TY - CONF A1 - Said, Samir A1 - Auersch, Lutz T1 - Prediction of explosion-induced ground and building vibrations - measured wave velocities, transfer functions and attenuation T2 - Proceedings of the 25th International Congress on Sound and Vibration, Sound of Peace Bell, 2018 N2 - Explosion-induced ground vibrations have been measured at several places. Results about the wave propagation are shown in this contribution. The particle velocities of the soil have been measured at up to 1000 m distance from the explosion and are presented as time records (seismograms) and one-third octave band spectra (transfer functions). The results are compared with the results of hammer impacts. The seismograms clearly show different wave types, compressional waves of the air, the water and the soil, and the Rayleigh wave. The hammer impacts yield good results up to 100 m and incorporate higher frequencies at about 50 Hz, whereas the explosion results in a ground vibration with frequencies around 10 Hz and a longer range of influence. Explosion and hammer excitations are evaluated for the wave velocities of the soil by using the wavenumber and the spatial auto-correlation method. The attenuation of the ground vibration amplitudes A with distance r can well be presented by a power law A ~ r -q. This type of amplitude-distance law and the corresponding power q > 1 are substantiated in the contribution. The influence of the charge weight W is evaluated as an additional power law A ~ W -p for each measuring site. The power is found quite similarly around q  0.6 as all sites have a medium soft soil such as sand and clay. The obtained amplitude-charge-distance law can be used to predict the explosion-induced ground and building vibrations at other sites. T2 - International Congress on Sound and Vibration (ICSV25) CY - Hiroshima, Japan DA - 08.07.2018 KW - Prediction of explosion induced ground and building vibration KW - Explosion-induced ground vibrations KW - Hammer impact KW - Soil properties KW - Amplitude-distance laws KW - Amplitude-charge weight laws PY - 2018 SN - 978-83-7880-552-6 SN - 2329-3675 SP - 1 EP - 8 PB - Silesian University of Technology Press CY - Gliwice, Poland AN - OPUS4-45506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha,, Md A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten A1 - Thiele, Marc T1 - Remediation of Cracks Formed in Grouted Connections of Offshore Energy Structures under Static Loads T2 - Proceedings of the Twenty-eighth (2018) International Ocean and Polar Engineering Conference N2 - The future energy demand necessitates the exploration of all potential energy sources both onshore and offshore. Global trend has shifted towards offshore energy, which can be obtained from either carbon intensive or renewable options, hence requiring structures such as rigs, platforms, and monopiles. Most of these structures adopt easily installable construction techniques, where lower foundation need to be connected with the super structure by mean of grouted composite joints. Generally, these composite connections have exterior sleeve, interior pile and infill grout. Being located in remote offshore conditions, connections can experience considerable adverse loading during their lifetimes. Degradations were reported inside similar connections, which were installed in last three decades. Besides, grouting in the offshore sites may often be proven difficult, which eventually leads to reduced capacity of connections in the long run. Thus, repair and rehabilitation of such connections should be planned ahead to minimize operational delays and costs in the future. This study aims at characterizing the nature of crack generation in grouted connections and thereby identifying the potential of repair using suitable repair material. Scaled grouted joints were manufactured using a novel mold, and connections were loaded under static load to visualize the main failure pattern. The failure mechanism and loading capacity are found compatible to previous results from earlier literature. Grouted connection was then repaired using cementitious injectable grout. The effectiveness of the repair system is also discussed. T2 - Twenty-eighth (2018) International Ocean and Polar Engineering Conference CY - Sapporo, Japan DA - 10.06.2018 KW - Offshore KW - Energy KW - Grouted Connection KW - Cracks KW - Repair KW - Rehabilitation PY - 2018 SP - 120 EP - 126 AN - OPUS4-45227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Stutz, H. H. A1 - Cuellar, Pablo A1 - Baeßler, Matthias A1 - Rackwitz, F. ED - Cardoso, A. S. ED - Borges, J. L. ED - Costa, P. A. ED - Gomes, A. T. ED - Marques, J. C. ED - Vieira, C. S. T1 - A generalized plasticity model adapted for shearing interface problems T2 - Numerical Methods in Geotechnical Engineering IX N2 - The response of many geotechnical systems, whose structural behavior depends on shearing effect, is closely related to soil structure interaction phenomenon. Experimentally it is found that the localisation of these effect happens at a narrow soil layer next to the structure. Numerically, this behavior can be modelled through inter-face elements and adequate constitutive models. In this work, a constitutive model in the framework of Gen-eralized Plasticity for sandy soils has been chosen to be adapted for the interface zone. From the direct shear experiments a sandy soil at loose and dense states under different normal pressures is considered. The adapted constitutive model is able to reproduce contraction and dilatation of the soil according to its relative density and it shows a good agreement with the experimental data. T2 - Conference CY - Porto, Portugal DA - 25.06.2018 KW - Numerical modelling KW - Soil-pile interaction KW - Interface KW - Shearing PY - 2018 SN - 978-1-138-33198-3 VL - 1 SP - 97 EP - 102 PB - NUMGE CY - Porto, Portugal AN - OPUS4-45721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kowitz, Astrid A1 - Wu, Cheng-Chieh A1 - Hille, Falk A1 - Helmerich, Rosemarie A1 - Kadoke, Daniel A1 - Gründer, Klaus-Peter A1 - Hauser, S. A1 - Schwarzinger, H. ED - Pastramă, Ş. D. ED - Constantinescu, D. M. T1 - Impact on a micro-reinforced UHPC: Experimental studies versus numerical modeling T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics, Extended Abstracts N2 - Within the presented research project, experimental and numerical investigations were performed to develop a thin-shelled, modular, mobile element system made of a micro-reinforced ultra-high-performance ductile concrete (DUCON®). Material parameters were experimentally determined to adapt the material model within the numerical analysis applying the Drucker-Prager relationship. Afterwards, for validation of the numerical models, quasi-static and high-velocity impact tests were performed on plate-like structures. Finally, a suitable geometry of transportable barrier elements will be designed, which provides a maximum of resistance against impact by a minimum of weight and a maximum of mobility. T2 - 35th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Sinaia, Romania DA - 25.09.2018 KW - E-modulus KW - Impact KW - UHPC KW - DUCON® KW - Quasi-static and dynamic tests KW - Micro-reinforcement KW - Ductility KW - Mobile elements KW - Numerical modeling KW - Stereo photogrammetry KW - Compressive strength PY - 2018 UR - https://www.das2018.ro/ SN - 978-606-23-0874-2 SP - 11 EP - 12 PB - Editura Printech CY - Bucarest, Romania AN - OPUS4-47001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Peter A1 - Cuéllar, Pablo A1 - Hüsken, Götz A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Insights into compaction grouting for offshore pile foundations T2 - Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering OMAE 2018 N2 - The authors are currently investigating the possibility to apply compaction grouting for offshore pile foundations (Jacket piles as well as monopiles) as a possible retrofitting technique for an optimised foundation concept. In this research project, we are developing a design approach aiming to predict the ideal amount and properties of a grout for a specific soil situation and desired improvement of pile bearing capacity after Installation and during service time. Both numerical and experimental tests have been carried out to investigate the injection process during which a highly viscous grout is injected into the soil under high pressure to displace and compact the surrounding soil without fracturing it. The implicit Material Point Method (MPM) based on a mixed formulation is the numerical technique chosen to deal with the expected large deformations and the arbitrary shape of the developing grout bulb. The usage of MPM prevents both the need of remeshing and the numerical instability induced by extensive mesh distortion. For validation with experimental results, we have constructed a testing chamber with one transparent sidewall. This chamber enables us to observe the injection process directly at the transparent vertical window and to measure the in-plane soil displacements and strains by means of the Digital Image Correlation (DIC) technique. The results already reveal the interrelation of soil and grout properties for a successful usage of this common ground improvement technique. T2 - 37th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2018) CY - Madrid, Spain DA - 18.06.2018 KW - Offshore pile foundation KW - Compaction grouting KW - Material Point Method (MPM) KW - Mixed formulation KW - Digital Image Correlation (DIC) PY - 2018 SN - 978-0-7918-5130-2 SN - 2153-4772 VL - 9 SP - V009T10A013, 1 EP - 9 AN - OPUS4-46004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiewitt, W. A1 - Bardl, Richard A1 - Kühnel, C. A1 - Loudon, D. A1 - Stengel, D. A1 - Wunkte, M. T1 - Comparative study of the long-term reliability of HTLS conductor systems T2 - CIGRE 2018 N2 - In recent years, several high temperature low sag conductors (HTLS) have been developed and are now commercially available. Very few utilities have long-term experience with all the technologies. Moreover, most of the operational experience is at low temperatures. An independent testing program at maximum operational temperatures comparing most of the available technologies would provide useful guidance to utilities considering using such conductors. This paper describes the approach and results of an international research project assessing the long-term reliability of a wide range of commercially available high temperature conductor systems. Each system was exposed to 4,400 hours of simultaneous mechanical and electrical stresses. A set of standard mechanical and electrical tests were carried out to determine any changes. A conventional ACSR conductor was also tested and provided a validation that the testing program was realistic. The majority of the conductor systems performed satisfactorily. However the ACSS system joint resistance and the grease on the TACSR performed poorly. T2 - CIGRE Sesstion 2018 CY - Paris, France DA - 26.08.2018 KW - HTLS KW - Conductor KW - Freileitung PY - 2018 SP - B2-204,1 EP - 10 AN - OPUS4-46028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Hille, Falk ED - Powers, N. ED - Frangopol, D. T1 - A study on diverse strategies for discriminating environmental from damage based variations in monitoring data T2 - Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges N2 - Right from the beginning of applying SHM to bridge structures it was obvious that environmental based perturbations on the measurement significantly influence the ability to identify structural damage. Strategies are needed to classify such effects and consider them appropriately in SHM. Various methods have been developed and analyzed to separate environmental based effects from damage induced changes in the measures. Generally, two main approaches have emerged from research activity in this fields: (a) statistics based tools analyzing patterns in the data or in computed parameters and (b) methods, utilizing the structural model of the bridge taking into account environmental as well as damage based changes of stiffness values. With the back-ground of increasing affordability of sensing and computing technology, effort should be made to increase sensitivity, reliability and robustness of procedures, separating environmental from damage caused changes in SHM measures. The contribution describes both general strategies and points out their Advantages and drawbacks. As basis, a review on relevant methods was conducted. The aim of the study is to classify approaches for separating damage describing information from environmental based perturbations in dependency of the SHM objective. And such, it is intended to describe a best practice in designing concepts for Monitoring infrastructure, naturally effected by environmental influences. T2 - IABMAS CY - Melbourne, Australia DA - 09.07.2018 KW - SHM KW - Environmental changes KW - temperature PY - 2018 SN - 978-1-138-73045-8 SP - 1557 EP - 1564 PB - CRC Press AN - OPUS4-46059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian A1 - Pirskawetz, Stephan A1 - Thiele, Marc A1 - Rogge, Andreas T1 - Experimental investigation of size effect on fatigue behavior of high strength concrete - concept and preliminary results T2 - Proceedings for the 2018 fib Congress held in Melbourne - Extended Abstracts and Keynotes N2 - The worldwide spread of windfarms brings new challenges, especially for concrete structures as a part of towers, connecting joints and foundations of wind turbines. High-cyclic loadings in such structures lead to a high relevance of the subject of fatigue. A proper assessment of the fatigue strength of concrete demands therefore a basis of reliable experimental data and the development of standardized testing methods. This article presents first results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung) which is a part of a joint project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject investigates the effects of size and slenderness of the specimens on the fatigue behaviour of high strength concrete at different stress levels. Not only the fatigue strength, but also the fatigue process itself is monitored by means of several measurement methods. Strain measurements are used to calculate the load dependent elastic modulus in the fatigue hysteresis as indicators for fatigue development. Furthermore, the application of non-destructive methods like acoustic emission analysis and ultrasonic measurement in laboratory tests gives a deeper insight into damage processes under cyclic loading. The results shall be used to improve design rules for concrete members under fatigue load and to develop or improve non-destructive techniques for in-service structural health monitoring. T2 - 5th International fib Congress: Better - Smarter - Stronger CY - Melbourne, Australia DA - 08.10.2018 KW - Acoustic emission testing KW - Compressive cyclic loading KW - Fatigue KW - High-strength concrete KW - Non-destructive testing KW - Size effect KW - Slenderness effect KW - Ultrasonic testing PY - 2018 SN - 978-1-877040-14-6 SP - 1 EP - 11 AN - OPUS4-46408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. ED - Simani, S. ED - Patan, K. T1 - Asymptotic analysis of subspace-based data-driven residual for fault detection with uncertain reference T2 - 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2018 N2 - The local asymptotic approach is promising for vibration-based fault diagnosis when associated to a subspace-based residual function and efficient hypothesis testing tools. It has the ability of detecting small changes in some chosen system parameters. In the residual function,the left null space of the observability matrix associated to a reference model is confronted to the Hankel matrix of output covariances estimated from test data. When this left null space is not perfectly known from a model, it should be replaced by an estimate from data to avoid model errors in the residual computation. In this paper, the asymptotic distribution of the resulting data-driven residual is analyzed and its covariance is estimated, which includes also the covariance related to the reference null space estimate. The advantages of the data-driven residual are demonstrated in a numerical study, and the importance of including the covariance of the reference null space estimate is shown, which increases the detection Performance. T2 - 10th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2018 CY - Warsaw, Poland DA - 29.08.2018 KW - Subspace-based method KW - Fault detection KW - Uncertainty in reference KW - Residual evaluation KW - Statistical tests KW - Vibration measurements PY - 2018 DO - https://doi.org/10.1016/j.ifacol.2018.09.610 SN - 2405-8963 VL - 51 IS - 24 SP - 414 EP - 419 PB - Elsevier AN - OPUS4-46303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias ED - Alexander, M.G. ED - Beushausen, H. ED - Dehn, F. ED - Moyo, P. T1 - Workability and mechanical properties of ultrafine cement based grout for structural rehabilitation: A parametric study on the partial replacement with SCMs T2 - Proceedings of the International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) N2 - Grouting is a universal repair and strengthening technique, which is constantly used for structural remediation of concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. Having an extremely small particle size of only few microns, ultrafine cements are ideal for grouting applications due to their superior permeability and compressive strength properties of the hardened cement paste compared to that of the less-expensive, but coarser ordinary Portland cements. Supplementary cementitious materials (SCMs) are often used to replace ultrafine cement in order to modify certain properties and to reduce costs. The aim of this experimental study is to investigate the effect of three supplementary materials: microsilica (MS), fly ash (FA), and metakaolin (MK) on the workability, and mechanical properties of an ultrafine cement based grout with a constant water-binder ratio and constant superplasticizer content. Maximum percentages of replacement with ultrafine cement were 6% by volume of cement for MS and 16% for FA, and MK. In general, results suggest that the workability is improved by addition of FA, whereas is reduced, when modified with MS and MK. The compressive strength of grout after cement replacement remains comparable to that of pure cement grout. However, there is a tendency of the MS to positively affect the compressive strength opposite to FA, whereas flexural strength is positively affected by FA. Based on the results, it is evident that grouts with Hägerman cone flow more than 500 mm and compressive strength of more than 90 MPa after 28 days can be produced. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) CY - Cape Town, South Africa DA - 19.11.2018 KW - Grouting KW - Repair KW - Box-Behnken KW - Supplementary cementitious materials KW - Analysis of variance PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464769 DO - https://doi.org/10.1051/matecconf/201819907006 SN - 2261-236X VL - 199 SP - 07006-1 EP - 07006-7 PB - MATEC Web of Conferences AN - OPUS4-46476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhuyan, Md Delwar Hossain A1 - Le Touz, N. A1 - Gautier, G. A1 - Döhler, M. A1 - Hille, Falk A1 - Dumoulin, J. A1 - Mevel, L. T1 - Load vector based damage localization with rejection of the temperature effect T2 - Proceedings of IOMAC'19 N2 - The Stochastic Dynamic Damage Locating Vector (SDDLV) approach is a vibration-based damage localization method based on both a finite element model of a structure and modal parameters estimated from output-only measurements in the damage and reference states. A statistical version of the Approach takes into account the inherent uncertainty due to noisy measurement data. In this paper, the effect of temperature fluctuations on the performance of the method is analyzed in a model-based approach using a finite element model with temperature dependent parameters. Robust damage localization is carried out by rejecting the temperature influence on the identified modal parameters in the damaged state. The algorithm is illustrated on a simulated structure. T2 - 8. International Operational Modal Analysis Conference CY - Kopenhagen, Denmark DA - 12. Mai 2019 KW - SDDLV KW - Load vector KW - Temperature rejection KW - Statistical evaluation PY - 2019 SP - 1 EP - 10 AN - OPUS4-48182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhuyan, Md Delwar Hossain A1 - Döhler, M. A1 - Lecieux, Y. A1 - Lupi, C. A1 - Thomas, J.-C. A1 - Schoefs, F. A1 - Hille, Falk A1 - Mevel, L. T1 - Statistical subspace based damage localization on Saint-Nazaire bridge mock-up T2 - Proceedings of IOMAC'19 N2 - The subject of damage localization is an important issue for Structural Health Monitoring (SHM) particularly in mechanical or civil structures under ambient excitation. In this paper, the statistical subspacebased damage localization method has been applied on a benchmark application, namely a 1/200 scale model of the Saint-Nazaire Bridge, which is a cable-stayed bridge located on the Loire River near the river’s mouth. The employed damage localization method combines data-driven features with physical parameter information from a finite element model in statistical tests, avoiding typical ill-conditioning problems of FE model updating. Damage is introduced in the mockup for cable failures on some of the 72 cables. The purpose of the experiment is to assess the capability of damage assessment methods to find a cable failure. T2 - 8. International Operational Modal Analysis Conference CY - Kopenhagen, Denmark DA - 12. Mai 2019 KW - Damage localization KW - Cable-stayed bridge KW - Cable failure KW - Structural health monitoring PY - 2019 SP - 1 EP - 9 AN - OPUS4-48183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Zhang, Q. A1 - Hille, Falk A1 - Mevel, L. T1 - Subspace-based Damage Detection with Rejection of the Temperature Effect and Uncertainty in the Reference T2 - Proceedings of 8th International Operational Modal Analysis Conference N2 - Temperature variation can be a nuisance that perturbs vibration based structural health monitoring (SHM) approaches for civil engineering structures. In this paper, temperature affected vibration data is evaluated within a stochastic damage detection framework, which relies on a null space based residual. Besides two existing temperature rejection approaches – building a reference state from an averaging method or a piecewise method – a new approach is proposed, using model interpolation. In this approach, a general reference model is obtained from data in the reference state at several known reference temperatures. Then, for a particular tested temperature, a local reference model is derived from the general reference model. Thus, a well fitting reference null space for the formulation of a residual is available when new data is tested for damage detection at an arbitrary temperature. Particular attention is paid to the computation of the residual covariance, taking into account the uncertainty related to the null space matrix estimate. This improves the test performance, contrary to prior methods, for local and global damages, resulting in a higher probability of detection (PoD) for the new interpolation approach compared to previous approaches. T2 - International Operational Modal Analysis Conference CY - Copenhagen, Danmark DA - 13.05.2019 KW - Uncertainty KW - Statistical method KW - Subspace-based method KW - Temperature rejection KW - Model interpolation PY - 2019 SP - 1 EP - 11 AN - OPUS4-48240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhuyan, Md Delwar Hossain A1 - Le Touz, N. A1 - Gautier, G. A1 - Döhler, M. A1 - Hille, Falk A1 - Dumoulin, J. A1 - Mevel, L. T1 - Load Vector Based Damage Localization with Rejection of the Temperature Effect T2 - Proceedings of 8th International Operational Modal Analysis Conference N2 - The Stochastic Dynamic Damage Locating Vector (SDDLV) approach is a vibration-based damage localization method based on both a finite element model of a structure and modal parameters estimated from output-only measurements in the damage and reference states. A statistical version of the Approach takes into account the inherent uncertainty due to noisy measurement data. In this paper, the effect of temperature fluctuations on the performance of the method is analyzed in a model-based approach using a finite element model with temperature dependent parameters. Robust damage localization is carried out by rejecting the temperature influence on the identified modal parameters in the damaged state. The algorithm is illustrated on a simulated structure. T2 - International Operational Modal Analysis Conference CY - Copenhagen, Danmark DA - 13.05.2019 KW - Statistical evaluation KW - Damage localization KW - SDDLV KW - Load vector KW - Temperature rejection PY - 2019 SP - 1 EP - 10 AN - OPUS4-48241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bhuyan, Md Delwar Hossain A1 - Döhler, M. A1 - Lecieux, Y. A1 - Lupi, C. A1 - Thomas, J. A1 - Schoefs, F. A1 - Hille, Falk A1 - Mevel, L. T1 - Statistical Subspace-based Damage Localization on Saint-Nazaire Bridge Mock-Up T2 - Proceedings of 8th International Operational Modal Analysis Conference N2 - The subject of damage localization is an important issue for Structural Health Monitoring (SHM) particularly in mechanical or civil structures under ambient excitation. In this paper, the statistical subspacebased damage localization method has been applied on a benchmark application, namely a 1/200 scale model of the Saint-Nazaire Bridge, which is a cable-stayed bridge located on the Loire River near the river’s mouth. The employed damage localization method combines data-driven features with physical parameter information from a finite element model in statistical tests, avoiding typical ill-conditioning problems of FE model updating. Damage is introduced in the mockup for cable failures on some of the 72 cables. The purpose of the experiment is to assess the capability of damage assessment methods to find a cable failure. T2 - International Operational Modal Analysis Conference CY - Copenhagen, Danmark DA - 13.05.2019 KW - Structural health monitoring KW - Damage localization KW - Cable-stayed bridge KW - Cable failure PY - 2019 SP - 1 EP - 9 AN - OPUS4-48243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Bhuyan, Delwar A1 - Hille, Falk A1 - Viefhues, Eva A1 - Döhler, M. A1 - Mevel, L. ED - Zingoni, Alphose T1 - Impact of environmental based effects on SHM strategies T2 - Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications N2 - Environmental based perturbations influence significantly the ability to identify structural dam-age in Structural Health Monitoring. Strategies are needed to classify such effects and consider them appropri-ately in SHM. It has to be considered if seasonal effects just mask the structural response or if temperature itself correlates to a weakening of the structure. Various methods have been developed and analyzed to separate environmental based effects from damage induced changes in the measures. Generally, two main approaches have emerged from research activity in this fields: (a) statistics-based tools analyzing patterns in the data or in computed parameters and (b) methods, utilizing the structural model of the bridge considering environmental as well as damage-based changes of stiffness values. With the background of increasing affordability of sensing and computing technology, effort should be made to increase sensitivity, reliability and robustness of proce-dures, separating environmental from damage caused changes in SHM measures. The contribution describes an attempt to evaluate both general strategies, their advantages and drawbacks. In addition, two vibration moni-toring procedures are introduced, allowing for temperature-based perturbations of the monitoring data. T2 - SEMC 2019 CY - Cape Town, South Africa DA - 02.09.2019 KW - SHM environmental bridges PY - 2019 SN - 978-1-138-38696-9 SN - 978-0-429-42650-6 DO - https://doi.org/10.1201/9780429426506 SP - Paper 324, 1 EP - Paper 324, 6 PB - CRC Press CY - Boca Raton AN - OPUS4-49167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Moortgat-Pick, A. A1 - Marx, S. ED - Helmerich, Rosemarie ED - Ilki, A. ED - Motavalli, M. T1 - Vibration Analysis of Structures using a Drone (UAV) based Mobile Sensing Platform T2 - Proceedings of the 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) N2 - The identification of the dynamic behavior of structures, like bridges and towers, is relevant to address multiple issues. In many cases the dynamic parameters should be acquired only once or at a frequency that doesn’t justify the installation of distinct vibration sensors for a long-term monitoring. To identify modal frequencies of a structure, a drone based mobile sensing platform has been implemented. This sensing platform measures the relative displacement be-tween the structure and the drone, which also shows a strong dynamic behavior under wind tur-bulences. By regarding the dynamic model of the drone and additional measurements at the dis-tance sensor the absolute movement of the structure can be estimated based on the measured relative distance. This time domain data is a suitable input for various operational modal analysis algorithms. The system has been used to identify the dynamic properties of test and real structure, like a 1.5 MW wind turbine tower. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Modal Analysis KW - Drone KW - Vibration KW - Wind Turbines KW - Bridges PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492045 UR - http://data.smar-conferences.org/downloads/SMAR_2019_Proceedings.zip SN - 978-3-947971-07-7 SP - We.4.C.3 EP - 8 PB - German Society for Non-Destructive Testing (DGZfP e.V.) AN - OPUS4-49204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Deborah A1 - Hille, Falk A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Kühn, T. A1 - Hering, M. A1 - Bracklow, F. T1 - Improved tomographic investigation for impact damage characterization T2 - Proceedings of the International conference on structural mechanics in reactor technology N2 - Reinforced concrete (RC) is used as structural material in most diverse civil engineering applications. For the variability of its physical properties it is still an engineering challenge to meet all necessary requirements for the prediction of dynamic effects under impact loading. In this paper, investigations are shown within the scope of quantifying and evaluating the damage caused by an impact. The experimental investigations are performed in the field of low- and medium-velocity impact. The chosen flat nose shape results in small penetrations on the top side and scabbing on the bottom side. The plate is scanned with an adapted planar tomographic examination after the impact, and the damage is analysed, afterwards. Cracks and spalling are made visible with a reconstruction. The numerical model validated on the tomographic results justifies the application for further predictions of the damage description. T2 - 25th International Conference on Structural Mechanics in Reactor Technology - SMIRT25 CY - Charlotte, NC, USA DA - 04.08.2019 KW - Impact KW - Damage characterization KW - Planar tomography KW - Numeric simulation KW - Reinforced concrete structure PY - 2019 SP - Paper Div 5 S8, 1 EP - 9 AN - OPUS4-49541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Shamsuddoha, Md A1 - Thiele, Marc A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten T1 - Comparison of cracks formed in scaled grouted connection of offshore energy structures under static and cyclic loads T2 - Proceedings of SMAR 2019 N2 - Global energy consumption will increase in the future necessitating both fossil fuels and renewable energy choices - especially wind energy. Such high energy demand requires installation of offshore energy structures, rigs, platforms and towers, which are susceptible to adverse environmental conditions along with maintenances. Due to their large size and remote locations, cylindrical grouted joints are often adopted between substructure and foundation in these offshore platforms and wind structures such as monopiles. However, these connections are composite structures with exterior sleeve, interior pile and infill mortar. Degradation and settlements were reported inside similar connections, which were installed in last three decades. Besides, grouting in the offshore sites were proven difficult to obtain ideal load bearing capacity. In-situ loading conditions were also found to be affecting the failure mechanism inside such connections. This study aims at characterizing the nature of cracks generated in these grouted connections under both static and cyclic loading. Scaled grouted joints were manufactured using a novel reusable mold, and connections were loaded to failure to visualize the main failure patterns. An assessment between failure under these two types of load is drawn along with comparison to previously available literature. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Grouted connection KW - Crack formation KW - Crack pattern KW - Static load KW - Cyclic load PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-487961 SP - Th.2.A.1-1 EP - Th.2.A.1-9 AN - OPUS4-48796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Cuéllar, Pablo A1 - Baeßler, Matthias A1 - Stutz, H. H. T1 - Modelling and calibration for cyclic soil-structure interface behaviour N2 - The structural performance of many geotechnical systems (e.g. axially-loaded pile foundations), depends on the shearing resistance at the soil interface, which may govern the load bearing capacity of the foundation. Experimental investigations have shown that this interaction is mainly localised within a narrow shear band next to the structure. Under cyclic loading, a contraction of the soil at the interface may arise (net volume loss), possibly leading to a stress relaxation and thus to a reduction of the load bearing capacity (the so-called friction fatigue). Based on the constitutive similarities between soil continua and interfaces, we propose here the adaption of a Generalized Plasticity model for sandy soils for the numerical analysis of interface problems. In this contribution, the results of an experimental campaign for the parameter calibration of the constitutive model are presented. The tests have been conducted with a ring shear device involving different normal stresses, roughness of the steel plates as well as cyclic loading. The new modelling approach shows promising results and has the additional practical advantage that the interface zone and the soil continuum can both be described with the same constitutive model in general boundary value problems. T2 - Konferenz 7th International Symposium on Deformation Characteristics of Geomaterials CY - Glasgow, Scotland DA - 26.06.2019 KW - Soil-structure interaction KW - Offshore foundations PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489096 DO - https://doi.org/10.1051/e3sconf/20199213007 VL - 92 SP - 13007 EP - 13013 PB - EDP Sciences CY - Glasgow, Scotland AN - OPUS4-48909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Hille, Falk A1 - Makris, Ruben ED - Helmerich, Rosemarie ED - Ilki, A. ED - Motavalli, M. T1 - Comparison of fatigue crack detection methods for high-cyclic loaded steel structures T2 - Proceedings of SMAR 2019 N2 - At present, to produce renewable energy offshore wind farms play an important role. The available space combined with the more valuable wind conditions make offshore locations very attractive for wind powered energy production. In Europe a significant number of offshore wind farms already exist, especially in the North and Baltic Sea. In future this trend will continue, and further offshore wind farms will be built. The majority of offshore wind turbines are mounted on steel foundation structures. Due to the high-cyclic loading by wind and waves fatigue stress plays a substantial role regarding structural safety. Besides the consideration of fatigue within the design process, to monitor existing steel structures for potential fatigue cracks during their life time is a major topic and a challenge. For the structures of the offshore wind turbines are large and partially under water effective reliable methods for the detection of fatigue cracks are required. This contribution presents investigations on different crack detection methods applied at high-cycle fatigue tests on small-scale welded steel samples as well as on large-scale welded steel components. The tests were conducted at the BAM laboratories. For crack detection mainly three different methods were used and compared. The first method regards to the measurement of strain by conventionally strain gauges. Secondly, the crack luminescence was used as a new and effective optical method for surface monitoring. And finally, crack detection by pressure differentials of the inner and outer section of tubular steel elements was investigated. A comparison study will emphasize the advantages and disadvantages of the different methods and show which of the described methods is potentially more suitable for an application on real offshore wind structures. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Fatigue KW - Steel structures KW - Crack detection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-489433 SP - Th.2.A.1-1 EP - Th.2.A.1-8 AN - OPUS4-48943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Peter A1 - Schwarz, Johannes A1 - Cuéllar, Pablo A1 - Hüsken, Götz A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten A1 - Morrone, C. T1 - Compaction grouting to improve the pile bearing capacity in non-cohesive soil T2 - Proceedings of the Twenty-ninth (2019) International Ocean and Polar Engineering Conference N2 - The aim of an ongoing research project is to develop a design approach for typical offshore driven piles (e.g. Jacket piles) based on the application of injections by compaction grouting directly at the pile shaft. The paper aims to present the results of laboratory and in-situ tests, which reveal the efficiency and the promising potential of the optimised foundation concept for a more economic dimensioning of pile foundations and to increase their bearing capacity in non-cohesive soil at any moment after installation. T2 - Twenty-ninth International Ocean and Polar Engineering Conference CY - Honolulu, HI, USA DA - 16.06.2019 KW - Offshore Pile Foundation KW - Compaction Grouting KW - Grout KW - Injection Sequence KW - Tensile Capacity PY - 2019 SN - 978-1-880653-85-2 SN - 1098-6189 VL - II SP - 2178 EP - 2184 PB - International Society of Offshore and Polar Engineers (ISOPE) CY - Cupertino, California, USA AN - OPUS4-48505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir T1 - Measurement of slab track behaviour at different sites T2 - Proceedings of the 26th International Congress on Sound and Vibration N2 - Measured train passages and hammer impacts in combination with track-soil calculation have been successfully used for the detection of damaged slab tracks. This approach is now extended to intact slab and ballast tracks. The vibrations of many tracks have been measured at several levels from rail, sleeper, track plate, base plate, base layer to the subsoil by velocity or acceleration sensors. The time histories have to be integrated once or twice to get the displacements. The displacement signals include an arbitrary time-dependent shift which must be eliminated or respected in the interpretation. On the other hand, the calculation of slab and ballast tracks have been done in frequency-wavenumber domain. The displacements along the track and the frequency-dependent compliance transfer functions can be calculated. The latter can be compared with the results of the hammer impacts on the track. The deformation of the track can be transformed to time histories for a whole train and compared to the measured train passages. Many slab (and ballast) tracks have been measured at different sites. The displacements of the tracks are presented, and the following parameters have been analysed in the measurement results: slab track vs. ballast track, different types of slab tracks, damaged slab tracks, different trains, switches at different measuring points, an elastic layer, the mortar layer, different soils at different places. The soil should have the dominant influence on the track-plate displacements. Slab and ballast track yield also big differences in maximum displacement and width of deformation. Some of the preceding aspects will be analysed in comparison of measurement and theory. T2 - 26th International Congress on Sound and Vibration (ICSV26) CY - Montreal, Canada DA - 07.07.2019 KW - Displacements KW - Slab track KW - Train passage KW - Hammer impact KW - Vibration measurements PY - 2019 SN - 978-1-9991810-0-0 SN - 2329-3675 SP - T15RS01_316_1 EP - T15RS01_316_8 PB - Canadian Acoustical Association CY - Montreal, Kanad AN - OPUS4-48498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Rica, S. A1 - Rackwitz, F. T1 - An enhanced interface model for friction fatigue problems of axially loaded piles T2 - OMAE 2019 N2 - The shaft bearing capacity often plays a dominant role for the overall structural behaviour of axially loaded piles in offshore deep foundations. Under cyclic loading, a narrow zone of soil at the pile-soil interface is subject to cyclic shearing solicitations. Thereby, the soil may densify and lead to a decrease of confining stress around the pile due to microphenomena such as particle crushing, migration and rearrangement. This reduction of radial stress has a direct impact on the shaft capacity, potentially leading in extreme cases to pile failure. An adequate interface model is needed in order to model this behaviour numerically. Different authors have proposed models that take typical Interface phenomena in account such as densification, grain breakage, normal pressure effect and roughness. However, as the models become more complex, a great number of material parameters need to be defined and calibrated. This paper proposes the adoption and transformation of an existing soil bulk model (Pastor- Zienkiewicz) into an interface model. To calibrate the new interface model, the results of an experimental campaign with the ring shear device under cyclic loading conditions are here presented. The constitutive model shows a good capability to reproduce typical features of sand behaviour such as cyclic compaction and dilatancy, which in saturated partially-drained conditions may lead to liquefaction and cyclic mobility phenomena. T2 - Conference: OMAE CY - Glasgow, Scotland, UK DA - 09.06.2019 KW - Soil-structure interaction KW - Interface PY - 2019 VL - 2019 SP - Article Number: UNSP V001T10A013 PB - ASME CY - Glasgow, Scotland AN - OPUS4-48444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Ruspighi, Emiliano T1 - Vehicle-track-soil interaction and train-induced ground vibration: Theory and measurements in Germany, Switzerland and France T2 - Proceedings of the 13th International Conference on recent Advances in Structural Dynamics (RASD2019) N2 - Abstract. Three measurement campaigns of train-induced ground vibrations are evaluated for the vehicle-track-soil interaction. Ground vibrations, track vibrations and vehicle vibrations have been measured for train passages and impulse excitation and compared with theoretical results. The soil and the track-soil system are calculated by wavenumber integrals. The influence of the vehicle is introduced by a substructure method. By comparing theory and measurement the different components of excitation force and ground vibration can be analysed, the quasi-static excitation, track-alignment errors, the out-of-roundness of wheels, the wheel and rail roughness, and moreover, scattered axle impulses and ineffective high-frequency parts of the wheelset accelerations and forces. T2 - 13th International Conference on recent Advances in Structural Dynamics CY - Lyon, France DA - 15.4.2019 KW - Vehicle-track interaction KW - Train-induced ground vibration KW - Ground vibration measurements PY - 2019 SP - 810 EP - 821 PB - University of Southampton CY - Southampton AN - OPUS4-48423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Lombaert, G. ED - Degrande, G. T1 - Predicted and measured amplitude-speed relations of railway ground vibrations at four German sites with different test trains T2 - Proc. of the 13th International Workshop on Railway Noise and Vibration N2 - The present contribution evaluates four measuring series made by the Federal Institute of Material Research and Testing for the relations between train speed and ground vibration amplitudes. This experimental evaluation is supported by the simulation of the train passages at the different sites by using appropriate excitation mechanisms and forces as well as layered soil models which have been derived from impact measurements at each site. T2 - 13th International Workshop on Railway Noise and Vibration CY - Leuven, Belgium DA - 16.09.2019 KW - Train speed KW - Ground vibration KW - Excitation forces KW - Layered soils PY - 2019 SP - 1 EP - 8 PB - KU Leuven CY - Leuven AN - OPUS4-49440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian A1 - Thiele, Marc A1 - Pirskawetz, Stephan A1 - Meng, Birgit A1 - Rogge, Andreas T1 - Characterizing the Fatigue Behavior of High-Performance Concrete for Wind Energy Structures T2 - Proceedings LORCENIS - Durable Concrete for Infrastructure under Severe Conditions Smart Admixtures, Self-responsiveness and Nano-additions N2 - Severe mechanical fatigue conditions for worldwide proliferating windfarms are a Major challenge for high-performance concrete in towers, connecting joints and foundations of wind turbines. High-performance concrete offers potential for the application in offshore windfarms, not only regarding its good mechanical, but also chemical resistivity due to low diffusivity in the highly densified microstructure. For a more reliable fatigue assessment, monitoring based on nondestructive testing can be a valuable complement to design rules. Both approaches demand reliable experimental data, information about scalability and the development of standardized testing methods. This article presents results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung), which is a part of a joint national project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject implemented by BAM examines the fatigue behavior in dependence of size and slenderness for varying concrete strength at different stress levels. Besides fatigue strength, nondestructive testing is carried out additionally. Methods used are strain measurement and ultrasonic testing. The change of strain, stiffness and ultrasonic pulse velocity in the fatigue process is discussed. Results disclose a deeper insight into the damage process under cyclic loading of high-performance concrete and contribute to improve nondestructive monitoring. T2 - LORCENIS - Long Lasting Reinforced Concrete fpr Energy Infrastructure under Severe Operating Conditions CY - Ghent, Belgium DA - 10.09.2019 KW - Compressive Cyclic loading KW - Fatigue KW - High-strength concrete KW - Non destructive testing KW - Ultrasonic testing PY - 2019 SN - 978-9-463-88638-3 SP - 1 EP - 4 AN - OPUS4-49500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rica, S. A1 - Van Baars, S. A1 - Kullolli, Borana ED - Ülgen, D. ED - Saygili, A. ED - Kahyaoglu, M. R. ED - Durmaz, S. ED - Toygar, O. ED - Göcügenci, A. T1 - The importance of the horizontal stresses on the bearing capacity of a foundation pile N2 - In case one wants to predict or design the bearing capacity of a foundation pile and there are no possibilities to perform an in-situ test, such as a Cone Penetration Test, the pile bearing capacity is in most cases estimated with analytical formulas. The most known and used method is the Meyerhof method published some decades ago. There are also other design methods such as derived from a certain failure mechanism around the pile tip, which is, in most cases, wedge failure mechanism. This failure mechanism was originally developed for a shallow (infinite) strip foundation, though. Therefore, it represents a plane failure mechanism. Numerical simulations on loaded foundation piles performed with the Plaxis software Show however, that the failure mechanism of a foundation pile represents a far more complex threedimensional failure mechanism around the pile tip. In addition, the existing analytical methods for foundation piles are based on the vertical stresses in the soil, as if the failure mechanism is the same as of a shallow foundation. Numerical simulations, performed in Plaxis show that, not the vertical, but the horizontal stresses, play an important role on the pile bearing capacity. Plaxis represents the stresses in the soil by using the procedure. So, different horizontal soil stresses are obtained for different values of the lateral earth pressure coefficient. The results show that the pile tip bearing capacity depends strongly on the horizontal stresses in the soil, but only for. The same results were observed by using a Material Point Method (MPM). Consequently, the analytical methods should estimate the pile bearing. T2 - 1st Mediterranean Young Geotechnical Engineers Conference CY - Bodrum, Turkey DA - 23.09.2019 KW - Analytical Design Methods KW - Foundation Pile KW - Horizontal stress PY - 2019 UR - http://mygec2019.org/ VL - 2019 SP - 151 EP - 158 PB - 1st Mediterranean Young Geotechnical Engineers Conference CY - Bodrum, Turkey AN - OPUS4-49639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Vehicle-track-soil interaction and train-induced ground vibration – Theory and measurements in Germany, Switzerland and France T2 - Recent Advance in Structural Dynamics N2 - Three measurement campaigns of train-induced ground vibrations are evaluated for the vehicle-track-soil interaction. Ground vibrations, track vibrations and vehicle vibrations have been measured for train passages and impulse excitation and compared with theoretical results. The soil and the track-soil system are calculated by wavenumber integrals. The influence of the vehicle is introduced by a substructure method. By comparing theory and measurement the different components of excitation force and ground vibration can be analysed, the quasi-static excitation, track-alignment errors, the out-of-roundness of wheels, the wheel and rail roughness, and moreover, scattered axle impulses and ineffective high-frequency parts of the wheelset accelerations and forces. T2 - Recent Advance in Structural Dynamics CY - Lyon, France DA - 15.04.2019 KW - Vehicle-track-soil interaction KW - Train-induced ground vibration KW - Vibration measurements PY - 2019 SP - 810 EP - 821 PB - University of Southampton CY - Southampton AN - OPUS4-47892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Superplasticizer and Shrinkage Reducing Admixture Dosages for Microfine Cement in Grout Systems T2 - MATEC Web of Conferences N2 - Grouts have numerous applications including crack repair as maintenance in construction industries. Microfine cements are intensively used for high strength mortar and grout products. They are ideal for injection grouting in structural repair. Such grouts should have suitable rheological properties to be injectable, especially those used in repair and rehabilitation. The use of superplasticizers (SP) in these products is thus becoming increasingly crucial to achieve favorable workability and viscosity properties. A difficulty in such grouts is the plastic shrinkage due to finer particles used. It is thus necessary to determine optimum SP and shrinkage reducing admixture (SRA) dosages for a microfine cement based grout. In this study, a saturation dosage was decided from two Polycarboxylate ether (PCE) based SPs in relation to neat cement using slump flow and rheological parameters. A range of grout mixtures was formulated containing micro silica (MS) and fly ash (FA), and tested for suitable rheological and mechanical parameters. Based on the results, a grout mixture with MS and FA was selected to determine optimum SRA content. According to the results, a SP dosage of 3% by weight of neat cement is sufficient to achieve saturation. The grout material including MS and FA can produce comparable properties to neat cement grout. MS is found to improve compressive strength within the range considered, whereas a higher FA content provides favourable rheological properties. Finally, a SRA dosage of 4%, which could reduce the shrinkage by about 43% after 28d days, is determined for the grout system. T2 - 2nd International Conference on Building Materials and Materials Engineering (ICBMM 2018) CY - University of Lisbon, Portugal DA - 26.09.2018 KW - Grout KW - Microfine Cement KW - Superplasticizer KW - Supplementary Cementitious Materials KW - Shrinkage Reducing Admixture PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478319 DO - https://doi.org/10.1051/matecconf/201927801001 VL - 278 SP - Article Number 01001 PB - EDP Sciences AN - OPUS4-47831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Rogge, Andreas A1 - Thöns, S. A1 - Bismut, E. A1 - Straub, D. ED - Caspeele, Robby ED - Taerwe, Luc ED - Frangopol, Dan M. T1 - A sampling-based approach to identifying optimal inspection and repair strategies for offshore jacket structures T2 - Proceedings of the sixth international symposium on life-cycle civil engineering (IALCCE 2018) N2 - Identifying optimal inspection and repair strategies for offshore jacket structures is a challenging task. We pre-sent an approach, which is based on recent developments in the field of risk-based operation and maintenance planning at the structural system level. The approach utilizes heuristics to define inspection and repair strate-gies at the system level and to reduce the search space of possible strategies. For each defined strategy, the expected service life cost of inspection, repair and failure is evaluated based on simulated inspection and re-pair histories. Subset simulation is applied to compute the conditional repair and failure probabilities required for this analysis. It also forms the basis for simulating inspection and repair histories. The strategy that mini-mizes the expected service life cost is the optimal one in the set of pre-selected strategies. The underlying condition and performance model accounts for the stochastic dependence among the deterioration states of the different structural elements and the structural redundancy. The approach is demonstrated in a case study considering a jacket-type frame. In this study, we essentially vary the inspection interval, the minimum num-ber of inspected components and the target reliability, and identify the combination that minimizes the ex-pected total service life cost. T2 - The sixth international symposium on life-cycle civil engineering (IALCCE 2018) CY - Ghent, Belgien DA - 28.10.2018 KW - Offshore steel structures KW - Fatigue KW - Reliability KW - Risk KW - Inspection planning PY - 2019 SN - 978-1-138-62633-1 SN - 978-1-315-22891-4 SP - 1081 EP - 1088 PB - Taylor & Francis Group CY - London AN - OPUS4-46434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald T1 - Effect of repair models on risk based optimal inspection strategies for support structures of offshore wind turbines T2 - Proceedings of the 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) N2 - Owners or operators of offshore wind farms perform inspections to collect information on the condition of the wind turbine support structures and perform repairs if required. These activities are costly and should be optimized. Risk-based methods can be applied to identify inspection and repair strategies that ensure an optimal balance between the expected total service life cost of inspection and repair, and the achieved risk reduction. Such an optimization requires explicit modeling of repairs. In this paper, the impact of different repair models on the results of a risk-based optimization of inspection and repair strategies is quantified in a numerical example considering a jacket-type steel frame subject to high-cycle fatigue. The example showed that, in this specific application, there is no need for detailed modeling of the behavior of repaired welded connections. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Risk KW - Reliability KW - Inspection planning KW - Offshore wind turbines PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488297 UR - https://www.smar2019.org/Portals/smar2019/bb/Th.2.A.4.pdf SP - Paper Th.2.A.4, 1 EP - 8 AN - OPUS4-48829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - A mid-frequency component of train-induced ground vibration due to scattered axle impulses and the irregularities of the soil and ballast T2 - Proc. of ISMA/USD 2020 N2 - The passage of the train is dominated by the impulses of the static axle loads. The response of the regular homogeneous and irregular soils has been calculated by the finite-element method in frequency domain. The superposition of the impulse responses yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil or ballast of which the stiffness varies randomly in space, a mid-frequency ground vibration component is generated by the scattering of the axle impulses. Measurements will be shown which prove the existence of the mid-frequency ground vibration component and the unique explanation by the scattered axle impulses: many international measurements with a raised mid-frequency component, axle-box measurements with a too low mid-frequency dynamic load, amplitude-speed dependencies which are incompatible with irregularity-induced dynamic loads, and ground vibration reductions due to stiff track elements. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD) CY - Online meeting DA - 07.09.2020 KW - Ground vibration KW - Railway KW - Irregular soil KW - Irregular ballast KW - Axle impulses PY - 2020 SP - 2611 EP - 2625 PB - KULeuven CY - Leuven AN - OPUS4-51210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges T2 - Proc. of ISMA/USD 2020 N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 SP - 1573 EP - 1585 PB - KULeuven CY - Leuven AN - OPUS4-51211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Deborah A1 - Moosavi, Robabeh A1 - Bracklow, F. A1 - Hering, M. A1 - Kühn, T. A1 - Curbach, M. A1 - Hille, Falk A1 - Rogge, Andreas ED - Papadrakakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Impact damage characterization at RC plates with planar tomography and FEM T2 - Proceedings of the XI International Conference on Structural Dynamics (EURODYN 2020) N2 - Prediction of dynamic effects of reinforced concrete structures under impact loading is a technical challenge. This is a consequence of the great variability of the physical properties resulting from the wide adaptability of reinforced concrete and a consequence of the wide range of impact loading. Experiments and numerical investigations are normally used on a small scale to address the problem. In this paper, impact tests on reinforced conrete plates with the lateral dimensions of 1.5 m x 1.5 m and a thickness of 30 cm are presented. In bending reinforcement, besides the velocity two properties are varied, the diameter and the spatial distribution of the rebars. Experiments are performed at the Otto-Mohr-Laboratory of the Institute of Concrete Structures of the Technische Universit¨at Dresden. Due to the accelerated fall of the impactor the velocity ranges between 20 and 70 m/s. In addition to the measured quantities such as bearing forces, accelerations are also measured at 4 different positions on and under the plate, as well as the deflection at several positions. The measured data are used for the analysis of the damage form and the numerical examinations with the program Ansys Autodyn and the material model after Drucker-Prager. Numerical investigations support the tests, with detailed analysis of individual effects. These numerical computations and the planar tomographic investigations were carried out at BAM in Berlin. With the help of planar tomographic evaluation, the damaged structure is made visible and compared with the numerical results. Influences of the bending reinforcement are explained on the basis of damage evaluation in the local area and on selected measured values. In addition to the test evaluation, the tomographic and numerical methods are presented. T2 - XI International Conference on Structural Dynamics (EURODYN 2020) CY - Online meeting DA - 23.11.2020 KW - Post-impact evaluation KW - Damage characterization KW - Planar tomography KW - Drucker-Prager KW - Ansys Autodyn PY - 2020 SN - 978-618-85072-2-7 VL - 1 SP - 2521 EP - 2543 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA), Greece CY - Athens, Greece AN - OPUS4-51769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias ED - Papadrakakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Implementing a Structural Health Monitoring system using digital models of the BAM large drop test facility in Horstwalde T2 - Proceedings of the XI International Conference on Structural Dynamics (EuroDyn 2020) N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - Drop Tests KW - System Identification KW - Digital Models KW - BIM PY - 2020 UR - https://generalconferencefiles.s3-eu-west-1.amazonaws.com/eurodyn_2020_ebook_procedings_vol1.pdf SN - 978-618-85072-0-3 VL - 1 SP - 1293 EP - 1304 PB - Institute of Structural Analysis and Antiseismic Research CY - Athen AN - OPUS4-51592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models T2 - EURODYN 2020 Proceedings of the XI International Conference on Structural Dynamics N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 13.11.2020 KW - Building vibration KW - Office building KW - Residential building KW - Soil-building resonance KW - Floor resonance KW - Column/wall resonance PY - 2020 SN - 978-618-85072-2-7 SP - 4560 EP - 4576 CY - Athen AN - OPUS4-51678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance T2 - Preprints of the 21st IFAC World Congress (Virtual) N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models -- each estimated from data measured in a reference state -- are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - IFAC World Congress 2020 CY - Online meeting DA - 11.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 SP - 13858 AN - OPUS4-51617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance T2 - IFAC-PapersOnLine: 21st IFAC World Congress N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models – each estimated from data measured in a reference state – are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then conflicts may arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Online meeting DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detectionchanging KW - Process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524652 DO - https://doi.org/10.1016/j.ifacol.2020.12.868 SN - 2405-8963 VL - 53 IS - 2 SP - 13668 EP - 13673 PB - Elsevier AN - OPUS4-52465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias ED - Papadrakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods T2 - Proceedings of EURODYN 2020, XI International Conference on Structural Dynamics N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Structural health monitoring KW - Bayesian methods KW - Environmental effects PY - 2020 SN - 978-618-85072-2-7 SN - 978-618-85072-0-3 SP - 1254 PB - Institute of Structural Analysis and Antiseismic Research, School of Civil Engineering, National Technical University of Athens (NTUA) CY - Athens, Greece AN - OPUS4-51590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sanayei, Mohammad Hassan A1 - Farhat, A. A1 - Luu, L.-H. A1 - Werner, L. A1 - Rettinger, C. A1 - Philippe, P. A1 - Cuellar, Pablo T1 - Micromechanical framework for a 3d solid cohesion model - implementation, validation and perspectives T2 - Proceeding - VII International Conference on Particle-Based Methods PARTICLES 2021 N2 - This article presents a solid cohesion model for the simulation of bonded granular assemblies in the frame of 3D discrete element approaches (DEM). A simple viscoplastic cohesion model for 2D geometries is extended to 3D conditions, while its yield criterion is generalized as a hyper-surface in the space of bond solicitations to include torsional moments. The model is then calibrated using experimental results of uniaxial traction at both the microscopic and macroscopic scales with an artificial granular cohesive soil. The paper finally presents some simulated results on the macromechanical sample traction application and briefly discusses the model's current limitations and promising prospects for subsequent works. T2 - VII International Conference on Particle-Based Methods PARTICLES 2021 CY - Hamburg, Germany DA - 04.10.2021 KW - Granular Cohesive Materials KW - DEM KW - Micromechanical Tensile Failure KW - Macromechanical Sample Strength PY - 2021 SP - 1 EP - 10 AN - OPUS4-53716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of building noise and vibration – 3D finite element and 1D wave propagation models T2 - Proceedings of Euronoise 2021 N2 - Construction work or traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance for the inhabitants. The transfer of the vibration from the free field to the building has been calculated by the finite element method for many models in consultancy and research work. The analysis for all storeys of certain building points such as walls, columns and floors unveiled some rules, some typical modes, and some wavetype responses. A simplified building-soil model has been created, which includes well these effects of building-soil resonance, wall/column resonance, floor resonances, and the high-frequency reduction. The model consists of one wall for a wall-type apartment building or a column for each specific part (mid, side or corner) of a column-type office building. The building response in the high-frequency (acoustic) region is calculated as mean values over all storeys and over wider frequency bands, by wave-type asymptotes of an infinitely tall building, and by the soil to wall ratio of impedances. The secondary noise is predicted by Transfer values between the building vibration (center of floors, walls at a room corner) and the sound pressure. T2 - Euronoise 2021 CY - Online meeting DA - 25.10.2021 KW - Building vibration KW - Finite element models KW - Soil-wall-floor model KW - Apartment building KW - Office tower PY - 2021 SN - 978-989-53387-0-2 SP - 1792 EP - 1801 AN - OPUS4-53702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Mevel, L. ED - Cunha, A. ED - Caetano, E. T1 - Stochastic subspace-based damage detection of a temperature affected beam structure T2 - Proceedings of the 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably. T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 SP - 1 EP - 6 AN - OPUS4-52999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Carletti, E. ED - Crocker, M. ED - Pawelczyk, M. ED - Tuma, J. T1 - Dynamic measurements during drop tests on stiff foundations T2 - Advances in Acoustics, Noise and Vibration - Proceedings of the 27th International Congress on Sound and Vibration N2 - Measurements at the foundation, the surrounding soil and nearby buildings have been done during several drop tests of different containers on different foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. It was controlled that the foundation does not absorb more than 2 percent of the energy of the container. Most of the drop energy is lost in shock absorbers. Later on, a smaller drop test facility has been built on the ground but inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which occur during the drop tests. On the other hand, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Different sensors, accelerometers, accelerometers with mechanical filters, geophones (velocity transducers), strain gauges, and pressure cells have been applied for these tasks. The signals have been transformed to displacements which proved to be best suited for the interpretation of the impact mechanism. Modell calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple estimation. The amplitudes of the foundation could also be estimated from the ground vibrations and their amplitude-distance law. T2 - 27th International Congress on Sound and Vibration (ICSV27) CY - Online meeting DA - 11.07.2021 KW - Drop test KW - Vibration measurement KW - Container loading KW - Foundation load PY - 2021 SN - 978-83-7880-799-5 SN - 2329-3675 SP - 1 EP - 8 PB - Silesian University Press CY - Gliwice, Poland AN - OPUS4-53255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Recknagel, Christoph ED - Cunha, Á. ED - Caetano, E. T1 - Enhancing structural models with material tests and static response data - a case study considering a steel beam with asphalt layer subject to temperature variations T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) N2 - Gradual or sudden changes in the state of structural systems caused, for example, by deterioration or accidental load events can influence their load-bearing capacity. Structural changes can be inferred from static and/or dynamic response data measured by structural health monitoring systems. However, they may be masked by variations in the structural response due to varying environmental conditions. Particularly, the interaction of nominally load-bearing components with nominally non-load bearing components exhibiting characteristics that vary as a function of the environmental conditions can significantly affect the monitored structural response. Ignoring these effects may hamper an inference of structural changes from the monitoring data. To address this issue, we adopt a probabilistic model-based framework as a basis for developing digital twins of structural systems that enable a prediction of the structural behavior under varying ambient condition. Within this framework, different types of data obtained from real the structural system can be applied to update the digital twin of the structural system using Bayesian methods and thus enhance predictions of the structural behavior. In this contribution, we implement the framework to develop a digital twin of a simply supported steel beam with an asphalt layer. It is formulated such that it can predict the static response of the beam in function of its temperature. In a climate chamber, the beam was subject to varying temperatures and its static response wass monitored. In addition, tests are performed to determine the temperature-dependent properties of the asphalt material. Bayesian system identification is applied to enhance the predictive capabilities of the digital twin based on the observed data. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) CY - Online meeting DA - 30.06.2021 KW - Digital twin KW - Structural health monitoring KW - Material tests KW - Bayesian updating PY - 2021 SN - 2564-3738 SP - 1537 EP - 1544 AN - OPUS4-54126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias ED - Yokota, H. ED - Frangopol, D. M. T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data T2 - Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Structural systems KW - Bayesian system identification KW - Damage identification KW - Environmental effects KW - Structural health monitoring PY - 2021 DO - https://doi.org/10.1201/9780429279119-125 SP - 934 EP - 941 PB - CRC Press AN - OPUS4-52809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ronald A1 - Straub, D. ED - Matos, J.C. ED - Lourenço, P.B. ED - Oliveira, D.V. ED - Branco, J. ED - Proske, D. ED - Silva, R.A. ED - Sousa, H.S. T1 - Cumulative Failure Probability of Deteriorating Structures: Can It Drop? T2 - 18th International Probabilistic Workshop. IPW 2020. Lecture Notes in Civil Engineering N2 - The reliability of deteriorating structures at time t is quantified by the probability that failure occurs within the period leading up to time t. This probability is often referred to as cumulative failure probability and is equal to the cumulative distribution function of the time to failure. In structural reliability, an estimate of the cumulative failure probability is obtained based on probabilistic Engineering models of the deterioration processes and structural performance. Information on the condition and the loading contained in inspection and monitoring data can be included in the probability estimate through Bayesian updating. Conditioning the probability of failure on the inspection or monitoring outcomes available at time t (e.g. detections or no detection of damages) can lead to a reduction in that probability. Such a drop in the cumulative failure probability might seem counterintuitive since the cumulative failure probability is a non-decreasing function of time. In this paper, we illustrate—with the help of a numerical example—that such a drop is possible because the cumulative probability before and after the updating is not based on the same information, hence not on the same probabilistic model. T2 - 18th International Probabilistic Workshop (IPW 2020) CY - Online meeting DA - 12.05.2021 KW - Deterioration KW - Structural systems KW - Time-variant reliability KW - Bayesian updating KW - Inspection KW - Monitoring PY - 2021 DO - https://doi.org/10.1007/978-3-030-73616-3_18 VL - 153 SP - 253 EP - 264 PB - Springer CY - Cham, Switzerland AN - OPUS4-52769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Measurement and evaluation tools for ground and building vibrations from industrial pro-cesses, construction work, traffic and other sources T2 - Proceedings of the 28th International Congress on Sound and Vibration N2 - Vibration measurements have many causes and many technical and natural sources. Problems can sometimes be solved by short-term measurements, but in many cases, a long-term measurement is necessary. In long-term measurements of days, weeks, months and even years, it is easy to collect a huge quantity of raw data, but at the end, the post-processing of these data can be exhausting (for example one-year vibration data of a wind energy tower). A software has been developed which con-sists of measuring and evaluation routines where the measuring routines can operate different meas-uring systems and different measuring cards. The main advantage of this software is the fact that the interesting evaluations can be integrated in the measuring process so that the characteristics of the vibration can be extracted without storing all the raw data. Only important time segments are stored, for example train passages. The overall concept of the software and the main evaluation routines will be described in some details. Examples of our measurement experience will illustrate the capabilities of the software. 1) Surveying construction work in nearby sensitive buildings (for example an old wind tunnel), including a stable alarm system and meaningful vibration limits. 2) Prediction of train-induced vibration for a planned building to prevent annoyance and to improve the building design. 3) Modal analysis and long term measurements of several single- or multi-span, concrete or steel bridges 4) Modal and wave analysis of coupled floors in a historical building (“Neues Palais” at Potsdam). 5) Soil properties of various measurement sites (different routines to evaluate the dispersion). Moreover, from many projects, amplitudes, frequencies, and attenuation laws have been collected and analysed for the different sources such as vibratory or impact pile driving and ground compaction, demolition work with different machines, blasting in quarries and in tunnel works, bomb and mine clearing. T2 - 28th International Congress on Sound and Vibration CY - Online meeting DA - 24.07.2022 KW - Ground vibration KW - Building vibration KW - Measurement KW - Evaluation KW - Modes KW - Waves PY - 2022 SP - 1 EP - 8 AN - OPUS4-56602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models T2 - Proceedings of the ISMA Conference 2022 N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference 2022 CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Simple prediction KW - Vehicle-track interaction KW - Layered soil KW - Soil-building interaction KW - Soil-wall-floor model KW - Propagation from a tunnel KW - Tunnel-pile transfer PY - 2022 SP - 1 EP - 13 PB - KU Leuven CY - Leuven AN - OPUS4-56603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Effects of a varying track and soil stiffness on ground vibrations near railway lines T2 - Proceedings of Railways 2022 N2 - Usually, geometric irregularities are considered as the main cause of ground vibrations from trains. A varying stiffness of the track, the track support and the soil can also generate ground vibrations. The regular stiffness variation of the track on and between the sleepers results in a deterministic dynamic axle load. The random stiffness variation of the track support yields also dynamic axle loads which are generated by the acceleration of the unsprung mass (from the varying wheel displacements under the static axle load). The random stiffness variation has a second effect. The pulses from the passage of the static axle loads are superposed regularly to the quasi-static response, but also irregularly to yield a “scattered” part of the axle pulses. The same holds for a random variation of the soil stiffness. All these effects of stiffness variations have been calculated by wavenumber-domain multi-beam track models, a random finite-element soil model and the superposition of axle impulses in a stochastic simulation. The results are confronted with many measurements at different sites. It is concluded that the stiffness variation of the track and the soil generate an important ground vibration component near railway lines. T2 - International Conference Railways 2022 CY - Montpellier, France DA - 22.08.2022 KW - Ground vibration KW - Axle loads KW - Irregularities KW - Varying stiffness PY - 2022 SP - 1 EP - 11 AN - OPUS4-56605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -