, penetration of salt ions and chemical substances, etc. In the hygroscopic range, these processes are mostly driven by diffusion. Due to the confinement of small pores (less than1 µm), the Knudsen effect reduces the molecular diffusion. This reduction can become more significant in case of temporal changing pore systems because of physisorption of water vapor, carbonation, or chemisorption. In this study, unstabilised earth blocks and earth masonry are investigated. In a first step, the pore size distribution of the blocks is measured and sorption isotherms are recorded in experiments. Besides the ordinary physisorption, the involved clay minerals undergo swelling or shrinking due to chemisorption. The following two effects must be considered: first, the reduction of the available pore space by the adsorbed water layer. For this, the Hillerborg sorption theory is used, which is a combination of the well-known Brunauer-Emmett-Teller sorption theory and the Kelvin equation. This allows the computation of adsorbed water layers even in curved pore geometries. Second, the variation of the initial pore size distribution due to chemisorption needs to be modelled. Based on these two models, the effective diffusion coefficient can be predicted. For validation, arrays of relative humidity sensors were embedded into a free-standing earth masonry wall. This monitoring was carried out over more than a year to have a broad variety of environmental conditions and was located in Berlin, Germany. The prediction of the effective diffusion coefficient can also be transferred to other processes and allows the investigation of materials having temporarily changing pore systems. Examples are the carbonation of cementitious materials, alkali silica reaction, calcium leaching of long-lasting structures, etc. These effects are prominent in the meso-pore range and might significantly alter the effective diffusion coefficient. KW - Earth material KW - Material moisture KW - Physisoprtion KW - Chemisorption PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583811 DO - https://doi.org/10.1016/j.matpr.2023.09.034 SN - 2214-7853 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-58381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferrier, Emmanuel A1 - Michel, Laurent A1 - Thiele, Marc A1 - Mercier, Julien T1 - Strain-rate effect on the bond strength of external bonded reinforced carbon fiber-reinforced polymer for concrete structure N2 - The aim of the presented study is to investigate the dynamic loading strength of an external bonded fiber-reinforced polymers (FRP) system under seismic loading. 16 bonded FRP samples under different loading speeds ranging as 0.0000167–0.8 m /s were examined to determine the characteristics of the FRP bond strength on the concrete. The mechanical tests involved measuring the concrete/FRP shear properties using a double-lap shear test. Sixteen concrete specimens were cast, strengthened and surface preparation, instrumented, and driven to failure in the LMC laboratory and the BAM laboratory (Germany). Dynamic loading increased the bonded strength mainly because of an increase in the concrete tensile strength. Experimental data are then analysed and competed with the equation given by the new European standard that develop the design of external bonded FRP. The characteristic properties and bonded strength obtained by design equation were compared. Based on the results design equation are modified. KW - EBR strengthening system KW - Desing bond strength KW - Durability PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625354 DO - https://doi.org/10.1016/j.conbuildmat.2025.140216 SN - 1879-0526 VL - 466 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-62535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, Vivian A1 - Pirskawetz, Stephan A1 - Thiele, Marc A1 - Rogge, Andreas T1 - Ermüdungsverhalten von Beton für unterschiedliche Probekörpergeometrien N2 - Die heute in der Anwendung befindlichen Bemessungskonzepte für Ermüdung von Beton stammen zum Teil noch aus den 1990er Jahren und sind speziell hinsichtlich hochfester Betone konservativ ausgelegt. Um die Vorteile von Türmen für Windkraftanlagen, vor allem auch aus hochfesten Betonen, im Zuge des geplanten Ausbaus der Windenergieversorgung in Deutschland wirtschaftlich nutzbar zu machen, müssen diese Bemessungskonzepte weiterentwickelt werden. Dafür sind umfangreiche Untersuchungen zur Ermittlung von Bruchlastwechselzahlen und zur Charakterisierung der Schädigungsentwicklung unter Ermüdungsbeanspruchung erforderlich. Allgemein anerkannte bzw. verbindliche Regelwerke oder Verfahren zur experimentellen Bestimmung der Ermüdungsfestigkeit (Bruchlastwechselzahlen) an Betonproben gibt es zurzeit aber nicht und die bisher durchgeführten Untersuchungen variieren in Parametern wie Probengeometrie, Probengröße und Prüffrequenz. Eine vergleichende Analyse der Ergebnisse der Studien und insbesondere die Übertragbarkeit auf bauteilrelevante Abmessungen ist auf dieser Grundlage nur sehr eingeschränkt möglich. KW - Ermüdungsverhalten KW - Probekörpergeometrien KW - Druckschwellenversuch KW - Bruchlastwechselzahlen KW - Beton PY - 2023 UR - https://www.betonverein.de/dbv-heft-52-materialermuedung-von-stahl-und-spannbeton-unter-hochzyklischer-beanspruchung-ergebnisse-des-verbundforschungsvorhabens-win-con-fat IS - 52 SP - 19 EP - 22 PB - Deutscher Beton- und Bautechnik-Verein E.V. CY - Berlin AN - OPUS4-58746 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weise, Frank A1 - Stelzner, Ludwig A1 - Recknagel, Christoph A1 - Pittrich, Tim A1 - Neugum, Tim A1 - Hering, Marcus A1 - Fiedler, Georg A1 - Thiele, Marc A1 - Simon, Patrick A1 - Maack, Stefan T1 - 63. DAfStb-Forschungskolloquium in der BAM - Themenblock 5: Bauteile und Bauwerke N2 - Ein weiterer Fokus des 63. DAfStb-Forschungskolloquiums (Tagungsband: DOI 10.26272/opus4-61338) lag auf den Bauteil- und Bauwerksuntersuchungen. Insbesondere wurde hier ein Einblick in die Forschungsaktivitäten in den BAM-Themenfeldern „Infrastruktur“ und „Energie“ gegeben. Thematisch wird dabei der Bogen von der Dauerhaftigkeit von Betonfahrbahndecken über die Extrembeanspruchung von Bauteilen und Bauwerken mittels Brand und Impact bis zum Bauwerksmonitoring und der Zustandsanalyse von Bestandsbauwerken gespannt. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Dauerhaftigkeit von Betonfahrbahndecken KW - Alkali-Kieselsäurereaktion KW - Brand Impact KW - Bauwerksmonitoring PY - 2025 SN - 0005-9846 VL - 75 IS - 4 SP - 138 EP - 140 PB - concrete content UG CY - Schermbeck AN - OPUS4-63071 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartels, Jan-Hauke A1 - Xu, Ronghua A1 - Kang, Chongjie A1 - Herrmann, Ralf A1 - Marx, Steffen T1 - Experimental Investigation on the Transfer Behavior and Environmental Influences of Low-Noise Integrated Electronic Piezoelectric Acceleration Sensors N2 - Acceleration sensors are vital for assessing engineering structures by measuring properties like natural frequencies. In practice, engineering structures often have low natural frequencies and face harsh environmental conditions. Understanding sensor behavior on such structures is crucial for reliable masurements. The research focus is on understanding the behavior of acceleration sensors in harsh environmental conditions within the low-frequency acceleration range. The main question is how to distinguish sensor behavior from structural influences to minimize errors in assessing engineering structure conditions. To investigate this, the sensors are tested using a long-stroke calibration unit under varying temperature and humidity conditions. Additionally, a mini-monitoring system configured with four IEPE sensors is applied to a small-scale support structure within a climate chamber. For the evaluation, a signal-energy approach is employed to distinguish sensor behavior from structural behavior. The findings show that IEPE sensors display temperature-dependent nonlinear transmission behavior within the low-frequency acceleration range, with humidity having negligible impact. To ensure accurate engineering structure assessment, it is crucial to separate sensor behavior from structural influences using signal energy in the time domain. This study underscores the need to compensate for systematic effects, preventing the underestimation of vibration energy at low temperatures and overestimation at higher temperatures when using IEPE sensors for engineering structure monitoring. KW - Acceleration sensors KW - Environmental influence KW - IEPE KW - Structural Health Monitoring KW - Low-frequency shaker PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594623 UR - https://www.mdpi.com/2673-8244/4/1/4/ DO - https://doi.org/10.3390/metrology4010004 SN - 2673-8244 VL - 4 IS - 1 SP - 46 EP - 65 PB - MDPI CY - Basel AN - OPUS4-59462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glienke, R. A1 - Kalkowsky, F. A1 - Hobbacher, A. F. A1 - Holch, A. A1 - Thiele, Marc A1 - Marten, F. A1 - Kersten, R. A1 - Henkel, K.-M. T1 - Evaluation of the fatigue resistance of butt‑welded joints in towers of wind turbines - A comparison of experimental studies with small scale and component tests as well as numerical based approaches with local concepts N2 - Wind turbines are exposed to a high number of load cycles during their service lifetime. Therefore, the fatigue strength verification plays an important role in their design. In general, the nominal stress method is used for the fatigue verification of the most common used butt-welded joints. The Eurocode 3 part 1–9 is the current design standard for this field of application. This paper presents recent results of fatigue tests on small-scaled specimens and large components with transverse butt welds to discuss the validity of the FAT-class. Furthermore, results from numerical simulations for the verification with the effective notch stress and the crack propagation approach are used for comparison. Based on the consistency between the numerical results and the fatigue tests, the influence of the seam geometry on the fatigue resistance was investigated. Finally, a prediction of the fatigue strength of butt-welded joints with plate thicknesses up to 80 mm was carried out. KW - Transverse butt weld KW - Weld imperfections KW - Wind turbine tower KW - Fatigue strength KW - Local approaches KW - Large components KW - Wind energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596648 DO - https://doi.org/10.1007/s40194-023-01630-3 SN - 1878-6669 SP - 1 EP - 26 PB - Springer CY - Berlin AN - OPUS4-59664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wedel, F. A1 - Pitters, S. A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Hindersmann, I. T1 - Guideline for the strategic application of monitoring of road bridges in Germany N2 - Engineering structures are an important part of our transport infrastructure. Their failure is associated with high safety risks and economic damage. Ensuring the availability of these constructions and guaranteeing their operational safety are thus important tasks. Currently, maintenance of engineering structures is a reactive process and therefore not yet a predictive process. Every 3 to 6 years, the structures are visually inspected, all damages are documented and a condition grade is assigned to the structure based on the detected damages. Continuous data-providing methods such as monitoring are used only very occasionally. With the help of monitoring, condition data about the structures are continuously collected, which can be used for a better assessment of the structures. On the one hand, this would increase safety of engineering structures, and on the other hand, it makes the shift towards predictive maintenance management based on real-time data and predictions, where the onset of damage is detected before it occurs, possible in the first place. Monitoring plays therefore an important role in the management of the infrastructure. It is a crucial a step towards the digitalisation of our infrastructure and existing processes. Although there are many use cases for monitoring that have already been successfully implemented, monitoring is not yet widely used by German road authorities due to several challenges that were also identified within the scope of the project. Therefore, a guide has been developed in which the current obstacles related to monitoring are identified and possibilities for integrating monitoring into existing processes are offered. To ensure optimal alignment with the needs of road authorities, both an online survey and a workshop have been conducted. The results are summarised in a brochure that is made available to authorities to improve the use of monitoring in Germany. This paper presents the guideline and the brochure. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Verkehrsinfrastrukturen KW - Engineering Structures KW - Bridges KW - Structural Health Monitoring KW - Guideline PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612821 UR - https://www.ndt.net/search/docs.php3?id=29582 DO - https://doi.org/10.58286/29582 SN - 1435-4934 VL - 29 IS - 7 SP - 1 EP - 8 PB - NDT.net GmbH & Co. KG CY - Mayen AN - OPUS4-61282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Signorini, C. A1 - Bracklow, F. A1 - Hering, Marcus A1 - Butler, M. A1 - Leicht, L. A1 - Schubert, T. A1 - Beigh, M. A. B. A1 - Beckmann, B. A1 - Curbach, M. A1 - Mechtcherine, V. T1 - Ballistic limit and damage assessment of hybrid fibre-reinforced cementitious thin composite plates under impact loading N2 - Impact resistance of reinforced concrete (RC) structures can be significantly improved by strengthening RC members with thin composite layers featuring high damage tolerance. Indeed, to limit the well-known vulnerability of cement-based materials against impact loading, the synergistic effects of short fibres and continuous textile meshes as hybrid reinforcement has been proved to be highly beneficial. This paper addresses the characterisation of novel cement-based hybrid composites through accelerated drop-weight impact tests conducted on rectangular plates at different impact energies. Two distinct matrices are assessed, with particular interest in a newly developed limestone calcined clay cement (LC3)-based formulation. Important parameters quantifying energy dissipation capability, load bearing capacity and damage are cross-checked to compute the ballistic limit and estimate the safety-relevant characteristics of the different composites at hand. Although textiles alone can improve the damage tolerance of fine concrete to some extent, the crack-bridging attitude of short, well-dispersed fibres in hybrid composites imparts a certain ductility to the cement-based matrices, allowing a greater portion of the textile to be activated and significantly reducing the amount of matrix spalling under impact. KW - Impact loading KW - Cement-based composites KW - SHCC KW - TRC KW - Sustainable binders PY - 2023 DO - https://doi.org/10.1016/j.jobe.2023.108037 VL - 80 SP - 1 EP - 21 PB - Elsevier Ltd. AN - OPUS4-58793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lehmann, F. A1 - Hille, Falk T1 - Dauerüberwachung von Ingenieurbauwerken - Das neue Merkblatt B 09 der DGZfP T1 - Permanent monitoring of engineering structures The new leaflet B 09 of the DGZFP N2 - Messtechnische Systeme zur Dauerüberwachung von Bauwerken ermöglichen Einblicke in deren reale Trag- und Verformungsverhalten. Die Planung und technische Umsetzung solcher Maßnahmen erfordern für die erfolgreiche Erfüllung der Aufgabenstellungen eine hohe Fachkompetenz, sowohl auf der planerischen Seite, als auch für die fachliche Bewertung von angebotenen Monitoringlösungen. Als Hilfestellung dafür wurde von der Deutschen Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) das Merkblatt „Dauerüberwachung von Ingenieurbauwerken“ erarbeitet, welches nun verfügbar ist. In diesem Beitrag werden die Inhalte des neuen Merkblatts vorgestellt und dieses in die vorhandene Literatur eingeordnet. KW - Structural Health Monitoring KW - Brücken KW - Windenergieanlagen KW - Merkblatt KW - Bauwerksüberwachung KW - Richtlinie PY - 2023 DO - https://doi.org/10.1002/best.202200122 VL - 118 IS - 4 SP - 275 EP - 280 PB - Ernst & Sohn AN - OPUS4-57302 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Munsch, Sarah Mandy A1 - Telong, Melissa A1 - Unger, Jörg F. A1 - Andrés Arcones, Daniel A1 - Pirskawetz, Stephan T1 - 63. DAfStb-Forschungskolloquium in der BAM - Themenblock 4: Digitalisierung im Bauwesen N2 - Die Digitalisierung hat sich in vielen Bereichen des Bauwesens durchgesetzt. So sind Planung und Entwurf selbst kleinerer Bauvorhaben heute vollständig digitalisiert. Auch das Monitoring von Bestandsbauwerken ist ohne digitale Datenerfassung, -verarbeitung und -speicherung nicht denkbar. Trotzdem sind Fragen hinsichtlich der strukturierten Speicherung und künftigen Nutzung von Daten noch offen. Einige Aspekte der Digitalisierung wurden im Rahmen des 63. DAfStb-Forschungskolloquiums (Tagungsband: DOI 10.26272/opus4-61338) in Vorträgen und Veröffentlichungen aufgegriffen und werden im Folgenden zusammengefasst. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Digitalisierung KW - Infrastruktur KW - Structural Health Monitoring KW - Digitaler Zwilling PY - 2025 SN - 0005-9846 VL - 75 IS - 4 SP - 136 EP - 138 PB - concrete content UG CY - Schermbeck AN - OPUS4-63070 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mendler, A. A1 - Döhler, M. A1 - Hille, Falk T1 - Detecting changes in boundary conditions based on sensitivity-based statistical tests N2 - Structural health monitoring is a promising technology to automatically detect structural changes based on permanently installed sensors. Vibration-based methods that evaluate the global system response to ambient excitation are suited to diagnose changes in boundary conditions, i.e., changes in member prestress or imposed displacements. In this paper, these changes are evaluated based on sensitivity-based statistical tests, which are capable of detecting and localizing parametric structural changes. The main contribution is the analytical calculation of sensitivity vectors for changes in boundary conditions (i.e., changes in prestress or support conditions) based on stress stiffening, and the combination with a numerically efficient algorithm, i.e., Nelson’s method. One of the main advantages of the employed damage diagnosis algorithm is that, although it uses physical models for damage detection, it considers the uncertainty in the data-driven features, which enables a reliabilitybased approach to determine the probability of detection. Moreover, the algorithm can be trained and the probability of detecting future damages can be predicted based on data and a model from the undamaged structure, in an unsupervised learning mode, making it particularly relevant for unique structures, where no data from the damaged state is available. For proof of concept, a numerical case study is presented. The study assesses the loss of prestress in a two-span reinforced concrete beam and showcases suitable validation approaches for the sensitivity calculation. T2 - International Symposium on Non-Destructive Testing in Civil Engineering (NDT-CE 2022) CY - Zurich, Switzerland DA - 16.08.2022 KW - Nelson’s method KW - Global ambient vibrations KW - Asymptotic local approach KW - Sensitivity vectors KW - Probability of detection KW - Stress stiffening PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566632 DO - https://doi.org/10.58286/27311 SN - 1435-4934 VL - 27 IS - 9 SP - 1 EP - 13 PB - NDT.net CY - Kirchwald AN - OPUS4-56663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartels, Jan-Hauke A1 - Gündogdu, Berk A1 - Herrmann, Ralf A1 - Marx, Steffen T1 - Beschleunigungssensoren zur Zustandsüberwachung von Ingenieurbauwerken unter Einfluss von Umweltfaktoren bei tiefen Frequenzen T1 - Acceleration sensors for structural health monitoring of engineering structures under the influence of environmental factors at low frequencies N2 - Structural Health Monitoring (SHM) wird zunehmend zur kontinuierlichen Zustandsbewertung von Ingenieurbauwerken eingesetzt. Wichtige Bewertungsparameter sind globale Systemeigenschaften, wie z. B. Eigenfrequenzen, zu deren Bestimmung Beschleunigungssensoren eingesetzt werden. Häufig werden sog. MEMS-Sensoren (Micro Electro Mechanical Systems) verwendet, die jedoch ein hohes Rauschniveau aufweisen. Alternativ können rauschärmere IEPE-Sensoren (Integrated Electronics Piezo Electric) eingesetzt werden, die auch bei geringster Strukturanregung Schwingungen zuverlässig erfassen. Ferner besteht das Problem, dass Änderungen der Eigenfrequenzen infolge Bauwerksschädigung schwer von Änderungen der Eigenfrequenzen infolge Umwelteinflüssen zu unterscheiden sind. Letztere verändern die Eigenschaften der Struktur und die des Messsystems. Um Umwelteinflüsse auf das Messsystem im Anwendungsgebiet Ingenieurbau zu untersuchen, wurden IEPE-Beschleunigungsaufnehmer hinsichtlich ihres Übertragungsverhaltens im niederfrequenten Beschleunigungsbereich analysiert. Es zeigt sich, dass das Verhalten nicht nur frequenz-, sondern auch temperaturabhängig ist, während die Luftfeuchte keinen Einfluss hat. Diese für das Bauwerk unbedenklichen Einflüsse müssen für eine robuste Zustandsüberwachung kompensiert werden. Für die Anwendung im Ingenieurbau werden IEPE-Sensoren empfohlen, da sie ein hohes Signal-zu-Rausch-Verhältnis aufweisen und niederfrequente Bauwerksschwingungen zuverlässig erfassen. N2 - Acceleration sensors for structural health monitoring of engineering structures under the influence of environmental factors at low frequencies. Structural health monitoring (SHM) is increasingly used to continuously assess the condition of engineering structures. Important assessment parameters are global system properties, such as eigenfrequency, which are measured by accelerometers. Micro-electro-mechanical systems (MEMS) sensors are often used, but have a high noise level. Alternatively, low-noise IEPE (integrated electronics piezo electric) sensors can be used, which reliably detect vibrations even with the slightest structural excitation. Another problem is that changes in eigenfrequency due to structural damage are difficult to distinguish from changes in eigenfrequency due to environmental effects. The latter change the properties of both the structure and the measurement system. In order to investigate environmental effects on the measurement system in the field of civil engineering, IEPE accelerometers have been analyzed for their transmission behavior in the low-frequency acceleration range. It was found that the behavior is not only frequency dependent, but also temperature dependent, while humidity has no influence. These nonstructural effects must be compensated for to ensure robust condition monitoring. IEPE sensors are recommended for civil engineering applications because of their high signal-to-noise ratio and ability to reliably detect low-frequency structural vibrations. KW - Beschleunigungssensoren KW - Kalibrierung KW - Structural Health Monitoring KW - Umwelteinflüsse KW - Übertragungsverhalten KW - acceleration sensors KW - calibration KW - environmental influences KW - transmission behavior PY - 2024 DO - https://doi.org/10.1002/bate.202300056 SN - 1437-0999 SN - 0932-8351 VL - 101 IS - 10 SP - 1 EP - 11 PB - Ernst & Sohn CY - Berlin AN - OPUS4-60772 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thibaux, Philippe A1 - Thiele, Marc A1 - Van Wittenberghe, Jeroen A1 - Baeßler, Matthias T1 - Comparison of resonance and hydraulic testing on large scale fatigue tests of welded tubular joints for offshore wind turbine foundations N2 - Jackets structures as foundations for offshore wind energy converters are efficient solutions. But these structures require the welding of a large number of joints. The design of the Jacket structures is typically driven by fatigue. Therefore, consequently the fatigue strength of the joints is a primary parameter for an optimized design. The present paper investigates if tubular joints produced by manual welding using the current techniques have an improved performance compared to the relevant standards that are applied for the design of the foundations. To investigate this, 4 full-scale tests in geometry representative of a structure were performed, 2 using a resonance method and 2 using a three-point bending method with hydraulic actuators. The results are similar, with cracks initiated early and extending extensively before failure. The results are very close to the current T-curve from DNV RP-C203 applied for tubular joints. KW - Fatigue KW - Tubular joints KW - Resonance testing KW - Steel welds PY - 2025 DO - https://doi.org/10.1016/j.ijfatigue.2024.108797 SN - 0142-1123 VL - 193 SP - 1 EP - 16 PB - Elsevier Ltd. AN - OPUS4-62373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schepers, Winfried A1 - Brinkgreve, Ronald B. J. A1 - Holtzendorff, Kira A1 - Wegener, Dirk A1 - Appel, Silke A1 - Efthymiou, Georgia A1 - Krajewski, Wolfgang A1 - Machaček, Jan A1 - Meier, Thomas A1 - Nseir, Bashar A1 - Rangelow, Peter A1 - Schmitt, Jürgen A1 - Staubach, Patrick A1 - Vrettos, Christos T1 - Numerische Ermittlung von Baugrundschwingungen bei dynamisch belasteten Fundamenten: Empfehlungen zur Modellierung T1 - Numerical analysis of soil vibrations due to vibrating foundations: Guidance for model design N2 - AbstractIn der Praxis tätige geotechnisch Planende kommen in zunehmendem Maße mit dynamischen Fragestellungen in Berührung. Hersteller von geotechnischer Berechnungssoftware haben entsprechend ihre ursprünglich für statische Aufgabenstellungen konzipierten Produkte um die Möglichkeit zur Lösung von Wellenausbreitungsproblemen im Baugrund erweitert. Den Anwendern fehlt aber häufig die notwendige Erfahrung zur Durchführung dieser Art von numerischen Berechnungen. Die Arbeitskreise 1.4 „Baugrunddynamik“ und 1.6 „Numerik in der Geotechnik“ der Deutschen Gesellschaft für Geotechnik (DGGT) haben diese Entwicklung aufgegriffen und einen gemeinsamen Unterarbeitskreis „Numerik in der Baugrunddynamik“ gegründet. Der vorliegende Beitrag stellt die aktuellen Ergebnisse der Arbeit des Unterarbeitskreises vor und fasst die gewonnenen Erkenntnisse in Form von Empfehlungen zusammen. N2 - Geotechnical engineers are increasingly concerned with wave propagation problems. Manufacturers of geotechnical analysis software added features for soil dynamic analyses to their products initially devised for static geotechnical analyses. Though, users often lack the experience for conducting such advanced numerical analyses. Working groups 1.4 "Soil dynamics" and 1.6 "Numerical analyses in geotechnical engineering" of DGGT German Society for Geotechnical Engineering established a joint subgroup "Numerical analyses in soil dynamics" to address this shortcoming. The present paper presents the work of the subgroup so far and provides some guidance on conducting numerical analyses in soil dynamics. KW - Wellenausbreitung KW - Numerische Methoden KW - Empfehlungen KW - Modellgröße KW - Zeitschrittweite PY - 2024 DO - https://doi.org/10.1002/gete.202400016 SN - 0172-6145 VL - 47 IS - 4 SP - 254 EP - 268 PB - Ernst CY - Berlin AN - OPUS4-62078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Baeßler, Matthias T1 - Bestandteile Digitaler Zwillinge im Erhaltungsmanagement von Verkehrsbrücken T1 - Components of digital twins in the operation and maintenance management of traffic bridges N2 - Digitale Zwillinge werden zukünftig ein integraler Bestandteil des Erhaltungsmanagements von Verkehrsbrücken sein. In diesem Beitrag wird argumentiert, dass sie nicht nur als digitale Abbilder physikalischer Bauwerke verstanden werden sollten, sondern als eine umfassende digitale Methode, die durch die Integration von Datenerfassung, Erhaltungsmaßnahmen, Datenmanagement, Bauwerksbewertung und Entscheidungsunterstützung die Bauwerksüberwachung und ‐erhaltung verbessert. In diesem Zusammenhang wird betont, dass der Übergang von der reaktiven zur prädiktiven Erhaltung durch den Einsatz von Digitalen Zwillingen nur dann realisierbar ist, wenn neben den erforderlichen diagnostischen und prognostischen Zustandsanalysen auch Methoden zur Optimierung von Entscheidungen über Datenerfassung und Erhaltungsmaßnahmen implementiert werden. Zur Veranschaulichung der Diskussion werden in diesem Beitrag exemplarisch zwei Bestandteile eines Digitalen Zwillings für das Erhaltungsmanagement von Verkehrsbrücken am Beispiel einer Eisenbahnbrücke demonstriert. Dabei wird zum einen gezeigt, wie Monitoringdaten mittels eines Datenmanagementsystems strukturiert verwaltet und für angeknüpfte Analysen bereitgestellt werden. Zum anderen erfolgt im Rahmen einer bauwerksspezifischen Einwirkungsermittlung eine Zugidentifikation anhand von gemessenen Schwellenschwingungen. N2 - Digital twins will become an integral part of the operation and maintenance management of traffic bridges in the future. This paper argues that they should not only be understood as digital representations of physical structures but as a digital methodology that enhances the operation and maintenance of bridges through the integration of data collection, maintenance actions, data management, structural assessment, and decision support. In this context, it is emphasized that the transition from reactive to predictive maintenance using digital twins can only be achieved if, in addition to the necessary diagnostic and prognostic condition analyses, methods for optimizing decisions on data collection and maintenance actions are also implemented. To illustrate this discussion, two key components of a digital twin for the operation and maintenance management of traffic bridges are demonstrated using a railway bridge as an example. First, it is shown how monitoring data can be systematically managed and made available for subsequent analyses through a data management system. Second, train identification based on measured sleeper vibrations is conducted as part of an object-specific load assessment. KW - Digitale Zwillinge KW - Erhaltung KW - Inspektion KW - Monitoring KW - Brücken PY - 2025 DO - https://doi.org/10.1002/bate.202400101 SN - 1437-0999 SP - 1 EP - 11 PB - Ernst & Sohn CY - Berlin AN - OPUS4-62837 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Helmrich, M. A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Lorelli, S. A1 - Morgenthal, G. T1 - Maintalbrücke Gemünden: Bauwerksmonitoring und -identifikation aus einem Guss T1 - Maintalbrücke Gemünden – Integrated structural health monitoring and UAS diagnostics N2 - Die Infrastruktursysteme der Industriestaaten erfordern heute und in Zukunft ein effizientes Management bei alternder Bausubstanz, steigenden Lasten und gleichbleibend hohem Sicherheitsniveau. Digitale Technologien bieten ein großes Potenzial zur Bewältigung der aktuellen und künftigen Herausforderungen im Infrastrukturmanagement. Im BMBF-geförderten Projekt Bewertung alternder Infrastrukturbauwerke mit digitalen Technologien (AISTEC) wird untersucht, wie unterschiedliche Technologien und deren Verknüpfung gewinnbringend eingesetzt werden können. Am Beispiel der Maintalbrücke Gemünden werden ein sensorbasiertes Bauwerksmonitoring, bildbasierte Inspektion mit durch Kameras ausgestatteten Drohnen (UAS) und die Verknüpfung digitaler Bauwerksmodelle umgesetzt. Die aufgenommenen Bilder dienen u. a. als Grundlage für spätere visuelle Anomaliedetektionen und eine 3D-Rekonstruktion, welche wiederum für die Kalibrierung und Aktualisierung digitaler Tragwerksmodelle genutzt werden. Kontinuierlich erfasste Sensordaten werden ebenfalls zur Kalibrierung und Aktualisierung der Tragwerksmodelle herangezogen. Diese Modelle werden als Grundlage für Anomaliedetektionen und perspektivisch zur Umsetzung von Konzepten der prädiktiven Instandhaltung verwendet. Belastungsfahrten und historische Daten dienen in diesem Beitrag der Validierung von kalibrierten Tragwerksmodellen. N2 - Infrastructure systems of industrialised countries today and in the future require efficient management with an ageing stock, increasing loads while simultaneously maintaining a high level of safety. Digital technologies offer great potential for the current and future challenges in infrastructure management. The BMBF-funded project AISTEC is investigating how the individual technologies and their interconnection can be used beneficially. With the Maintalbrücke in Gemünden as an exemplary application, sensor-based structural monitoring, image-based inspection using unmanned aircraft systems (UAS) equipped with cameras and the integration of digital structural models are being implemented. The recorded images serve, among others, as basis for subsequent anomaly detection and a 3D reconstruction, which in turn are used for updating digital structural models. Continuously recorded sensor data is used to update the parameters of the structural models, which in turn provide the basis for predictive maintenance. Load tests are used to validate the models. KW - Bauwerksüberwachung KW - Strukturmonitoring KW - Structural Health Monitoring KW - Modell-Update KW - UAS KW - Belastungstest KW - Structural system identification KW - Structural health monitoring KW - Model update KW - UAS KW - Load tests PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554924 DO - https://doi.org/10.1002/bate.202100102 SN - 0932-8351 VL - 99 IS - 3 SP - 163 EP - 172 PB - Ernst & Sohn CY - Berlin AN - OPUS4-55492 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Hille, Falk A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Vibration-based system identification of a large steel box girder bridge N2 - The Bundesanstalt für Materialforschung und -prüfung (BAM) collaborates with TNO to develop a software framework for automated calibration of structural models based on monitoring data. The ultimate goal is to include such models in the asset management process of engineering structures. As a basis for developing the framework, a multi-span road bridge consisting of ten simply supported steel box girders was selected as a test case. Our group measured output-only vibration data from one box girder under ambient conditions. From the data, we determined eigenfrequencies and mode shapes. In parallel, we developed a preliminary structural model of the box girder for the purpose of predicting its modal properties. In this contribution, we provide an overview of the measurement campaign, the operational modal analysis, the structural modeling and qualitatively compare the identified with the predicted modes. As an outlook, we discuss the further steps in the calibration process and future applications of the calibrated model. T2 - XII International Conference on Structural Dynamics (EURODYN 2023) CY - Delft, The Netherlands DA - 02.07.2023 KW - Verkehrsinfrastukturen KW - SHM KW - Model updating KW - System identification KW - Operational modal analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605041 DO - https://doi.org/10.1088/1742-6596/2647/18/182039 SN - 1742-6596 VL - 2647 IS - 18 SP - 1 EP - 9 PB - IOP Publishing CY - Bristol AN - OPUS4-60504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hille, Falk A1 - Sowietzki, D. A1 - Makris, R. T1 - Luminescence-based early detection of fatigue cracks N2 - Classic non-destructive fatigue crack detection methods reveal the state of the fatigue damage evolution at the moment of application, generally not under operational conditions. The here introduced crack luminescence method realizes a clear visibility of the occurred and growing crack in loaded components during operation. Different established experiments show that due to the sensitive coating a crack Formation can be detected even in early stage under the premise the crack reached the surface. The coating consists of two layers with different properties and functions. The bottom layer emits light as fluorescence under UV radiation. The top layer covers the fluorescing one and prevents the emitting of light in case of no damage at the surface. In case of surface crack occurrence, the luminescent light is clearly noticeable by visual observations and also by standard camera equipment which makes automated crack detection possible as well. It is expected that crack luminescence can increase structural safety as well as reduce costs and time for inspections and preventive maintenance. KW - Coating KW - Fatigue KW - Crack damage detection KW - Luminescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510517 DO - https://doi.org/10.1016/j.matpr.2020.02.338 SN - 2214-7853 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-51051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Morgenthal, Guido ED - Cha, Young-Jin T1 - A Bayesian Probabilistic Framework for Building Models for Structural Health Monitoring of Structures Subject to Environmental Variability N2 - Managing aging engineering structures requires damage identification, capacity reassessment, and prediction of remaining service life. Data from structural health monitoring (SHM) systems can be utilized to detect and characterize potential damage. However, environmental and operational variations impair the identification of damages from SHM data. Motivated by this, we introduce a Bayesian probabilistic framework for building models and identifying damage in monitored structures subject to environmental variability. The novelty of our work lies (a) in explicitly considering the effect of environmental influences and potential structural damages in the modeling to enable more accurate damage identification and (b) in proposing a methodological workflow for model‐based structural health monitoring that leverages model class selection for model building and damage identification. The framework is applied to a progressively damaged reinforced concrete beam subject to temperature variations in a climate chamber. Based on deflections and inclinations measured during diagnostic load tests of the undamaged structure, the most appropriate modeling approach for describing the temperature‐dependent behavior of the undamaged beam is identified. In the damaged state, damage is characterized based on the identified model parameters. The location and extent of the identified damage are consistent with the cracks observed in the laboratory. A numerical study with synthetic data is used to validate the parameter identification. The known true parameters lie within the 90% highest density intervals of the posterior distributions of the model parameters, suggesting that this approach is reliable for parameter identification. Our results indicate that the proposed framework can answer the question of damage identification under environmental variations. These findings show a way forward in integrating SHM data into the management of infrastructures. KW - Verkehrsinfrastukturen KW - SHM KW - Model Updating KW - Environmental and Operational Variability KW - Damage Identification KW - Model Building PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605027 DO - https://doi.org/10.1155/2024/4204316 SN - 1545-2255 VL - 2024 IS - 1 SP - 1 EP - 23 PB - Wiley AN - OPUS4-60502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baeßler, Matthias A1 - Simon, Patrick T1 - Ballasted track on vibrating bridge decks: physical mechanisms, empirical findings, and a proposal for assessment N2 - This paper summarizes the key findings and physical mechanisms and provides information on open questions and the assessment of railway bridge superstructure vibrations. Bridges are classic disruption points on a railway track. If bridge superstructures are dynamically excited by train traffic, the vertical accelerations of the track must be considered. For a ballasted track, this can lead to the destabilization of the ballast track, as the bridge superstructure acts like a vibrating table. In this respect, the paper explains in more detail what is meant by destabilization, when this destabilization occurs and how various influencing parameters such as acceleration amplitude, the vibration sequence and frequency affect its occurrence. In the InBridge4EU project, gaps in knowledge such as the effect of single impulse loads are being investigated experimentally. A new test facility has been set up for this purpose, the initial results of which are presented here. An essential element in the assessment of this scenario is the stability of the track under high compression forces with simultaneous dynamic excitation of the superstructure. A new approach for the assessment of bridge vibrations with respect to lateral stability is presented. KW - Railway bridge dynamics KW - Bridge deck acceleration KW - Ballast destabilization KW - Lateral track stability KW - Track buckling PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-630972 DO - https://doi.org/10.1142/S0219455425400243 SN - 0219-4554 SN - 1793-6764 IS - 2540024 SP - 1 EP - 27 PB - World Scientific CY - Singapore AN - OPUS4-63097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herrmann, Ralf A1 - Ramasetti, Eshwar Kumar A1 - Degener, Sebastian A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A living lab for Structural Health Monitoring at the Nibelungen Bridge Worms for Transfer Learning of Structural Dynamics N2 - The Nibelungen Bridge in Worms, Germany has been selected as a national demonstration structure for advanced non-destructive testing (NDT) and structural health monitoring concepts to extend the lifetime of civil structures and to optimize O&M actions. Parts of the research that involves this bridge as a demonstrator belong to the focus area program SPP100+. In this program, the bridges SHM System has been extended and combined with an additional setup of vibration sensors. The used digital smart sensor with pre-processing functions, the arrangement of the sensors at the structure and additional edge computing capability allows the investigation of transfer learning and other methods directly into the real structure. The living lab with seven triaxial accelerometers can be reconfigured in real-time and adjusted to the needs of AI models for classification. The comparison with the existing conventional SHM sensors has been made possible by hardware synchronization to the existing SHM System and collocating sensors at similar positions, so that a hardware exchange can be an investigated use-case for the transfer learning. During idle times, the system collects vibration data like a conventional SHM system. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam DA - 10.06.2024 KW - Nibelungen Bridge KW - Living Lab KW - Transfer Learning KW - Transfer Structures KW - Modal Analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612810 UR - https://www.ndt.net/search/docs.php3?id=29853 DO - https://doi.org/10.58286/29853 SN - 1435-4934 VL - 29 IS - 7 SP - 1 EP - 8 PB - NDT.net GmbH & Co. KG CY - Mayen AN - OPUS4-61281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ramasetti, Eshwar Kumar A1 - Herrmann, Ralf A1 - Degener, Sebastian A1 - Baeßler, Matthias T1 - Development of generic AI models to predict the movement of vehicles on bridges N2 - For civil, mechanical, and aerospace structures to extend operation times and to remain in service, structural health monitoring (SHM) is vital. SHM is a method to examining and monitoring the dynamic behavior of essential constructions. Because of its versatility in detecting unfavorable structural changes and enhancing structural dependability and life cycle management, it has been extensively used in many engineering domains, especially in civil bridges. Due to the recent technical developments in sensors, high-speed internet, and cloud computing, data-driven approaches to structural health monitoring are gaining appeal. Since artificial intelligence (AI), especially in SHM, was introduced into civil engineering, these modern and promising methods have attracted significant research attention. In this work, a large dataset of acceleration time series using digital sensors was collected by installing a structural health monitoring (SHM) system on Nibelungen Bridge located in Worms, Germany. In this paper, a deep learning model is developed for accurate classification of different types of vehicle movement on the bridge from the data obtained from accelerometers. The neural network is trained with key features extracted from the acceleration dataset and classification accuracy of 98 % was achieved. KW - Structural Health Monitoring KW - Artifical Intelligence KW - Machine Learning KW - Nibelungen Bridge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-620289 DO - https://doi.org/10.1016/j.prostr.2024.09.307 VL - 64 SP - 557 EP - 564 PB - Elsevier B.V. AN - OPUS4-62028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiele, Marc A1 - Pirskawetz, Stephan T1 - Analysis of damage evolution in concrete under fatigue loading by acoustic emission and ultrasonic testing N2 - The fatigue process of concrete under compressive cyclic loading is still not completely explored. The corresponding damage processes within the material structure are especially not entirely investigated. The application of acoustic measurement methods enables a better insight into the processes of the fatigue in concrete. Normal strength concrete was investigated under compressive cyclic loading with regard to the fatigue process by using acoustic methods in combination with other nondestructive measurement methods. Acoustic emission and ultrasonic signal measurements were applied together with measurements of strains, elastic modulus, and static strength. It was possible to determine the anisotropic character of the fatigue damage caused by uniaxial loading based on the ultrasonic measurements. Furthermore, it was observed that the fatigue damage seems to consist not exclusively of load parallel oriented crack structures. Rather, crack structures perpendicular to the load as well as local compacting are likely components of the fatigue damage. Additionally, the ultrasonic velocity appears to be a good indicator for fatigue damage beside the elastic modulus. It can be concluded that acoustic methods allow an observation of the fatigue process in concrete and a better understanding, especially in combination with further measurement methods. KW - Concrete KW - Fatigue KW - Damage evolution KW - Ultrasonic testing KW - Acoustic emission PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541891 DO - https://doi.org/10.3390/ma15010341 SN - 1996-1944 VL - 15 IS - 1 SP - 341 EP - 355 PB - MDPI CY - Basel AN - OPUS4-54189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -