TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Simon, Patrick A1 - Baeßler, Matthias T1 - Optimal sensor placement for vibration-based structural health monitoring obtained via value of information analysis as part of a digital structural integrity management of offshore structures N2 - A digital structural integrity management of offshore structures enables an optimized planning of inspections and repairs with risk-based methods. In a risk-based approach, the inspection and repair strategy that minimizes the expected lifetime costs consisting of the expected inspection, repair and failure costs is determined. In addition to inspections, information on the structural condition can be continuously obtained by monitoring the vibration response of the structural system. Changes in the vibration characteristics quantified in terms of modal properties can be an indication of structural damage. In risk-based inspection and repair planning, the effect of monitoring results is determined via Bayesian updating of the structural condition and reliability. This information should be applied to inform decisions on inspections and may result in a reduced inspection effort. The benefit of continuously monitoring the structural health can be quantified in terms of the value of information, which corresponds to the difference between the expected lifetime costs with and without monitoring. In this work, we demonstrate in a numerical example how an optimized sensor placement for a vibration-based structural health monitoring system can be determined by maximizing the value of information. T2 - 3rd International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2022) CY - Online meeting DA - 08.06.2022 KW - Structural Health Monitoring KW - Value of Information KW - Offshore Wind Energy KW - Optimal Sensor Placement KW - Bayesian System Identification PY - 2022 UR - https://www.researchgate.net/publication/362569906_Optimal_sensor_placement_for_vibration-based_structural_health_monitoring_obtained_via_value_of_information_analysis_as_part_of_a_digital_structural_integrity_management_of_offshore_structures SN - 978-1-8383226-7-0 SP - 23 EP - 32 AN - OPUS4-55465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias A1 - El-Athman, Rukeia T1 - Research Data Management of Structural Health Monitoring Projects and Subsequent Applications of Artificial Intelligence Methods N2 - Structural health monitoring (SHM) intends to improve the management of engineering structures. The number of successful SHM projects – especially SHM research projects – is ever growing, yielding added value and more scientific insight into the management of infrastructure asset. With the advent of the data age, the value of accessible data becomes increasingly evident. In SHM, many new data-centric methods are currently being developed at a high pace. A consequent application of research data management (RDM) concepts in SHM projects enables a systematic management of raw and processed data, and thus facilitates the development and application of artificial intelligence (AI) and machine learning (ML) methods to the SHM data. In this contribution, a case study based on an institutional RDM framework is presented. Data and metadata from monitoring the structural health of the Maintalbrücke Gemünden for a period of 16 months are managed with the RDM system BAM Data Store, which makes use of the openBIS data management software. An ML procedure is used to classify the data. Feature engineering, feature training and resulting data are performed and modelled in the RDM system. T2 - 11th International Conference on Bridge Maintenance, Safety and Management (IABMAS2022) CY - Barcelona, Spain DA - 11.07.2022 KW - Research data management KW - Structural health monitoring KW - Artificial intelligence PY - 2022 SN - 978-1-032-35623-5 SN - 978-1-003-32264-1 DO - https://doi.org/10.1201/9781003322641-127 SP - 1061 EP - 1068 PB - CRC Press CY - Boca Raton AN - OPUS4-55493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Herrmann, Ralf T1 - Structural Health Monitoring am Großen Fallturm der BAM N2 - In diesem Beitrag wird die Structural Health Monitoring Kampagne am Großen Fallturm der BAM vorgestellt. T2 - Seminar "Zerstörungsfreie Prüfung" CY - Online meeting DA - 13.01.2022 KW - Belastungsversuch KW - Großer Fallturm Horstwalde KW - Schwingungsdynamik KW - Modalanalyse PY - 2022 AN - OPUS4-55478 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Grunwald, Marcel T1 - Discussion on data evaluation of tomographic and numerical results N2 - The contribution discusses the processing and analysis of data generated on two different ways of investigations for impact damage in reinforced concrete structures. Damage investigations are essential to determine type and characteristics of damage and thus the residual capacity. Damage describing data is generated using two different types of investigation, a non-destructive tomographic as well as numerical examination. Subsequently, data of both sources was merged and analysed. Within the research project “Behaviour of structural components during impact load conditions caused by aircraft fuel tank collision” reinforces concrete plates were damaged by impact loading, see Hering (2020). Afterwards the damaged specimens were investigated tomographically as well as numerically using several methods and models. Aim of the presented research work was to specify an objective comparability of numerical data with experimentally determined damage patterns and based on this, to establish a quantitative damage evaluation. T2 - 26th International Conference on Structural Mechanics in Reactor Technology CY - Potsdam, Germany DA - 10.07.2022 KW - Impact damage on reinforced concrete KW - Tomographic damage evaluation KW - Numerical damage simulation PY - 2022 SP - 1 EP - 8 AN - OPUS4-55474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk T1 - Discussion on data evaluation of tomographic and numerical results N2 - The contribution discusses the processing and analysis of data generated on two different ways of investigations for impact damage in reinforced concrete structures. Damage investigations are essential to determine type and characteristics of damage and thus the residual capacity. Damage describing data is generated using two different types of investigation, a non-destructive tomographic as well as numerical examination. Subsequently, data of both sources was merged and analysed. Within the research project “Behaviour of structural components during impact load conditions caused by aircraft fuel tank collision” reinforces concrete plates were damaged by impact loading, see Hering (2020). Afterwards the damaged specimens were investigated tomographically as well as numerically using several methods and models. Aim of the presented research work was to specify an objective comparability of numerical data with experimentally determined damage patterns and based on this, to establish a quantitative damage evaluation. T2 - 26th International Conference on Structural Mechanics in Reactor Technology CY - Potsdam, Germany DA - 10.07.2022 KW - Impact damage of reinforced concrete KW - Tomographic damage evaluation KW - Numerical simulation of impact damage PY - 2022 AN - OPUS4-55476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick T1 - Research Data Management of Structural Health Monitoring Projects and Subsequent Applications of Artificial Intelligence Methods N2 - Structural health monitoring (SHM) intends to improve the management of engineering structures. The number of successful SHM projects – especially SHM research projects – is ever growing, yielding added value and more scientific insight into the management of infrastructure asset. With the advent of the data age, the value of accessible data becomes increasingly evident. In SHM, many new data-centric methods are currently being developed at a high pace. A consequent application of research data management (RDM) concepts in SHM projects enables a systematic management of raw and processed data, and thus facilitates the development and application of artificial intelligence (AI) and machine learning (ML) methods to the SHM data. In this contribution, a case study based on an institutional RDM framework is presented. Data and metadata from monitoring the structural health of the Maintalbrücke Gemünden for a period of 16 months are managed with the RDM system BAM Data Store, which makes use of the openBIS data management software. An ML procedure is used to classify the data. Feature engineering, feature training and resulting data are performed and modelled in the RDM system. T2 - 11th International Conference on Bridge Maintenance, Safety and Management (IABMAS2022) CY - Barcelona, Spain DA - 11.07.2022 KW - Research data management KW - Structural health monitoring KW - Artificial intelligence PY - 2022 AN - OPUS4-55494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas T1 - Optimal sensor placement for vibration-based structural health monitoring obtained via value of information analysis as part of a digital structural integrity management of offshore structures N2 - A digital structural integrity management of offshore structures enables an optimized planning of inspections and repairs with risk-based methods. In a risk-based approach, the inspection and repair strategy that minimizes the expected lifetime costs consisting of the expected inspection, repair and failure costs is determined. In addition to inspections, information on the structural condition can be continuously obtained by monitoring the vibration response of the structural system. Changes in the vibration characteristics quantified in terms of modal properties can be an indication of structural damage. In risk-based inspection and repair planning, the effect of monitoring results is determined via Bayesian updating of the structural condition and reliability. This information should be applied to inform decisions on inspections and may result in a reduced inspection effort. The benefit of continuously monitoring the structural health can be quantified in terms of the value of information, which corresponds to the difference between the expected lifetime costs with and without monitoring. In this work, we demonstrate in a numerical example how an optimized sensor placement for a vibration-based structural health monitoring system can be determined by maximizing the value of information. T2 - 3rd International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2022) CY - Online meeting DA - 08.06.2022 KW - Bayesian System Identification KW - Offshore Wind Energy KW - Optimal Sensor Placement KW - Structural Health Monitoring KW - Value of Information PY - 2022 AN - OPUS4-55473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick T1 - Sensorbasierte Systemidentifikation N2 - Die aktuelle Instandhaltungsstrategien von Ingenieurbauwerken arbeiten zustandsbasiert und stützen sich auf visuelle Inspektionen in kurzen, starren Intervallen. Beim Übergang zu Predicitive-Maintenance-Strategien können Sensordaten eigesetzt werden um Prognosemodelle der Bauwerke zu aktualisieren. Ein erster Schritt hierzu ist die sensorbasierte Systemidentifikation. T2 - Abschlussveranstaltung AISTEC CY - Berlin, Germany DA - 02.05.2022 KW - Systemidentifikation KW - Strukturmonitoring PY - 2022 AN - OPUS4-55495 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Gerards, Paul A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for data and structural integrity management for support structures in offshore wind farms based on building information modelling N2 - Support structures of wind turbines in German offshore wind farms are regularly inspected. Currently, inspection outcomes are generally not systematically recorded. This prevents their consistent handling and processing, which is a key requirement to enable an efficient structural integrity management. As part of the DiMoWind-Inspect project, a data model and reference designation system for such inspection results is developed to facilitate their identification, localization, quantification, tracing and linking throughout the lifetime of a wind farm and beyond. The inspection results together with structural health monitoring results and information on repairs form the basis for assessing and predicting the structural condition, estimating the remaining lifetime, and planning of future inspections, structural health monitoring, and repairs. As a basis for developing a digital structural integrity management, a generic framework is proposed in this paper, which describes the stakeholders, data, models, processes and workflows of the integrity management of support structures in offshore wind farms and their interrelations. The framework adopts a building information modelling approach to describe the information relevant to the structural integrity management. The central digital space of the framework is a common data environment. An implementation of the framework will enable a digital structural integrity management in which inspection, structural health monitoring, repair, assessment and planning outcomes generated throughout the life cycle of a wind farm can be consistently collected, managed, shared and processed by the relevant shareholders. T2 - 8th International Symposium on Reliability Engineering and Risk Management CY - Hannover, Germany DA - 04.09.2022 KW - Offshore wind energy KW - support structures KW - structural health monitoring KW - building information modelling KW - structural integrity management PY - 2022 DO - https://doi.org/10.3850/978-981-18-5184-1_MS-04-161-cd SP - 111 EP - 117 PB - Research Publishing CY - Singapore AN - OPUS4-55656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas T1 - A framework for data and structural integrity management for support structures in offshore wind farms based on building information modelling N2 - Support structures of wind turbines in German offshore wind farms are regularly inspected. Currently, inspection outcomes are generally not systematically recorded. This prevents their consistent handling and processing, which is a key requirement to enable an efficient structural integrity management. As part of the DiMoWind-Inspect project, a data model and reference designation system for such inspection results is developed to facilitate their identification, localization, quantification, tracing and linking throughout the lifetime of a wind farm and beyond. The inspection results together with structural health monitoring results and information on repairs form the basis for assessing and predicting the structural condition, estimating the remaining lifetime, and planning of future inspections, structural health monitoring, and repairs. As a basis for developing a digital structural integrity management, a generic framework is proposed in this paper, which describes the stakeholders, data, models, processes and workflows of the integrity management of support structures in offshore wind farms and their interrelations. The framework adopts a building information modelling approach to describe the information relevant to the structural integrity management. The central digital space of the framework is a common data environment. An implementation of the framework will enable a digital structural integrity management in which inspection, structural health monitoring, repair, assessment and planning outcomes generated throughout the life cycle of a wind farm can be consistently collected, managed, shared and processed by the relevant shareholders. T2 - 8th International Symposium on Reliability Engineering and Risk Management CY - Hannover, Germany DA - 04.09.2022 KW - Offshore wind energy KW - Support structures KW - Building information modelling KW - Structural health monitoring KW - Structural integrity maintenance PY - 2022 AN - OPUS4-55651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Belastungsversuch und Methodenvalidierung an der Maintalbrücke Gemünden N2 - Im Projekt AISTEC wurden Methoden entwickelt, die der prädiktiven Instandhaltung von Ingenieurbauwerken dienen. Zur Validierung dieser Methoden wurden an einem Referenzbauwerk - der Maintalbrücke Gemünden - Belastungstests durchgeführt. T2 - Abschlussveranstaltung AISTEC CY - Berlin, Germany DA - 02.05.2022 KW - Belastungsfahrt KW - GNSS KW - Einflusslinien PY - 2022 AN - OPUS4-55496 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk T1 - Structural Health Monitoring am Großen Fallturm der BAM N2 - Am Fallturm auf dem Testgelände Technische Sicherheit (TTS) der BAM wurden bei Inspektionen Vorspannungsverluste in den Bolzen der Stahlverbindungen festgestellt. Um ein Verständnis für die zugrundeliegenden Trag- und Schädigungsmechanismen zu erlangen und um den Zustand der vorgespannten Schraubverbindungen langzeitlich zu überwachen, wurde am Fallturm ein Structural Health Monitoring (SHM) System installiert. Für die Auslegung des Monitoringsystems sowie zur Unterstützung der Untersuchung des Schädigungsprozesses wurde ein numerisches Modell erstellt und in Bezug auf die gemessenen Antworten des Tragwerks kalibriert. Im Vortrag werden die experimentellen und numerischen Untersuchungen zur Systemidentifikation des Stahlrohrgitterturms als auch die Überwachungskampagne mit dem eingesetzten Monitoringsystem sowie die Messergebnisse und deren Bewertung vorgestellt. T2 - Seminar "Zerstörungsfreie Prüfung" am Lehrstuhl für Zerstörungsfreie Prüfung ,Technische Universität München CY - Online meeting DA - 13.01.2022 KW - Structural Health Monitoring KW - Schadensüberwachung KW - Schwingungsmonitoring PY - 2022 AN - OPUS4-56667 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramasetti, Eshwar Kumar A1 - Herrmann, Ralf A1 - Degener, Sebastian A1 - Baeßler, Matthias T1 - Development of generic AI models to predict the movement of vehicles on bridges N2 - For civil, mechanical, and aerospace structures to extend operation times and to remain in service, structural health monitoring (SHM) is vital. SHM is a method to examining and monitoring the dynamic behavior of essential constructions. Because of its versatility in detecting unfavorable structural changes and enhancing structural dependability and life cycle management, it has been extensively used in many engineering domains, especially in civil bridges. Due to the recent technical developments in sensors, high-speed internet, and cloud computing, data-driven approaches to structural health monitoring are gaining appeal. Since artificial intelligence (AI), especially in SHM, was introduced into civil engineering, these modern and promising methods have attracted significant research attention. In this work, a large dataset of acceleration time series using digital sensors was collected by installing a structural health monitoring (SHM) system on Nibelungen Bridge located in Worms, Germany. In this paper, a deep learning model is developed for accurate classification of different types of vehicle movement on the bridge from the data obtained from accelerometers. The neural network is trained with key features extracted from the acceleration dataset and classification accuracy of 98 % was achieved. T2 - SMAR 2024 - 7th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Salerno, Italy DA - 04.09.2024 KW - Machine learning KW - Structural Health Monitoring (SHM) PY - 2024 AN - OPUS4-61375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf T1 - A Living Lab for Structural Health Monitoring at the Nibelungen Bridge Worms for Transfer Learning of Structural Dynamics N2 - The Nibelungen Bridge in Worms, Germany has been selected as a national demonstration structure for advanced non-destructive testing (NDT) and structural health monitoring concepts to extend the lifetime of civil structures and to optimize O&M actions. Parts of the research that involves this bridge as a demonstrator belong to the focus area program SPP100+. In this program, the bridges SHM System has been extended and combined with an additional setup of vibration sensors. The used digital smart sensor with pre-processing functions, the arrangement of the sensors at the structure and additional edge computing capability allows the investigation of transfer learning and other methods directly into the real structure. The living lab with seven triaxial accelerometers can be reconfigured in real-time and adjusted to the needs of AI models for classification. The comparison with the existing conventional SHM sensors has been made possible by hardware synchronization to the existing SHM System and collocating sensors at similar positions, so that a hardware exchange can be an investigated use-case for the transfer learning. During idle times, the system collects vibration data like a conventional SHM system. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Structural Health Monitoring (SHM) KW - SPP100+ KW - Nibelungen Bridge KW - Sensor technology PY - 2024 AN - OPUS4-61284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hille, Falk T1 - Leitfaden für den strategischen Einsatz von Monitoring an Straßenbrücken N2 - Für die Anwendung von Structural Health Monitoring (SHM) im Rahmen des Managements von Straßenbrücken wurde zur Unterstützung von Straßenbauverwaltungen, Ingenieurbüros, Bauunternehmen und weiteren Akteuren die Erstellung eines Leitfadens initiiert. Dieser Leitfaden stellt typische Anwendungsfälle für Monitoring vor und schlägt für diese bewährte Herangehensweisen vor. Darüber hinaus bietet der Leitfaden Empfehlungen für Ausschreibung und Vergabe von Monitoringleistungen, eine Anleitung zur Bewertung des wirtschaftlichen Nutzens von SHM, Hinweise zur optimal einsetzbaren Messtechnik sowie einen Ansatz für das Datenmanagement zur Integration der Monitoringdaten in das Brückenmanagement. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM CY - Berlin, Germany DA - 16.10.2024 KW - Bauwerksmonitoring KW - Straßenbrücken KW - Leitfaden PY - 2024 AN - OPUS4-61400 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf T1 - Föderiertes Datenmanagement von Monitoringdaten aus Structural Health Monitoring Anwendungen und daraus gewonnenen Trainingsdaten bei Spannbetonbrücken N2 - Beim Structural Health Monitoring entstehen eine Vielzahl von Daten, Metadaten und Modellen mit hohem Wert für die Beurteilung des Bauwerkszustands und der Prognose von Veränderungen. Kontinuierlich anwachsende Datenbestände müssen nachhaltig geteilt, genutzt und über die Bauwerkslebensdauer archiviert werden. Dabei stellen die Vielfalt der Messaufgaben, die Heterogenität der Daten, die dezentrale Erfassung und z. T. der Umfang eine Herausforderung für die beteiligten Akteure dar. Für den Datentransfer der Monitoringdaten zwischen der Straßenbauverwaltung und den Monitoringausführenden wird ein flexibles Abstimmungsverfahren vorgeschlagen und ein Lösungskonzept für ein föderiertes Datenmanagement skizziert. Eine weitere Herausforderung stellt die bauwerksübergreifende Zusammenstellung von Trainingsdaten für konkrete KI-Anwendungen dar. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Structural Health Monitoring KW - Spannbetonbrücke KW - Datenmanagement KW - Auftraggeber-Daten-Anforderungen (ADA) KW - Bauwerkschäden PY - 2024 AN - OPUS4-61780 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hering, Marcus T1 - Impaktversuche an Stahlbetonplatten N2 - Seit 1977 ist der Flugzeugabsturz ein wesentliches Belastungsszenario bei der Auslegung von Kernkraftwerken. Zur Untersuchung dieses Szenarios wurden umfassende Studien durchgeführt, welche die Reaktion von Stahlbetonkonstruktionen unter Stoßbelastung analysieren. Da großmaßstäbliche Experimente teuer und aufwendig sind, gewinnen skalierte Versuche zunehmend an Bedeutung. Im Rahmen eines Forschungsprojekts der TU Dresden und der BAM wurden Grundlagen für skalierte Impaktversuche im großen Maßstab geschaffen, um die Übertragbarkeit vom Labor- auf Realmaßstab zu ermöglichen. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Stahlbetonplatten KW - Impaktversuch KW - Sicherheit Kernkraftwerke PY - 2024 AN - OPUS4-61770 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc T1 - Monitoring an Türmen von Onshore Windenergieanlagen in Betonbauweise im Hinblick auf Ermüdung N2 - Der Beitrag stellt das Messkonzept sowie dessen Umsetzung für ein umfassendes Monitoringsystem an einer onshore Windenergieanlage mit einem Hybridturm vor. Dieses ist Bestandteil des Forschungsvorhabens Win-ConFat–Structure, welches neben der Validierung geeigneter Sensorik auch die Bewertung des Zustands und der möglichen Restlebensdauer der ermüdungsbeanspruchten Betonstruktur zum Ziel hat. Neben dem Monitoringsystem werden erste Messergebnisse aus den Betriebsdaten sowie vom Verhalten der Turmstruktur vorgestellt. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Onshore Windenergieanlagen KW - Ermüdung KW - Lebensdauerbewertung KW - Monitoring KW - WinConFat PY - 2024 AN - OPUS4-61773 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick T1 - Temperatureinfluss auf Strukturmonitoring – aktuelle Versuche N2 - Strukturmonitoring kann wertvolle Daten für die Zustandsbewertung und Schadensdetektion von Infrastruk-turbauwerken liefern. Umgebungsbedingungen wie die Temperatur beeinflussen die Bauwerke und somit die Messdaten jedoch erheblich. Um Methoden für den Umgang mit Temperatureinflüssen zu entwickeln, wurden an der BAM Versuche an Stahlbeton- und Asphaltbalken unter kontrollierten Temperaturen von -40 °C bis 60 °C und definierten Schädigungen durchgeführt. Die Daten ermöglichen die Erforschung und Validierung neuer, auch unter Temperatureinfluss zuverlässiger Methoden des Strukturmonitorings. T2 - 11. Jahrestagung des DAfStb mit 63. Forschungskolloquium der BAM Green Intelligent Building CY - Berlin, Germany DA - 16.10.2024 KW - Structural Health Monitoring KW - Strukturmonitoring KW - Temperatureinfluss KW - Klimakammer KW - Bayesian Updating PY - 2024 AN - OPUS4-61573 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hering, Marcus A1 - Fiedler, Georg T1 - Investigation of multiple impact-damaged reinforced concrete structures as a reference for liquid penetration behavior and tomographic studies N2 - The structural integrity of outer reinforced concrete (RC) containments of nuclear power plants provides an essential shield against external hazards. If this containment is damaged by an impact event, such as an aircraft crash, the question arises to which degree the reinforced concrete containment still has its protective capability. This concerns both purely structural protection and protection against liquids penetrating the interior of the containment. Due to the dimensions of the containment structures, it is difficult to perform real scale impact experiments, so in the past decades plate geometries at medium scale have been used for investigations. Detailed investigations on the structural behaviour of RC members or RC plates subjected to impact loading have already been presented in Just et al., Hering, Hering et al., Bracklow et al., Hille et al. and Nerger et al. The following investigations deal with the single and multiple impact event (first hard impact and/or subsequent soft impact) on a RC specimen, which provides the basis for further investigations. A description of the test setup and the test procedure as well as a presentation of the test results from the impact tests are provided. Furthermore, the experimental program is presented, which the damaged RC specimens are to undergo to deal with the question of how much the impact-damaged RC structure has become permeable to liquid media, such as water and kerosene, depending on the intensity of the impact. The aim of these following investigations is to develop a test setup that can be applied to investigate the liquid penetration behaviour (LPB) of small, medium, and large-scale RC members. In addition to the liquid penetration experiments, the damaged specimens are to be examined by planar tomography to obtain the damage inside the specimen. The combination of damaging event, fluid penetration behaviour and tomography should enable a comprehensive understanding of the damage to the RC specimen. T2 - Conference: 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT) CY - Yokohama, Japan DA - 04.03.2024 KW - Drop Tower KW - Hard Impact KW - Multiple Impact KW - Soft Impact PY - 2024 AN - OPUS4-61991 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Kontinuierliche sensordaten- und modellgestützte Bewertung von Infrastrukturbauwerken in der Praxis N2 - Ein Einsatz von kontinuierlichen sensorbasierten Verfahren komplementär zu den zeitlich diskreten bildbasierten Verfahren haben ein enormes Potenzial, die bisher hauptsächlich visuellen Prüfprozesse zu transformieren. Zur Ermöglichung eines strategischen Einsatzes des sensorbasierten Monitorings im Erhaltungsmanagement von Ingenieurbauwerken ist das übergeordnete Ziel des Projektes AISTEC-Pro die Demonstration des praktischen Mehrwerts des sensorbasierten Monitorings. Dies wird durch praktische Anwendungen an der Maintalbrücke Gemünden und einem neu ausgewählten Referenzbauwerk unter Berücksichtigung von typischen Einsatzszenarien im Bereich der Bauwerkserhaltung erreicht werden. Die Einsatzszenarien werden in enger Abstimmung mit den Endanwendern entwickelt und fortgeschrieben. Hierbei wird insbesondere Bezug auf die aktuelle Neufassung der DIN 1076 genommen, in der erstmals die Anwendung von sensor- und bildbasierten Monitoringverfahren in der Bauwerksprüfung geregelt wird. T2 - AISTEC-Pro Auftakttreffen CY - Weimar, Germany DA - 02.12.2024 KW - Sensorbasiertes Monitoring KW - Erhaltung KW - Verkehrsbrücken PY - 2024 AN - OPUS4-61919 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf T1 - SHM system integration and experiments at a high speed railway bridge N2 - The long-term preservation of our infrastructure requires not only intelligent sensor technology and highly developed monitoring procedures, but also innovative digital tools for analyzing, evaluating and utilizing the results. This includes mathematical and, in particular, probabilistic methods for damage detection and tracking as well as for calculating service life and maintenance cycles and data management. The example project Maintal Bridge Gemuenden as part of the AISTEC project shows the workflow for the implementation of structural health monitoring and experimental tests with a train of Deutsche Bahn. The influence lines, as one possible way for damage detection, were measured with a highly accurate GNSS System to locate the trains position when crossing the bridge. The results were compared to measurements from 1987 just before the bridge went in operation. T2 - Structural Health Monitoring Using Statistical Pattern Recognition CY - Berlin, Germany DA - 20.03.2023 KW - SHM KW - Maintal Bridge Gemuenden KW - Load Test KW - Damage Detection KW - Railway PY - 2023 AN - OPUS4-57242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul T1 - A framework for assessing the reliability of crack luminescence – an automated fatigue crack detection system N2 - The new crack luminescence method offers the possibility of making fatigue surface cracks in metallic materials more visible during inspections through a special coating system. This coating system consists of two layers, whereby the first layer has fluorescent properties and emits visible light as soon as it is irradiated by UV light. The top layer is black and is designed to prevent the fluorescent layer from emitting if no crack develops in the underlying material. The technique proved particularly useful in a wide variety of fatigue tests of steel components under laboratory conditions. Moreover, it has the potential to be used in various industrial applications. To enable industrial deployment and integration into maintenance strategies, a concept study is developed in this contribution, resulting in a qualification framework that can serve as a foundation for determining the reliability of the crack luminescence system in terms of a probability of detection curve. Within this study, factors causing measurement variability and uncertainty are being determined and their influences assessed. Due to the extension of the system by a moving computer vision system for automated crack detection using artificial intelligence, additional long-term effects associated with structural health monitoring systems need to be incorporated into an extended probability of detection study as part of the technical justification. Finally, important aspects and findings related to design of experiments are discussed, and a framework for reliability assessment of a new optical crack monitoring method is presented, emphasizing the influence of various uncertainty parameters, including long-term effects such as system ageing. T2 - SPIE Conference Smart Structures + Nondestructive Evaluation 2023 CY - Long Beach, CA, USA DA - 24.03.2023 KW - Structural Health Monitoring KW - Non-Destructive Evaluation KW - Probability of Detection KW - Reliability KW - Artificial Intelligence KW - Computer Vision KW - Crack Luminescence PY - 2023 AN - OPUS4-57245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hering, Marcus A1 - Fiedler, Georg A1 - Schubert, T. A1 - Hille, Falk A1 - Hüsken, Götz A1 - Beckmann, B. A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Rogge, Andreas T1 - Investigation of multiple impact-damaged reinforced concrete structures as a reference for liquid penetration behavior and tomographic studies N2 - The structural integrity of outer reinforced concrete (RC) containments of nuclear power plants provides an essential shield against external hazards. If this containment is damaged by an impact event, such as an aircraft crash, the question arises to which degree the reinforced concrete containment still has its protective capability. This concerns both purely structural protection and protection against liquids penetrating the interior of the containment. Due to the dimensions of the containment structures, it is difficult to perform real scale impact experiments, so in the past decades plate geometries at medium scale have been used for investigations. Detailed investigations on the structural behaviour of RC members or RC plates subjected to impact loading have already been presented in Just et al., Hering, Hering et al., Bracklow et al., Hille et al. and Nerger et al. The following investigations deal with the single and multiple impact event (first hard impact and/or subsequent soft impact) on a RC specimen, which provides the basis for further investigations. A description of the test setup and the test procedure as well as a presentation of the test results from the impact tests are provided. Furthermore, the experimental program is presented, which the damaged RC specimens are to undergo to deal with the question of how much the impact-damaged RC structure has become permeable to liquid media, such as water and kerosene, depending on the intensity of the impact. The aim of these following investigations is to develop a test setup that can be applied to investigate the liquid penetration behaviour (LPB) of small, medium, and large-scale RC members. In addition to the liquid penetration experiments, the damaged specimens are to be examined by planar tomography to obtain the damage inside the specimen. The combination of damaging event, fluid penetration behaviour and tomography should enable a comprehensive understanding of the damage to the RC specimen. T2 - Conference: 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT) CY - Yokohama, Japan DA - 04.03.2024 KW - Drop tower KW - Hard impact KW - Soft impact KW - Multiple impact PY - 2024 SP - 1 EP - 10 PB - IASMiRT CY - Yokohama, Japan AN - OPUS4-59723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Aubram, Daniel T1 - Vorstellung OWA VERBATIM N2 - Das Risiko von Pfahlfussbeulen ist ein wesentlicher Grund für hohe Pfahlwandstärken bei Monopiles. Das Projekt VERBATIM - Verifikation des Beulnachweises und –verhaltens großer Monopiles zielte darauf ab, Beulphänomene zu untersuchen, die sich sowohl auf die plastischen Verformungen der Pfahlspitze während der Installation als auch auf das Beulen des eingebetteten Pfahls in der Nähe des Seebodens beziehen. Auf der Basis aufwändiger Versuche wurden numerische Modelle entwickelt und validiert. Dies ermöglicht ein besseres Verständnis des Beulverhaltens, um die Wanddicke zu reduzieren, was Kosteneinsparungen bei der Stahlmenge sowie die Entwicklung sicherer und optimierter Strukturen erlaubt. Die bisherigen Designverfahren konnten die erfolgreiche Installation der Monopiles gewährleisten. Da die Größe von Monopiles jedoch stetig zunimmt, wird die Entwicklung verbesserter Designverfahren für sichere und kostengünstige Fundamente immer wichtiger. Der Rückenwind-Vortrag gibt eine Übersicht zu den durchgeführten Untersuchungen und Ergebnissen T2 - Rückenwind Aktuelles aus der Windenergieforschung (PTJ) CY - Online meeting DA - 21.06.2024 KW - Offshore Windenergy Pile Buckling PY - 2024 AN - OPUS4-60349 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Eichner, Lukas A1 - Weise, Sigurd T1 - Digital building management for OWEC-structures N2 - The presentation summarizes the data management and Digital modeling processes in the recurring inspection of wind turbines as developed in DiMoWind-Inspect. T2 - Windforce 2024 CY - Bremerhaven, Germany DA - 10.06.2024 KW - DiMoWind RDS-PP Maintenance Digital Twin Offshore Wind Energy PY - 2024 AN - OPUS4-60351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Weise, Sigurd T1 - Digitalization of Maintenance Processes N2 - Main aspects of Digitalization of Maintenance Processes are summarized and discussed. Introduction to the Windforce2024 session organised by BAM. T2 - Windforce 2024 CY - Bremerhaven, Germany DA - 11.06.2024 KW - Maintenance Digital Twin Offshore Wind Energy PY - 2024 AN - OPUS4-60350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichner, Lukas A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Probabilistische Systemidentifikation einer Versuchsstruktur für Substrukturen von Offshore-Windenergieanlagen mit statischen und dynamischen Messdaten N2 - In diesem Beitrag wird ein probabilistischer Ansatz zur Systemidentifikation für Tragstrukturen von Offshore-Windkraftanlagen vorgestellt. Der Schwerpunkt der Forschung liegt auf der Integration von globalen Systemantworten in Form von Eigenfrequenzen und -formen sowie Verschiebungen und Dehnungen als lokale Messdaten. Die unterschiedlichen Daten werden kombiniert für die Aktualisierung der Parameter eines Finite-Elemente-Modells genutzt. Zu diesem Zweck wird ein probabilistischer Ansatz nach Bayes verfolgt, um Vorwissen sowie Unsicherheiten einzubeziehen. Die Methodik wird bei einer Versuchsstruktur angewandt, die eine Jacket-Substruktur von Offshore-Windenergieanlagen nachbildet. Eine Systemidentifikation mit Hilfe von Überwachungsdaten ist wertvoll für Jacket-Substrukturen, da eine Zustandsanalyse für die Gewährleistung der strukturellen Integrität unerlässlich ist, aber hinsichtlich der schwierigen Offshore-Bedingungen möglichst effizient sein muss. In diesem Zusammenhang schafft diese Arbeit die Grundlage für eine Schadenserkennung, eine verbesserte Vorhersage der Ermüdungslebensdauer und optimierte Instandhaltungsstrategien. Während das Modell hinsichtlich der statischen Messdaten erfolgreich aktualisiert werden kann, sind Schwierigkeiten bei der Identifizierung der dynamischen Systemeigenschaften erkennbar. T2 - 8. VDI-Fachtagung Baudynamik 2025 CY - Würzburg, Germany DA - 02.04.2025 KW - Systemidentifikation KW - Versuchsstruktur KW - Jacket KW - Offshore-Windenergie PY - 2025 VL - 8 SP - 175 EP - 188 AN - OPUS4-62879 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omidalizarandi, M. A1 - Herrmann, Ralf A1 - Kargoll, B. A1 - Marx, S. A1 - Paffenholz, J. A1 - Neumann, I. T1 - A validated robust and automatic procedure for vibration analysis of bridge structures using MEMS accelerometers N2 - Today, short- and long-term structural health monitoring (SHM) of bridge infrastructures and their safe, reliable and cost-effective maintenance has received considerable attention. From a surveying or civil engineer’s point of view, vibration-based SHM can be conducted by inspecting the changes in the global dynamic behaviour of a structure, such as natural frequencies (i. e. eigenfrequencies), mode shapes (i. e. eigenforms) and modal damping, which are known as modal parameters. This research work aims to propose a robust and automatic vibration analysis procedure that is so-called robust time domain modal parameter identification (RT-MPI) technique. It is novel in the sense of automatic and reliable identification of initial eigenfrequencies even closely spaced ones as well as robustly and accurately estimating the modal parameters of a bridge structure using low numbers of cost-effective micro-electro-mechanical systems (MEMS) accelerometers. To estimate amplitude, frequency, phase shift and damping ratio coefficients, an observation model consisting of: (1) a damped harmonic oscillation model, (2) an autoregressive model of coloured measurement noise and (3) a stochastic model in the form of the heavy-tailed family of scaled t-distributions is employed and jointly adjusted by means of a generalised expectation maximisation algorithm. Multiple MEMS as part of a geo-sensor network were mounted at different positions of a bridge structure which is precalculated by means of a finite element model (FEM) analysis. At the end, the estimated eigenfrequencies and eigenforms are compared and validated by the estimated parameters obtained from acceleration measurements of high-end accelerometers of type PCB ICP quartz, velocity measurements from a geophone and the FEM analysis. Additionally, the estimated eigenfrequencies and modal damping are compared with a well-known covariance driven stochastic subspace identification approach, which reveals the superiority of our proposed approach. We performed an experiment in two case studies with simulated data and real applications of a footbridge structure and a synthetic bridge. The results show that MEMS accelerometers are suitable for detecting all occurring eigenfrequencies depending on a sampling frequency specified. Moreover, the vibration analysis procedure demonstrates that amplitudes can be estimated in submillimetre range accuracy, frequencies with an accuracy better than 0.1 Hz and damping ratio coefficients with an accuracy better than 0.1 and 0.2 % for modal and system damping, respectively. KW - Vibration analysis KW - Automatic modal parameters identification KW - MEMS KW - FEM analysis KW - Bridge monitoring PY - 2020 UR - https://www.degruyter.com/view/journals/jag/14/3/article-p327.xml DO - https://doi.org/10.1515/jag-2020-0010 SN - 1862-9016 VL - 14 IS - 3 SP - 1 EP - 28 PB - De Gruyter CY - Berlin AN - OPUS4-51338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Herrmann, Ralf T1 - Sensorbasiertes Monitoring der Maintalbrücke Gemünden N2 - Monitoringsysteme erfassen kontinuierlich Bauwerksdaten wie z.B. Bauwerksbeschleunigungen, auf deren Grundlage Bauwerksschäden mit Hilfe von SHM-Methoden quantifiziert werden können. Mit den gewonnenen Informationen über den aktuellen Bauwerkszustand können Vorhersagen des Bauwerkszustandes und der Bauwerkszuverlässigkeit aktualisiert und erforderliche Inspektionen und Instandhaltungsmaßnahmen vorausschauend geplant werden. Im BMBF-Forschungsvorhaben AISTEC entwickeln der Fachbereich 7.2 „Ingenieurbau“ innovative Monitoringverfahren zur Systemidentifikation und automatischen Detektion, Lokalisierung und Quantifizierung von Schäden an Infrastrukturbauwerken anhand von gemessenen dynamischen und statischen Bauwerksdaten. Im Rahmen dieses Projektes werden die Verfahren an der Maintalbrücke bei Gemünden angewendet, welche Teil der ICE-Strecke Hannover-Würzburg ist. In diesem Vortrag wird das für die Maintalbrücke Gemünden geplante und umgesetzte Monitoingsystem vorgestellt. T2 - 4. Verbundtreffen AISTEC CY - Weimar, Germany DA - 24.09.2020 KW - Zivile Sicherheit KW - Brücken KW - Structural Health Monitoring PY - 2020 AN - OPUS4-51333 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc T1 - Fatigue crack detection methods for high-cyclic loaded steel structures and challenges in mechanical testing N2 - For the generation of renewable energy offshore wind farms play an important role. The majority of these wind generators are connected to steel foundation structures. Steady increasing power output of these wind turbines leads to new challenges as well for engineers of the related support structures. Caused by the high-cyclic loading of these structures by wind and waves fatigue plays a very important role. Besides the consideration of fatigue within the design process it is additionally an important topic and challenge to monitor the existing steel structures relating to potential fatigue cracks occurring during their lifetime. This plays a role for a fundamental understanding of mechanisms as investigated in testing but also for inspection in real structures. Since the structures of the offshore wind generators are very large and in addition partially under water effective and reliable methods for fatigue crack detection are required. This contribution will present results of recent investigations on different crack detection methods applied on high-cycle fatigue tests on small welded steel samples as well as on welded steel components. The comparison of these measurements will show what are the advantages and disadvantages of the different methods and which method is potentially more suitable for the application on real offshore wind structures. It is outlined where challenges for detection methods exist. Furthermore, in this context the resulting challenges for the execution of material testing especially caused by the increasing dimensions of wind energy converters will by exemplarily presented. T2 - EERA JP Wind & SETWind Online Annual Event 2020 CY - Online meeting DA - 14.09.2020 KW - Fatigue KW - Crack detection KW - Steel structures PY - 2020 AN - OPUS4-51356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hüsken, Götz A1 - Shamsuddoha, Md A1 - Pirskawetz, Stephan A1 - Hofmann, Detlef A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten T1 - Potential of a Repair System for Grouted Connections in Offshore Structures: Development and Experimental Verification N2 - Grouted connections are intensively used in offshore rigs, platforms as well as jacket and monopile offshore wind turbine structures. Being located in remote offshore conditions, these connections can experience considerable adverse loading during their lifetimes. Degradation was reported inside similar connections, which were installed in the last three decades. Grouting in the offshore sites may often be proven difficult, which eventually leads to reduced load-bearing capacity of connections in the long run. Thus, repair and rehabilitation of such connections should be planned ahead to minimize operational delays and costs. In this study, scaled grouted connections were manufactured using a novel mould, whose integrity were monitored using digital image correlation (DIC). The connections were loaded under static load to visualize the main failure pattern using distributed fibre optic sensors and acoustic emission (AE) analysis. Grouted connections were then repaired using a cementitious injectable grout. The effectiveness of the grout injection was monitored using dye penetration technique. Finally, specimens are reloaded to identify the potential of such repair for grouted connections. KW - Offshore KW - Grouted connection KW - Fibre optic sensors KW - Acoustic emission analysis KW - Cracks KW - Repair KW - Rehabilitation KW - Static loading PY - 2021 DO - https://doi.org/10.1016/j.marstruc.2021.102934 VL - 77 SP - 102934 PB - Elsevier Ltd. AN - OPUS4-52059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Bracklow, F. A1 - Hering, M. A1 - Kühn, T. A1 - Curbach, M. A1 - Hille, Falk A1 - Rogge, Andreas T1 - Planar tomography and numerical analysis for damage characterization of impact loaded RC plates N2 - The damage analysis of reinforced concrete (RC) is of high interest for reasons of effective maintenance and structural safe-ty of buildings. The damage structures of RC plates loaded by an impact were investigated, applying X-ray planar tomogra-phy and finite element method (FEM). Planar tomography allows getting three-dimensional information of the RC elements and the damage including crack, spalling and scabbing. The FEM model validated on the tomography data justifies the appli-cation for further predictions of the damage description. In this study, we investigated concrete plates of three different thick-ness subjected to impacts at different low- and medium-velocity, whereby the used impactor had a flat tip, which resulted in small penetrations on the front side and scabbing on the rear side. In order to quantify the damage, the damage volume and its distribution through the plate were computed and the correlations between degree of damage and impact velocity were found out. KW - Impact KW - Damage characterization KW - Planar tomography KW - Numeric simulation KW - Reinforced concrete structure PY - 2020 DO - https://doi.org/10.1002/cend.202000017 VL - 8 SP - 1 EP - 19 PB - Wiley AN - OPUS4-51117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nerger, Deborah A1 - Hille, Falk A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Kühn, T. A1 - Hering, M. A1 - Bracklow, F. T1 - Post-impact evaluation at RC plates with planar tomography and FEM N2 - Due to the wide range of applications, the easy production and the large field of use, reinforced concrete (RC) is a widespread building material. This variety of applications is reflected in a wide range of physical material properties. Not only therefor it still is a technical challenge to provide all necessary test conditions for experimentally reproducing dynamic effects under impact loading of RC structures. In this paper we present investigations on the thicknesses of RC plates under low and medium high velocity impact loading by a flat-tipped impactor. The planar tomography setup at BAM is used to visualize the impact damage and to characterize the damage features such as cracks, scabbing and spalling. Further, the comparison of tomography results with those of an applied numeric simulation analysis is used to verify the numeric models for future damage prognosis under impact loading. Using the results of both, the tomographic as well as the FE analysis, different damage features were investigated and compared regarding their validity. Crack damage plays a leading part and the significance of summarized crack values as well as their distribution is analyzed. The total damage value but also the determined damage distribution both provide an input for describing damage as a function of the impactor velocity and plate thickness. KW - Reinforced concrete structure KW - Post-impact evaluation KW - Damage characterization KW - Ansys Autodyn KW - Drucker-Prager KW - Planar tomography PY - 2020 DO - https://doi.org/10.1016/j.matpr.2020.05.671 SP - 1 EP - 10 PB - Elsevier AN - OPUS4-51115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Kontinuierliches Bauwerksmonitoring – Sensor-basiert (AP4) N2 - Kontinuierliche sensorbasierte Bauwerksmessungen leisten einen wichtigen Beitrag zur Sicherheit von Verkehrsbauwerken. Hierzu werden im Vorhaben AISTEC Referenzbauwerke und Referenzverfahren untersucht mit Schwerpunkt auf den Einfluss klimatischer Bedingungen. Der Vortrag stellt den aktuellen Projektstand des FB 7.2 vor. T2 - 3. Verbundtreffen AISTEC CY - Online meeting DA - 05.05.2020 KW - Zivile Sicherheit KW - Brücken KW - Structural Health Monitoring PY - 2020 AN - OPUS4-50796 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Papadrakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Structural health monitoring KW - Bayesian methods KW - Environmental effects PY - 2020 SN - 978-618-85072-2-7 SN - 978-618-85072-0-3 SP - 1254 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA) CY - Athens, Greece AN - OPUS4-51590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models -- each estimated from data measured in a reference state -- are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - IFAC World Congress 2020 CY - Online meeting DA - 11.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 SP - 13858 AN - OPUS4-51617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Bayesian methods KW - Environmental effects KW - Structural health monitoring PY - 2020 AN - OPUS4-51732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only Systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models { each estimated from data measured in a reference state { are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then con icts May arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Berlin, Germany DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 AN - OPUS4-52366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf T1 - Vorstellung des Bauwerksmonitoring der Maintalbrücke Gemünden im Vorhaben AISTEC N2 - Im Abteilungsseminar wird der aktuelle Umsetzungsstand des Bauwerksmonitorings an der Maintalbrücke Gemünden vorgestellt, sowie die nächsten Schritte zur Systemintegration von Konzepten an Realbauwerken. T2 - Abteilungs-Vortragsseminar Abteilung 7. Bauwerkssicherheit CY - Online meeting DA - 03.03.2021 KW - Structural Health Monitoring KW - Maintalbrücke Gemünden KW - Bauwerksüberwachung KW - Datenmanagement PY - 2021 AN - OPUS4-52221 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias ED - Yokota, H. ED - Frangopol, D. M. T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Structural systems KW - Bayesian system identification KW - Damage identification KW - Environmental effects KW - Structural health monitoring PY - 2021 DO - https://doi.org/10.1201/9780429279119-125 SP - 934 EP - 941 PB - CRC Press AN - OPUS4-52809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Sensorbasiertes Monitoring (AP4 + AP7): Ein Überblick N2 - Im AISTEC Projekt erforscht der FB 7.2 Verfahren zur Bewertung von Verkehrsbrücken auf der Gruandlage von sensorbasierten Bauwerksmessungen. In diesem Vortrag wird ein Überlick über die Forschungsarbeiten des FB 7.2 präsentiert. Des Weiteren wird ein Ausblick zur quantitativen Integration von sensorbasierten Bauwerksmessungen in die risiko-basierte prädiktive Planung von Inspektionen und Reparaturen von Ingenieurbauwerken gegeben. T2 - AISTEC 5. Verbundtreffen CY - Online meeting DA - 24.06.2021 KW - AISTEC KW - Structural Health Monitoring KW - Brücken PY - 2021 AN - OPUS4-52982 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf T1 - AISTEC 5. Verbundtreffen - Messfahrt auf der Maintalbrücke Gemünden N2 - Der Vortrag stellt die Durchführung und die ersten Ergebnisse der Belastungsfahrten der BAM im Rahmen des AISTEC Projekts an der Maintalbrücke am 19.05. und 20.05.2021 vor. Es wurden Tragwerksreaktionen des Bauwerks mit dem installierten Dauermonitoringsystem und insbesondere dem Betongelenk mit zusätzlich installierter Sensorik aufgezeichnet. Für die Ermittlung der Lastposition wurden mehrere Verfahren eingesetzt und verglichen. T2 - AISTEC 5. Verbundtreffen CY - Online meeting DA - 24.06.2021 KW - AISTEC KW - Structural Health Monitoring KW - Einflusslinie KW - Messfahrt KW - Belastungszug PY - 2021 AN - OPUS4-52927 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Statistical subspace-based damage detection with estimated reference N2 - The statistical subspace-based damage detection technique has shown promising theoretical and practical results for vibration-based structural health monitoring. It evaluates a subspacebased residual function with efficient hypothesis testing tools, and has the ability of detecting small changes in chosen system parameters. In the residual function, a Hankel matrix of Output covariances estimated from test data is confronted to its left null space associated to a reference model. The hypothesis test takes into account the covariance of the residual for decision making. Ideally, the reference model is assumed to be perfectly known without any uncertainty, which is not a realistic assumption. In practice, the left null space is usually estimated from a reference data set to avoid model errors in the residual computation. Then, the associated uncertainties may be non-negligible, in particular when the available reference data is of limited length. In this paper, it is investigated how the statistical distribution of the residual is affected when the reference null space is estimated. The asymptotic residual distribution is derived, where its refined covariance term considers also the uncertainty related to the reference null space estimate. The associated damage detection test closes a theoretical gap for real-world applications and leads to increased robustness of the method in practice. The importance of including the estimation uncertainty of the reference null space is shown in a numerical study and on experimental data of a progressively damaged steel frame. KW - Damage detection KW - Uncertainty quantification KW - Statistical tests KW - Ambient excitation KW - Vibration measurement PY - 2022 DO - https://doi.org/10.1016/j.ymssp.2021.108241 SN - 0888-3270 VL - 164 SP - 108241 PB - Elsevier Ltd. AN - OPUS4-52998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Mevel, L. ED - Cunha, A. ED - Caetano, E. T1 - Stochastic subspace-based damage detection of a temperature affected beam structure N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably. T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 SP - 1 EP - 6 AN - OPUS4-52999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva T1 - Stochastic subspace-based damage detection of a temperature affected beam structure N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 AN - OPUS4-53000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Recknagel, Christoph ED - Cunha, Á. ED - Caetano, E. T1 - Enhancing structural models with material tests and static response data - a case study considering a steel beam with asphalt layer subject to temperature variations N2 - Gradual or sudden changes in the state of structural systems caused, for example, by deterioration or accidental load events can influence their load-bearing capacity. Structural changes can be inferred from static and/or dynamic response data measured by structural health monitoring systems. However, they may be masked by variations in the structural response due to varying environmental conditions. Particularly, the interaction of nominally load-bearing components with nominally non-load bearing components exhibiting characteristics that vary as a function of the environmental conditions can significantly affect the monitored structural response. Ignoring these effects may hamper an inference of structural changes from the monitoring data. To address this issue, we adopt a probabilistic model-based framework as a basis for developing digital twins of structural systems that enable a prediction of the structural behavior under varying ambient condition. Within this framework, different types of data obtained from real the structural system can be applied to update the digital twin of the structural system using Bayesian methods and thus enhance predictions of the structural behavior. In this contribution, we implement the framework to develop a digital twin of a simply supported steel beam with an asphalt layer. It is formulated such that it can predict the static response of the beam in function of its temperature. In a climate chamber, the beam was subject to varying temperatures and its static response wass monitored. In addition, tests are performed to determine the temperature-dependent properties of the asphalt material. Bayesian system identification is applied to enhance the predictive capabilities of the digital twin based on the observed data. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) CY - Online meeting DA - 30.06.2021 KW - Digital twin KW - Structural health monitoring KW - Material tests KW - Bayesian updating PY - 2021 SN - 2564-3738 SP - 1537 EP - 1544 AN - OPUS4-54126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thibaux, Philippe A1 - Van Wittenberghe, Jeroen A1 - Fricke, Wolfgang A1 - Thiele, Marc A1 - Nielsen, Lars Peter A1 - Conti, Fabien T1 - Results of the JaCo project: fatigue strength of robot‑welded tubular joints for offshore wind energy converters N2 - Jacket foundations requires the welding of a large number of tubular joints. These foundations type is suitable to support wind energy converters in deeper water. In order to increase the production speed and its quality, robot systems were developed to produce tubular joints. Since fatigue is dominating the design of these structures, an assessment of the performance of tubular joints produced by robots was performed and compared with the performance of manually welded joints. 18 large-scale tests were performed on joints with dimensions representative for offshore structures, which were produced in industrial environment. Breakthrough cracks occurred through the chord, with cracks initiated at the weld toe, although in some cases cracks were also initiated between weld beads. The measured fatigue strengths of joints produced by robot were similar or higher than the T-curve of DNV-RP-C203. Some delivered components showed fatigue strength that was more than 20% higher than the standard curve. These results emphasize that mastering the welding process with robots is necessary to achieve superior levels of fatigue strength. KW - Fatigue KW - Tubular joint KW - Robot welding KW - Hot spot method KW - Large-scale testing PY - 2024 DO - https://doi.org/10.1007/s40194-024-01903-5 SN - 1878-6669 SP - 1 EP - 14 PB - Springer CY - Berlin ; Heidelberg AN - OPUS4-62319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias T1 - Dynamisches Verhalten und Überwachung des Großen Fallturms der BAM in Horstwalde N2 - Falltürme sind Bauwerke, die als Versuchsanlagen sehr speziellen, impulsartigen Belastungen ausgesetzt sind. Am Fallturm auf dem Testgelände Technische Sicherheit (TTS) der BAM wurde bei Routineinspektionen eine Abnahme der strukturellen Integrität in Form von Vorspannungsverlusten in den Bolzen der Stahlverbindungen festgestellt. Um ein Verständnis für die zugrundeliegenden Trag- und Schädigungsmechanismen zu erlangen, wurde ein umfassendes Structural Health Monitoring (SHM) System geplant und am Bauwerk installiert unter Nutzung von digitalen Bauwerksmodellen. Für die Auslegung des Überwachungssystems, insbesondere aber zur Unterstützung der Untersuchung des Schädigungsprozesses, wurden Finite-Elemente-Modelle erstellt. Um sicherzustellen, dass die FE-Modelle das reale Tragwerksverhalten mit ausreichender Genauigkeit abbilden, mussten sie jedoch in Bezug auf die gemessenen Antworten des Tragwerks kalibriert werden. Der vorliegende Beitrag beschreibt experimentelle und numerische Untersuchungen zur Identifizierung des strukturellen Systems des Stahlrohrgitterturms in Vorbereitung einer Überwachungskampagne. Die Auswertung von gemessenen Schwingungen unter ambienter Anregung ermöglichte die Identifizierung der Eigenfrequenzen mehrerer globaler Schwingungsmoden des Fallturms. Zur Modellvalidierung wurde zunächst eine Sensitivitätsanalyse durchgeführt, um die Parameter mit dem größten Einfluss zu ermitteln. Anschließend wurde ein evolutionärer Algorithmus (EA) zur Optimierung nach dem Prinzip der Minimierung der Differenzen zwischen gemessenen und simulierten charakteristischen Antworten eingesetzt. Das aktualisierte Modell wurde schließlich an der dynamischen Reaktion der Turmstruktur infolge einer realen Falltest-induzierten Stoßbelastung validiert. Die Ergebnisse zeigten eine gute Übereinstimmung zwischen numerischen und experimentellen Ergebnissen. N2 - Drop test towers are structures subjected to very specific dynamic loadings. At the drop test tower at the Test Site Technical Safety (TTS) of BAM routine inspections revealed a decline of structural integrity in form of loss of pretension in bolts of structural steel connections. To get an understanding about the underlying damage mechanisms as well as to assure the structural safety in operation, a multifaceted Structural Health Monitoring (SHM) system was planned and installed at the structure with the help of digital models. For planning the monitoring system but especially for supporting the investigation of the damaging process finite element models are deployed. Though, to ensure the capability of the FE model to reproduce the real structural behavior in sufficient accuracy, it needs to be calibrated in respect to measured responses of the structure. The present contribution describes experimental and numerical investigations to identify the structural system of the steel tube lattice tower in preparation of the monitoring campaign. An ambient vibration test allowed the identification of the natural frequencies of several global vibrational modes of the drop test tower. For model updating first a sensitivity analysis is applied to identify the most influencing parameter. In succession a genetic algorithm was applied for optimization in the sense of minimization of the difference between measured and simulated characteristic responses. The updated model is finally validated on the dynamic response of the tower structure to a real drop test induced impact loading. The results showed a good agreement between numerical and experimental results though the robustness of the simulation should be improved by more sophisticated numerical modelling. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.04.2022 KW - Großer Fallturm Horstwalde KW - Structural Health Monitoring KW - Belastungsversuch KW - Modalanalyse KW - Schwingungsdynamik KW - Finite Elemente Simulation PY - 2022 AN - OPUS4-55470 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Characteristic Frequencies of Train-Induced Bridge, Track, Ground and Building Vibrations – Excitation and Mitigation N2 - The characteristic frequencies of train-induced vibrations are discussed in theory and experiment following the propagation of vibrations from the source to the receiver: 1. Out-of-roundness frequencies of the wheels, 2. sleeper-passage frequency, 3. the vehicle-track eigenfrequency, 4. band frequency of the impulses of the passing static axle loads, 5. car-length frequency and multiples, 6. axle-distance frequencies with two characteristic zeros, 7. bridge eigenfrequencies, 8. the cut-on frequency due to the layering, and 9. the cut-off frequency due to the material damping of the soil, 10. the building-soil eigenfrequency, 11. as a rigid building or flexible wall/column mode, 12. floor eigenfrequencies, 13. acoustic room resonances, 14. the „resonance“ frequency or cut-off frequency of a base isolation. Coincidences of some of these characteristic frequencies or frequency ranges can be typically problematic and mitigation measures at the track or at the building can be necessary. The bridge response to the passing static loads is deter¬mined by the axle-sequence spectrum, the eigenfrequency (transfer function) of the bridge, and the modal force or mode shape spectrum. The ground vibration has typically high frequencies for a stiff soil and low frequencies for a soft soil. The high amplitudes between the zeros of the axle-sequence spectrum are often measured in the ground vibrations, and they can be mitigated by soft support elements or a higher bending stiffness of the track. T2 - EVACES 2025 CY - Porto, Portugal DA - 02.07.2025 KW - Train-induced vibration KW - Axle-sequence spectrum KW - Vehicle-track eigenfrequency KW - Axle impulses PY - 2025 AN - OPUS4-63654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -