TY - CONF A1 - Auersch, Lutz T1 - Zur Berechnung der Erschütterungsminderung von Eisenbahngleisen mit ein- und zweidimensionalen Modellen N2 - Eindimensionale Modelle des Gleises aus einem Schienenstützpunkt, zweidimensionale Modelle enthalten die Kraftverteilung der Schiene. Eindimensionale Modelle machen einen Fehler, weil sie eine zu große Fahrzeugmasse berücksichtigen. Man kann jedoch bei der Berechnung der Minderungswirkung von Gleiselementen eindimensionale Gleismodelle verwenden, um die Kraftübertragung des Gleises bzw. die Minderungswirkung des Gleises zu berechnen. Die Wechselwirkung mit dem Fahrzeug kann einfach mit der dynamischen Stützpunktsteifigkeit berechnet werden. Dabei muss die Stützpunktsteifigkeit mit einer charakteristischen Gleislänge multipliziert werden, die frequenz- und systemabhängig ist. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Munich, Germany DA - 14.01.2020 KW - Richtige Fahrzeugmasse KW - Erschütterungsminderung KW - Elastische Gleiselemente KW - Rechenverfahren PY - 2020 AN - OPUS4-50268 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Characteristics of train passages over slab tracks from measurements and different track-soil models - Damage detection and ground vibration reduction N2 - The train passages over intact or damaged slab tracks on different soils have been calculated by the finite-element boundary-element or the wavenumber-domain method. The influence of track and soil parameters on the distribution of the track displacements and the soil forces has been analysed. The measured and calculated displacement time histories of train passages could be used to identify track damages such as lose sleepers or a lose track plate. The time histories and spectra of the soil forces can explain the measured ground vibration reduction of slab tracks. The calculated displacement and force distributions of slab tracks on continuous soils do not fulfil the Winkler hypothesis and Winkler models should not be used for track analysis. KW - Wavenumber domain KW - Continuous soil KW - Slab track KW - Soil forces KW - Track displacements KW - Track filter KW - Vehicle–track interaction PY - 2020 DO - https://doi.org/10.1177/0954409719835036 SN - 0954-4097 VL - 234 IS - 2 SP - 142 EP - 160 PB - Sage CY - London AN - OPUS4-50266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Das Prognosetool der BAM zur Emission, Transmission und Immission von Bahnerschütterungen N2 - Die gesamte Prognose wurde rechnerisch erfasst. Die Rechenverfahren sind einfach und schnell. Die Emission und die Immission verwendet Übertragungsmatrizen. Die Transmissionsrechnung beruht auf der Dispersion der Rayleighwelle. Die Verknüpfung erfolgt über die Anregungskraft auf den Boden und über die Freifeldamplitude am Gebäude. Es sind viele Eingabemöglichkeiten für Messdaten vorgesehen. Messungen können von einem Ort auf einen anderen Ort übertragen werden. T2 - 98. Sitzung des Normausschusses "Schwingungsminderung in der Umgebung von Verkehrswegen" CY - Online meeting DA - 07.05.2020 KW - Bahnerschütterungen KW - Prognose KW - Übertragungsmatrizen KW - Rayleighwellendispersion PY - 2020 AN - OPUS4-50748 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Slab track behaviour under train passage and hammer impact – Measurements at different sites and calculated track interaction with continuous soils N2 - This contribution intends to give an overview on the vibration behaviour of slab tracks in comparison of measurements and calculations and also by comparison of different track types at more than ten different measuring sites. In theory, tracks on continuous soil are calculated by the frequency-wavenumber domain method. In experiment, geophone measurements are transformed to displacement results. Two aspects of track behaviour are considered, the frequency-dependant compliance of the track, measured by hammer impact, and the deflection under a passing axle load. In theory, the response to a single axle can be calculated, whereas in experiment, only the passage of the whole train can be measured. For comparison of theory and experiment, the calculated deflection under a single axle is superposed to get the response of the whole train. As a result, the slab track characteristics are completely different from the ballast track characteristics where each axle can be seen in the time histories. The slab track has a more global behaviour where only a whole bogie can be found in the track response and moreover, the two neighbouring bogies are not completely separated. The measurement of the different track elements (rail, sleeper, track plate, base layer) and the frequency-dependant compliances with possible resonances yield further information About the properties of the track elements. The calculations show that the soil has the dominant influence on the amplitudes and the width of the track-plate displacements. In the measurement results, the following parameters are analysed: slab track vs. ballast track, different types of slab tracks, damaged slab tracks, different trains, switches at different measuring points, voided sleepers, an elastic layer, the mortar layer, and different soils at different places. Finally, a good agreement between measured and calculated results is found for the normal and some special (damaged, floating) slab tracks. KW - Slab track KW - Train passage KW - Hammer impact KW - Compliance function KW - Track deflection PY - 2020 UR - https://iiav.org/ijav/index.php?va=viewpage&vaid=177&id_number=95 DO - https://doi.org/10.20855/ijav.2020.25.31622 SN - 1027-5851 VL - 25 IS - 3 SP - 341 EP - 354 PB - International Institute of Acoustics and Vibration CY - Gliwice AN - OPUS4-51346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vehicle-Track-Soil Interaction of Isolated, Un-isolated and Damaged Railway Tracks N2 - This article deals with two topics of vehicle-track-soil interaction, the mitigation of railway induced ground vibration by soft track elements, and the identification of track damage. Theoretical results have been achieved by a combined finite-element boundary-element method (FEBEM). The theoretical results are confronted with measurements at four sites. Improved mitigation effects have been found for soft rail pads under heavy sleepers. The insertion loss, however, can be too optimistic if a strong vehicle track resonance occurs for the un-isolated reference track. Two measurement sites show this strong vehicle-track resonance at about 80 Hz, which has been approximated by using the results of a wide parameter study including the rail pad, ballast, and soil stiffness, as well as the ballast model and the soil layering. – The detection of slab track damage is mainly based on the differences of the receptance or compliance functions. Theoretical results have been confirmed by measurements at one site where a loss of contact between track plate and base layer was visible. Measurements at a second site with a hidden damage have been compared with the theoretical results of a loose sleeper. The differences between intact (or repaired) and damaged tracks are strong enough to encourage the further development of this method for the identification of track damages. KW - Railway track KW - Track-soil interaction KW - Ground vibration KW - Mitigation KW - Under-sleeper pads KW - Track damage monitoring PY - 2020 DO - https://doi.org/10.4203/ijrt.6.3.2 SN - 2049-5358 VL - 2 IS - 20 SP - 21 EP - 49 PB - Saxe-Coburg Publications CY - London AN - OPUS4-51257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Simple and fast prediction of train-induced track forces, ground and building vibrations N2 - A simple and fast prediction scheme is presented for train induced ground and building vibrations. Simple models such as (1-dimensional) transfer matrices are used for the vehicle-track-soil interaction and for the building-soil interaction. The wave propagation through layered soils is approximated by a frequency-dependent homogeneous half-space. The prediction is divided into the parts “emission” (excitation by railway traffic), “transmission” (wave propagation through the soil) and “immission” (transfer into a building). The link between the modules is made by the excitation force between emission and transmission, and by the free-field vibration between transmission and immission. All formula for the simple vehicle-track, soil and building models are given in this article. The behaviour of the models is demonstrated by typical examples, that is the mitigation of train vibrations by elastic track elements, the low- and high-frequency cut-offs characteristic for layered soils, and the interacting soil, wall and floor resonances of multi-storey buildings. It is shown that the results of the simple prediction models can well represent the behaviour of the more time-consuming detailed models, the finite-element boundary-element models of the track, the wavenumber integrals for the soil, and the three-dimensional finite-element models of the building. In addition, measurement examples are given for each part of the prediction confirming that the methods provide reasonable results. As the prediction models are fast in calculation, many predictions can be done, for example to assess the environmental effect along a new railway line. The simple models have the additional advantage that the user needs to know only a minimum of parameters. So, the prediction is fast and user-friendly, but also theoretically and experimentally well-founded. KW - Railway induced vibration KW - Ground vibration KW - Layered soil KW - Building response KW - Excitation forces KW - Track and vehicle irregularities PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513340 DO - https://doi.org/10.1007/s40534-020-00218-7 SN - 2662-4745 VL - 28 IS - 3 SP - 232 EP - 250 PB - Springer AN - OPUS4-51334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - A mid-frequency component of train-induced ground vibration due to scattered axle impulses and the irregularities of the soil and ballast N2 - The passage of the train is dominated by the impulses of the static axle loads. The response of the regular homogeneous and irregular soils has been calculated by the finite-element method in frequency domain. The superposition of the impulse responses yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil or ballast of which the stiffness varies randomly in space, a mid-frequency ground vibration component is generated by the scattering of the axle impulses. Measurements will be shown which prove the existence of the mid-frequency ground vibration component and the unique explanation by the scattered axle impulses: many international measurements with a raised mid-frequency component, axle-box measurements with a too low mid-frequency dynamic load, amplitude-speed dependencies which are incompatible with irregularity-induced dynamic loads, and ground vibration reductions due to stiff track elements. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD) CY - Online meeting DA - 07.09.2020 KW - Ground vibration KW - Railway KW - Irregular soil KW - Irregular ballast KW - Axle impulses PY - 2020 SP - 2611 EP - 2625 PB - KULeuven CY - Leuven AN - OPUS4-51210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 SP - 1573 EP - 1585 PB - KULeuven CY - Leuven AN - OPUS4-51211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - A mid-frequency component of train-induced ground vibration due to scattered axle impulses and the irregularities of the soil and ballast N2 - The passage of the train is dominated by the impulses of the static axle loads. The response of the regular homogeneous and irregular soils has been calculated by the finite-element method in frequency domain. The superposition of the impulse responses yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil or ballast of which the stiffness varies randomly in space, a mid-frequency ground vibration component is generated by the scattering of the axle impulses. Measurements will be shown which prove the existence of the mid-frequency ground vibration component and the unique explanation by the scattered axle impulses: many international measurements with a raised mid-frequency component, axle-box measurements with a too low mid-frequency dynamic load, amplitude-speed dependencies which are incompatible with irregularity-induced dynamic loads, and ground vibration reductions due to stiff track elements. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Ground vibration KW - Railway KW - Irregular soil KW - Irregular ballast KW - Axle impulses PY - 2020 AN - OPUS4-51212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Natural frequencies and modes of poles, beams, floors, road and rail bridges N2 - In the last three decades, the vibrations of many floors and bridges have been measured. The contribution shows some evaluation methods, experimental results and some modelling and theoretical results. Simple evaluation methods have been developed for single and coupled floors. Two coupled beams have been measured in good agreement with the theory. A more complex coupling model has been found for a large wooden floor in a castle consisting of six floor bays which correlates well with the measurements. Damaged and intact poles have been tested by their natural frequencies and damping values, and a fair correlation between the degree of damage and the shift of the frequency. Road bridges have been analysed in detail and some examples are presented. Railway bridges and trains are studied for resonant excitation. The risk of resonance can be estimated in frequency domain by using axle-sequence spectra of the train and the natural frequencies of the bridge. A measurement example shows the amplification, but even stronger the cancellation of the subsequent axle responses. Several high-speed trains and freight trains have been analysed for their potential resonance amplification. T2 - International Conference on Noise and Vibration Engineering (ISMA/USD 2020) CY - Online meeting DA - 07.09.2020 KW - Modalanalyse KW - Bauwerke KW - Bauteile KW - Brücken KW - Achsfolgespektren PY - 2020 AN - OPUS4-51213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Ziemens, Susanne T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 13.11.2020 KW - Building vibration KW - Office building KW - Residential building KW - Soil-building resonance KW - Floor resonance KW - Column/wall resonance PY - 2020 SN - 978-618-85072-2-7 SP - 4560 EP - 4576 CY - Athen AN - OPUS4-51678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - The response of different buildings to free-field excitation – a study using detailed finite element models N2 - A study on building vibrations has been performed by finite element calculations. Family houses, multi-storey residential buildings, office buildings and office towers have been modelled in detail. The frequency-dependent response due to a free-field excitation has been evaluated for walls, columns and floors. The ratio of building amplitudes to free-field amplitudes starts with uB/u0 = 1 at zero frequency and is usually lower than 1 at 50 Hz, the end of the frequency range considered here. In between, amplifications occur due to several reasons. There are „soil resonances“ where the whole building is vibrating on the compliant soil, “column resonances” where the upper storeys are vibrating on the compliant columns, and the “floor resonances” where the floors are vibrating excited by their supports. Results are presented for all building types, but a special focus is set on office buildings. A parameter study shows the influence of the stiffness of the soil, the number of storeys, and the width of the building. It has been found that the “soil resonance” is strongly modified by the low-frequency floor resonances for the normal office building. The main resonance of a twenty-storey office tower is determined equally by the “soil mode” and the “column mode”. It is an important observation for these office buildings that the resonances can differ for different parts of the building such as the centre, the edge, the corner, and the core of the building. This leads to non-uniform vibration modes across the building, which look like another type of “floor resonance” and which have been observed in several real building projects. Experimental results will be shown which can confirm the calculated phenomena. T2 - EURODYN 2020 XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Building vibration PY - 2020 AN - OPUS4-51679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Prognose von Erschütterungen aus Bahntunneln N2 - Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. T2 - Wiener Dynamik Tage 2021 CY - Vienna, Austria DA - 22.7.2021 KW - Erschütterungsausbreitung KW - Tunnel KW - Halbraum KW - Vollraum PY - 2021 SP - 1 EP - 11 PB - Steinhauser Consulting Engineers (STCE) CY - Wien AN - OPUS4-53253 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Zur Prognose von Erschütterungen aus Bahntunneln N2 - Zur Erschütterungsausbreitung an oberirdischen Bahnlinien gibt es gute Übereinstimmungen zwischen Messungen und der Theorie geschichteter Böden. Bei der Interpretation der Ergebnisse spielt die Rayleigh-Welle eine große Rolle. Je nach Frequenz und Wellenlänge hat die Rayleigh-Welle eine bestimmte Eindringtiefe und erreicht damit mehr oder weniger steife Bodenschichten. Damit bekommt man eine frequenzabhängige Bodensteifigkeit für die Erschütterungsprognose. Für die Wellenausbreitung in der Tiefe statt an der Bodenoberfläche müssen eigene Gesetzmäßigkeiten gefunden werden. Es werden die Punktlastlösungen im Frequenz-Wellenzahlbereich und durch Integration über die Wellenzahlen berechnet. Man erhält die Wellenfelder, die Terzspektren für verschiedene Entfernungen und Frequenzen. Es wird die Tiefenlage und das Bodenmodell (homogen, geschichtet und kontinuierlich zunehmende Steifigkeit) variiert. Die Rayleigh-Welle verliert ihre Bedeutung und stattdessen kann die Vollraumlösung zur Interpretation und Prognose verwendet werden. Es werden die Halbraumlösung mit und ohne Rayleigh-Welle und die Vollraumlösung in der Tiefe diskutiert und verglichen. Neben der Wellenausbreitung (der Transmission) werden auch Effekte der Erschütterungsanregung (der Emission) und der Übertragung in Gebäude (der Immission) mit Hilfe der Finite-Element-Randelement-Methode berechnet. Die Verteilung der dynamischen Achslast durch die Tunnelsohle ergibt eine Minderung gegenüber der Punktlastanregung. Bei der Immission hat man keine Freifeldanregung wie an der Bodenoberfläche. Man muss entweder neben der Wellenamplitude (Verschiebung oder Schwinggeschwindigkeit) in der Tiefe auch die Spannung der ankommenden Welle berücksichtigen, oder man muss die Freifeldamplituden nach Bodenaushub berechnen. Die Rechenergebnisse deuten darauf hin, dass man als Freifeldanregung die zweifache Vollraumlösung ansetzen kann. T2 - Wiener Dynamik Tage 2021 CY - Vienna, Austria DA - 22.07.2021 KW - Erschütterungsausbreitung KW - Tunnel KW - Halbraum KW - Vollraum PY - 2021 AN - OPUS4-53254 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Carletti, E. ED - Crocker, M. ED - Pawelczyk, M. ED - Tuma, J. T1 - Dynamic measurements during drop tests on stiff foundations N2 - Measurements at the foundation, the surrounding soil and nearby buildings have been done during several drop tests of different containers on different foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. It was controlled that the foundation does not absorb more than 2 percent of the energy of the container. Most of the drop energy is lost in shock absorbers. Later on, a smaller drop test facility has been built on the ground but inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which occur during the drop tests. On the other hand, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Different sensors, accelerometers, accelerometers with mechanical filters, geophones (velocity transducers), strain gauges, and pressure cells have been applied for these tasks. The signals have been transformed to displacements which proved to be best suited for the interpretation of the impact mechanism. Modell calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple estimation. The amplitudes of the foundation could also be estimated from the ground vibrations and their amplitude-distance law. T2 - 27th International Congress on Sound and Vibration (ICSV27) CY - Online meeting DA - 11.07.2021 KW - Drop test KW - Vibration measurement KW - Container loading KW - Foundation load PY - 2021 SN - 978-83-7880-799-5 SN - 2329-3675 SP - 1 EP - 8 PB - Silesian University Press CY - Gliwice, Poland AN - OPUS4-53255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Dynamic measurements during drop tests on stiff foundations N2 - Measurements at the foundation, the surrounding soil and nearby buildings have been done during several drop tests of different containers on different foundations. The first measurements have been done on a big foundation where it should be guaranteed that the foundation is rigid and the container is tested properly. It was controlled that the foundation does not absorb more than 2 percent of the energy of the container. Most of the drop energy is lost in shock absorbers. Later on, a smaller drop test facility has been built on the ground but inside an existing building. It had to be controlled by prediction and measurements that the drop test will not damage the building. Tests from different heights on soft, medium, and stiff targets have been done to find out rules which allow to identify acceptable and unacceptable drop tests. Later on, the biggest drop test facility has been built for masses up to 200 t. It was necessary for the design of the foundation to estimate the forces which occur during the drop tests. On the other hand, the acceptable tests should be selected and controlled by measurements where the impact duration is important. Different sensors, accelerometers, accelerometers with mechanical filters, geophones (velocity transducers), strain gauges, and pressure cells have been applied for these tasks. The signals have been transformed to displacements which proved to be best suited for the interpretation of the impact mechanism. Modell calculations have been used to check and understand the dynamic measurements. The simplest law is the conservation of the momentum which is a good approximation if the impact is short. If the soil under the foundation has an influence on the deceleration of the container, the maximum foundation velocity is lower than the simple estimation. The amplitudes of the foundation could also be estimated from the ground vibrations and their amplitude-distance law. T2 - 27th international Congress on Sound and Vibration (ICSV27) CY - Online meeting DA - 11.07.2021 KW - Drop test KW - Vibration measurement KW - Container loading KW - Foundation load PY - 2021 AN - OPUS4-53256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Aspekte der Erschütterungsprognose bei Bahnlinien: Quasi-Statik und Achsfolge, unregelmäßiger Schotter und Boden, Wellenausbreitung bei Tunneln und Besonderheiten bei Bürogebäuden N2 - Erschütterungen, die durch Eisenbahnverkehr erzeugt werden, breiten sich durch den Erdboden aus und regen benachbarte Gebäude zu Schwingungen an. Es wurde ein Prognoseverfahren für Bahnerschütterungen ent-wickelt, das mit einfachen Modellen schnell Ergebnisse liefert. Dies sind physikalische Modelle, zum Beispiel 1-dimensionale Modelle mit Übertragungsmatrizen für die Fahrzeug-Fahrweg-Boden-Wechselwirkung und für die Gebäude-Boden Wechselwirkung. Damit werden die komplexen Verhältnisse bei der Emission (dem Zusammen¬wirken von Fahrzeug und Fahrweg), bei der Transmission durch den homogenen oder geschichteten Boden und bei der Immission in Gebäuden näherungsweise erfasst. In (Auersch, 2020) wird gezeigt, dass diese einfachen Prognosemodelle die Ergebnisse von detaillierten Modellen wie der Finite-Element-Randelement-Methode für das Gleis, die Wellenzahlintegrale für den Boden und 3-dimensionale Finite-Element-Modelle für das Gebäude gut wiedergeben können. Dies entspricht auch der Absicht, die Prognosemodelle aus den Ergebnissen der Detailmodelle abzuleiten. Die drei Prognoseteile werden getrennt berechnet, aber es werden physikalisch sinn¬volle Schnittstellen verwendet. Für die Emission und Transmission sind es die auf den Untergrund wirkenden Erregerkräfte von Fahrzeug und Fahrweg, für die Transmission und Immission sind es die Freifeldamplituden des Bodens. T2 - 17. D-A-CH Tagung Erdbebeningenieurwesen und Baudynamik CY - Online meeting DA - 16.09.2021 KW - Erschütterungen KW - Emission KW - Transmission KW - Immission PY - 2021 SP - 17 EP - 18 PB - ETH Zürich CY - Zürich AN - OPUS4-53313 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Aspekte der Erschütterungsprognose bei Bahnlinien: Quasi-Statik und Achsfolge, unregelmäßiger Schotter und Boden, Wellenausbreitung bei Tunneln und Besonderheiten bei Bürogebäuden N2 - Erschütterungen, die durch Eisenbahnverkehr erzeugt werden, breiten sich durch den Erdboden aus und regen benachbarte Gebäude zu Schwingungen an. Es wurde ein Prognoseverfahren für Bahnerschütterungen ent-wickelt, das mit einfachen Modellen schnell Ergebnisse liefert. Dies sind physikalische Modelle, zum Beispiel 1-dimensionale Modelle mit Übertragungsmatrizen für die Fahrzeug-Fahrweg-Boden-Wechselwirkung und für die Gebäude-Boden Wechselwirkung. Damit werden die komplexen Verhältnisse bei der Emission (dem Zusammen¬wirken von Fahrzeug und Fahrweg), bei der Transmission durch den homogenen oder geschichteten Boden und bei der Immission in Gebäuden näherungsweise erfasst. In (Auersch, 2020) wird gezeigt, dass diese einfachen Prognosemodelle die Ergebnisse von detaillierten Modellen wie der Finite-Element-Randelement-Methode für das Gleis, die Wellenzahlintegrale für den Boden und 3-dimensionale Finite-Element-Modelle für das Gebäude gut wiedergeben können. Dies entspricht auch der Absicht, die Prognosemodelle aus den Ergebnissen der Detailmodelle abzuleiten. Die drei Prognoseteile werden getrennt berechnet, aber es werden physikalisch sinn¬volle Schnittstellen verwendet. Für die Emission und Transmission sind es die auf den Untergrund wirkenden Erregerkräfte von Fahrzeug und Fahrweg, für die Transmission und Immission sind es die Freifeldamplituden des Bodens. T2 - 17. D-A-CH-Tagung Erdbebeningenieurwesen und Baudynamik CY - Online meeting DA - 16.09.2021 KW - Erschütterungen KW - Emission KW - Transmission KW - Immission PY - 2021 AN - OPUS4-53314 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Train-induced ground vibration due to the irregularities of the soil N2 - Many measurements of train induced ground vibrations show high amplitudes for a certain mid-frequency range. This ground vibration component cannot be well explained by dynamic loads of the train. Many characteristics indicate that the axle impulses, which are scattered by an irregular soil, are the excitation. This new understanding of railway-induced ground vibration is verified by numerical analysis. The response of the regular homogeneous and irregular inhomogeneous soils has been calculated by the finite-element method in frequency domain. A specific superposition of the impulse responses has been invented including time shift, axle sequence, track filter and hanning filter. The superposition yields the quasi-static component of the ground vibration which is restricted to very low frequencies and to the close near-field of the track. In case of an irregular soil of which the stiffness varies randomly in space, the superposition yields a mid-frequency ground vibration component from the scattering of the axle impulses. The existence and the importance of this component can thus be demonstrated by the calculations. Some rules of the influence of distance, train speed, soil stiffness, strength and width of the stiffness variation have been derived from the calculations. Many measurements show the unique explanation of the mid-frequency ground vibration component by the scattered axle impulses. KW - Train-induced ground vibration KW - Static axle loads KW - Quasi-static response; KW - Axle impulses KW - Irregular soil KW - Random stiffness variation KW - Scattered axle impulses PY - 2021 DO - https://doi.org/10.1016/j.soildyn.2020.106438 SN - 0267-7261 VL - 140 SP - 106438 PB - Elsevier Ltd. CY - London AN - OPUS4-52006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of building noise and vibration – 3D finite element and 1D wave propagation models N2 - Construction work or traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance for the inhabitants. The transfer of the vibration from the free field to the building has been calculated by the finite element method for many models in consultancy and research work. The analysis for all storeys of certain building points such as walls, columns and floors unveiled some rules, some typical modes, and some wavetype responses. A simplified building-soil model has been created, which includes well these effects of building-soil resonance, wall/column resonance, floor resonances, and the high-frequency reduction. The model consists of one wall for a wall-type apartment building or a column for each specific part (mid, side or corner) of a column-type office building. The building response in the high-frequency (acoustic) region is calculated as mean values over all storeys and over wider frequency bands, by wave-type asymptotes of an infinitely tall building, and by the soil to wall ratio of impedances. The secondary noise is predicted by Transfer values between the building vibration (center of floors, walls at a room corner) and the sound pressure. T2 - Euronoise 2021 CY - Online meeting DA - 25.10.2021 KW - Building vibration KW - Finite element models KW - Soil-wall-floor model KW - Apartment building KW - Office tower PY - 2021 SN - 978-989-53387-0-2 SP - 1792 EP - 1801 AN - OPUS4-53702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of building noise and vibration – 3D finite element and 1D wave propagation models N2 - Construction work or traffic excite nearby buildings, and the perceptible or audible vibration can be a nuisance for the inhabitants. The transfer of the vibration from the free field to the building has been calculated by the finite element method for many models in consultancy and research work. The analysis for all storeys of certain building points such as walls, columns and floors unveiled some rules, some typical modes, and some wavetype responses. A simplified building-soil model has been created, which includes well these effects of building-soil resonance, wall/column resonance, floor resonances, and the high-frequency reduction. The model consists of one wall for a wall-type apartment building or a column for each specific part (mid, side or corner) of a column-type office building. The building response in the high-frequency (acoustic) region is calculated as mean values over all storeys and over wider frequency bands, by wave-type asymptotes of an infinitely tall building, and by the soil to wall ratio of impedances. The secondary noise is predicted by Transfer values between the building vibration (center of floors, walls at a room corner) and the sound pressure. T2 - Euronoise 2021 CY - Online meeting DA - 25.10.2021 KW - Building vibration KW - Finite element models KW - Soil-wall floor model KW - Apartment building KW - Office tower PY - 2021 AN - OPUS4-53703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Die Amplitudenabnahme im Boden bei Punkt- und Zuglast N2 - Die Linienlastgesetzmäßigkeit gilt nicht für Zuganregung. Die Punktlastgesetzmäßigkeit wird bei kurzen Zügen in größeren Entfernungen erreicht. Bei langen Zügen reduziert sich die Abnahme um r-0,3 für die theoretische exponentielle Dämpfungsabnahme, um r-0,5 für die vereinfachte potentielle Dämpfungsabnahme. Die gemessenen Abnahmereduktionen liegen in diesem Bereich. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Cologne/Germany und Online meeting DA - 28.10.2021 KW - Amplituden-Abstands-Gesetze KW - Geometrie KW - Dämpfung PY - 2021 AN - OPUS4-53704 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz A1 - Said, Samir T1 - Dynamic track-soil interaction – calculations and measurements about slab and ballast tracks N2 - The dynamic behaviour of slab and ballast tracks has been investigated by measurements and calculations. Hammer impacts and train passages have been analysed. Measurements have been performed by geophones (velocity transducers) which have been time-integrated to displacements. The calculations are done in frequency-wavenumber domain for multi-beam-on-continuous soil models. The characteristics of the different tracks and track elements have been established in theory and experiment. The frequency-dependent compliances (displacement transfer functions) show clear rail-on-rail-pad resonances or highly damped track-soil resonances. Compared to the rail and sleeper, the track plate has much lower amplitudes. The slab track has usually the highest rail amplitudes due to soft rail pads. The train passage yields track displacements which are a superposition of the axle loads from the two neighbouring axles of a bogie and from the two bogies of two neighbouring carriages. This global behaviour is characteristic for the track plate of the slab track whereas the rails of the slab and the ballast track behave more local with only one bogie of influence. The measurements agree very well with the theory of the continuous soil in case of the six measured slab tracks and acceptably well for the six measured ballast tracks. The measurements allow to find appropriate model parameters and to check the models, for example the Winkler model of the soil has been found less appropriate as it reacts more locally. KW - Slab track KW - Ballast track KW - Train passage KW - Hammer impact KW - Track-soil interaction PY - 2021 DO - https://doi.org/10.1631/jzus.A1900651 SN - 1673-565X VL - 22 IS - 1 SP - 21 EP - 36 PB - Zhejiang University Press CY - Hangzhou AN - OPUS4-52107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz ED - Degrande, G. ED - al., et T1 - Predicted and measured amplitude-speed relations of railway ground vibrations at four German sites with different test trains N2 - The present contribution evaluates four measuring series made by the Federal Institute of Material Research and Testing for the relations between train speed and ground vibration amplitudes. This experimental evaluation is supported by the simulation of the train passages at the different sites by using appropriate excitation mechanisms and forces as well as layered soil models which have been derived from impact measurements at each site. KW - Train speed KW - Ground vibration KW - Excitation forces KW - Layered soils PY - 2021 SN - 978-3-030-70288-5 DO - https://doi.org/10.1007/978-3-030-70289-2_43 SN - 1612-2909 VL - 150 SP - 411 EP - 419 PB - Springer Nature Switzerland AG CY - Cham AN - OPUS4-52611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Müller, R. A1 - Brechbühl, Y. A1 - Lutzenberger, S. A1 - Said, Samir A1 - Auersch, Lutz A1 - Guigou-Carter, C. A1 - Villot, M. A1 - Müller, R. ED - Degrande, G. ED - al., et T1 - Vibration Excitation at Turnouts, Mechanism, Measurements and Mitigation Measures N2 - There is a strong need for cost-effective mitigation measures for turnouts. SBB has initiated a series of examinations using different methodologies to gain a deeper understanding of the excitation mechanisms at low frequencies, in addition to that obtained in the RIVAS project. To date it is not yet clear what constitutes a complete measurement data set that would enable understanding most of the vibration excitation mechanisms in turnouts. Increasing vibration at turnouts in comparison to normal track is observed for all measured frequencies. The different methodologies are presented in the paper. Under-sleeper pads (USP) are a cost-effective method to reduce vibration at frequencies above 63 Hz (1/3 octave), but there is probably no improvement for frequencies below 63 Hz. A first test of new frog geometry did not show relevant improvements in Vibration emission in comparison to a reference frog geometry. Axle box acceleration measurements are an interesting method to identify defects in a turnout. A specialized measurement system of rail roughness could identify certain geometry Problem areas for some frogs. Noise increases also are observed at turnouts for frequencies ranging between 80 to 1000 Hz. The use of railway source models to calculate contact forces for ballasted track and turnouts seems promising, in particular for understanding the influence of ground. KW - Turnout KW - Switch KW - Vibration excitation KW - Vibration measurements PY - 2021 SN - 978-3-030-70288-5 DO - https://doi.org/10.1007/978-3-030-70289-2_42 SN - 1612-2909 VL - 150 SP - 403 EP - 410 PB - Springer Nature Switzerland AG CY - Cham AN - OPUS4-52612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Resonances of railway bridges analysed in frequency domain by the modal-force-excitation, bridge-transfer and axle-sequence spectra N2 - In this article, the passage of different trains over different bridges will be studied for resonant excitation. The intensity of the resonance will be estimated in frequency domain by using three separated spectra. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of the train. The influences of train speed, bridge length, bridge support, track irregularities, and train type on the resonance amplitudes will be analysed for each of these spectra separately for getting a better insight. A variety of axle-sequence spectra and corresponding rules will be presented for different vehicles and trains. As examples, the passage of a slow freight train over a long-span bridge, a normal passenger train over a medium-span bridge, and a high-speed train over a short bridge will be analysed. Corresponding measurements show the amplification, but also the cancellation of the subsequent axle responses. Namely in one of the measurement examples, the first mode of the bridge was amplified and the second mode was cancelled at a low speed of the train and vice versa at a higher speed. KW - Railway bridge KW - Bridge vibration KW - Train passage KW - Axle sequence KW - Resonance KW - Cancellation KW - Fequency domain PY - 2021 DO - https://doi.org/10.1016/j.engstruct.2021.113282 SN - 0141-0296 VL - 249 SP - 1 EP - 9 PB - Elsevier Ltd. CY - London AN - OPUS4-53766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Die Berechnung der Einfügedämmung bei Schienenfahrwegen – die Impedanzmethode mit einem Freiheitsgrad N2 - Mit dieser Methode kann man die Einfügedämmung eines Schienenstützpunkts/einer Schwelle korrekt berechnen. Sie gilt in ihrer ursprünglichen Form für eine Unterschottermatte in einem Tunnel T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Online meeting DA - 20.1.2022 KW - Impedanzmethode KW - Elastische Elemente KW - Schienenfahrweg PY - 2022 AN - OPUS4-54243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - The role of vehicle dynamics in train-induced ground vibrations and the detection of irregular axle-pulse responses due to a varying track support stiffness N2 - Train-induced ground vibrations are all generated by the vehicle, by static or dynamic vehicle loads. The most important and most accepted excitation are the dynamic wheel loads from the passage over track irregularities. Dynamic wheel loads will be compared from parallel axle-box and ground vibration measurements at more than seven sites. Some low-frequency excitation of ground vibrations, typically between 10 and 30 Hz, cannot be found in the axle-box measurements. Therefore, other vehicle modes, such as rigid bogie modes, flexible carriage modes, rigid and flexible wheelset modes, have been analysed for additional excitation forces. These vehicle dynamics analyses give an explanation for higher axle-box results at high frequencies, but not for the excitation of the higher low-frequency ground-vibration component. Finally, the effect of the moving static train loads will be analysed. For a regular track and soil, the moving static train loads yield the quasi-static response which exists only in the low-frequency nearfield of the track. If the support stiffness is randomly varying along the track, the pulses on the track generate an additional low-frequency component which is called the irregular pulse responses. This component will be demonstrated by numerical analysis where all axle pulses are superposed in frequency domain. KW - Wheelset KW - Vehicle-track interaction KW - Rail roughness KW - Random dynamics and vibrations KW - Modal analysis PY - 2022 DO - https://doi.org/10.1177/09544097221086064 SN - 0954-4097 VL - 236 IS - 10 SP - 1218 EP - 1233 PB - Sage CY - London AN - OPUS4-55000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Elastische Elemente in der Emission, Transmission und Immission von Bahnerschütterungen N2 - Dieser Vortrag präsentiert einige Prinzipien und einige Beispiele zur Minderung von Eisenbahnerschütterungen. Die Prinzipien unterscheiden sich für die Minderungsmaßnahmen im Gleis, im Boden und bei Gebäuden. Kraftübertragungsfunktionen isolierter und nicht isolierter Gleissysteme, reflektierte und durchgelassene Wellenamplituden bei gefüllten Bodenschlitzen und die Übertragung der Freifeldschwingungen ins Gebäude werden analysiert. Bei den einfachen Gleismodellen muss der richtige Anteil der unabgefederte Fahrzeugmasse zum eindimensionalen Gleismodell hinzugefügt werden. Der Minderungseffekt eines gefüllten Bodenschlitzes ist von der Steifigkeit und nicht von der Impedanz des Schichtmaterials bestimmt. Bei einer elastischen Gebäudelagerung muss die Minderungswirkung mit der richtigen Boden- (Fundament-) Steifigkeit berechnet werden, und das abgeminderte Gebäudeverhalten hängt wesentlich von der effektiven Gebäudemasse ab, die mit zunehmender Frequenz deutlich kleiner als die starre Gebäudemasse ist. T2 - Norm-Arbeitsausschuss Schwingungsminderung in der Umgebung von Verkehrswegen CY - Bludenz, Austria DA - 17.5.2022 KW - Erschütterungsminderung KW - Bahngleis KW - Bodenschlitz KW - Gebäudelagerung KW - Elastische Elemente PY - 2022 AN - OPUS4-54916 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wave propagation from hammer, vibrator and railway excitation – theoretical and measured attenuation in space and frequency domain N2 - The attenuation of wave amplitudes is ruled by the planar, cylindrical or spher-ical geometry of the wave front (the geometric or power-law attenuation) but also by the damping of the soil (an exponential attenuation). Several low- and high-frequency filter effects are derived for the layering and the damping of the soil, for the moving static and the distributed train loads and for a homoge-neous or randomly heterogeneous soil. Measurements of hammer- and train-induced vibrations at five sites have been analysed for these attenuation and filter effects. The measured attenuation with distance can be discribed by gen-eralised power laws and some reasons will be discussed. The theoretical filter effects can well be found in the measurements. T2 - 10th Wave Mechanics and Vibration Conference (WMVC)nce CY - Lisbon, Potugal DA - 04.07.2022 KW - Hammer impact KW - Train passage KW - Layered soil KW - Attenuation KW - Filter effects KW - Randomly heterogeneous soil KW - Scattering PY - 2022 AN - OPUS4-55246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Different types of continuous track irregularities as sources of train-induced ground vibration and the importance of the random variation of the track support N2 - Irregularities of the track are a main cause of train-induced ground vibration, and track maintenance is of great importance. Although geometric irregularities at the wheel-rail contact are widely used, other types of irregularities, such as stiffness irregularities, irregularities from different track positions and irregularities in the wave propagation, were analysed in the present study. The track behaviour was investigated by a multi-beam-on-soil model. This track model is coupled with a vehicle model to calculate the vehicle–track interaction. The track model was also used for the track filtering, which transfers a track support error to the equivalent rail irregularity or, conversely, the sharp axle pulse on the rail to a smoother pulse on the soil. In the case in which this filtering varies randomly along the track, the pulses of the moving static load induce a certain ground Vibration component (“the scatter of axle pulses”). This effect was calculated by the superposition of axle pulses in the frequency domain and by a stochastic simulation. Simultaneous vehicle, track and soil measurements at a certain site were used to evaluate the different excitation and ground Vibration components. The agreement between calculations and axle-box and soil measurements is good. The ground vibrations calculated from rail irregularities and corresponding dynamic loads, however, clearly underestimate the measured ground vibration amplitudes. Only the static load that is moving over a varying track support stiffness can produce the important mid-frequency ground Vibration component by the scatter of axle pulses. KW - Train-induced ground vibration KW - Geometric vehicle and track irregularities KW - Stiffness variation KW - Multi-beam track model KW - Track filtering KW - Dynamic axle loads KW - Static axle loads KW - layered soil PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543846 DO - https://doi.org/10.3390/app12031463 SN - 2076-3417 VL - 12 IS - 3 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wellenausbreitung und Pfähle im inhomogenen Boden – Gesetzmäßigkeiten für die Gründung von Windenergieanlagen und für die Prognose von Bahnerschütterungen aus Tunneln N2 - Es wird eine gekoppelte Finite-Element-Randelementmethode zur Berechnung von Pfahlgrün-dungen in inhomogenen (geschichteten) Böden vorgestellt. Sie beruht auf den Greenschen Funktionen (Punktlastlösungen) für inhomogene Böden. Diese Lösungen können auch für die Wellenausbreitung in der Tiefe, zum Beispiel von einem Bahntunnel zu einem eingebetteten Gebäude, dem Kellergeschoss benutzt werden. Die Punktlastlösungen in der Tiefe werden mit der Halbraumlösung an der Bodenoberfläche und mit der Vollraumlösung verglichen und Gesetzmäßigkeiten für geschichtete Böden abgeleitet. Zu den Pfahlgründungen werden die Horizontalnachgiebigkeiten von Pfählen in geschichteten Böden dargestellt. Für den homogenen und den kontinuierlich steifer werdenden Boden werden Potenzgesetze für den Boden- und Pfahleinfluss aufgestellt. Der Vergleich mit dem Winkler-Modell der rein lokalen Bodenreaktion zeigt, dass die Winkler-Bettung in allen Fällen einen zu kleinen Bodeneinfluss ergibt. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.04.2022 KW - Wellenausbreitung in der Tiefe KW - Nachgiebigkeiten KW - Windenergieanlagen PY - 2022 SN - 978-1-18-092379-6 SN - 0083-5560 VL - 2379 SP - 697 EP - 706 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-54768 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wellenausbreitung und Pfähle im inhomogenen Boden – Gesetzmäßigkeiten für die Gründung von Windenergieanlagen und für die Prognose von Bahnerschütterungen aus Tunneln N2 - Es wird eine gekoppelte Finite-Element-Randelementmethode zur Berechnung von Pfahlgrün-dungen in inhomogenen (geschichteten) Böden vorgestellt. Sie beruht auf den Greenschen Funktionen (Punktlastlösungen) für inhomogene Böden. Diese Lösungen können auch für die Wellenausbreitung in der Tiefe, zum Beispiel von einem Bahntunnel zu einem eingebetteten Gebäude, dem Kellergeschoss benutzt werden. Die Punktlastlösungen in der Tiefe werden mit der Halbraumlösung an der Bodenoberfläche und mit der Vollraumlösung verglichen und Gesetzmäßigkeiten für geschichtete Böden abgeleitet. Zu den Pfahlgründungen werden die Horizontalnachgiebigkeiten von Pfählen in geschichteten Böden dargestellt. Für den homoge-nen und den kontinuierlich steifer werdenden Boden werden Potenzgesetze für den Boden- und Pfahleinfluss aufgestellt. Der Vergleich mit dem Winkler-Modell der rein lokalen Boden-reaktion zeigt, dass die Winkler-Bettung in allen Fällen einen zu kleinen Bodeneinfluss ergibt. T2 - 7. VDI-Fachtagung Baudynamik CY - Würzburg, Germany DA - 27.4.2022 KW - Wellenausbreitung in der Tiefe KW - Pfahlnachgiebigkeiten KW - Erschütterungen KW - Tunnel PY - 2022 AN - OPUS4-54769 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Wave propagation from hammer, vibrator and railway excitation – theoretical and measured attenuation in space and frequency domain N2 - The attenuation of wave amplitudes is ruled by the planar, cylindrical or spherical geometry of the wave front (the geometric or power-law attenuation) but also by the damping of the soil (an exponential attenuation). Several low- and high-frequency filter effects are derived for the layering and the damping of the soil, for the moving static and the distributed train loads and for a homogeneous or randomly heterogeneous soil. Measurements of hammer- and train-induced vibrations at five sites have been analysed for these attenuation and filter effects. The measured attenuation with distance can be discribed by generalised power laws and some reasons will be discussed. The theoretical filter effects can well be found in the measurements. T2 - Wave Mechanics and Vibrations Conference CY - Lisbon, Potugal DA - 04.07.2022 KW - Hammer impact KW - Train passage KW - Layered soil KW - Attenuation KW - Filter effects KW - Randomly heterogeneous soil KW - Scattering PY - 2023 SN - 978-3-031-15757-8 DO - https://doi.org/10.1007/978-3-031-15758-5_35 SP - 352 EP - 359 PB - Springer Nature CY - Cham, Schweiz AN - OPUS4-56034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Measurement and evaluation tools for ground and building vibrations from industrial process-es, construction work, traffic and other sources N2 - Vibration measurements have many causes and many technical and natural sources. Problems can sometimes be solved by short-term measurements, but in many cases, a long-term measurement is necessary. In long-term measurements of days, weeks, months and even years, it is easy to collect a huge quantity of raw data, but at the end, the post-processing of these data can be exhausting (for example one-year vibration data of a wind energy tower). A software has been developed which con-sists of measuring and evaluation routines where the measuring routines can operate different meas-uring systems and different measuring cards. The main advantage of this software is the fact that the interesting evaluations can be integrated in the measuring process so that the characteristics of the vibration can be extracted without storing all the raw data. Only important time segments are stored, for example train passages. The overall concept of the software and the main evaluation routines will be described in some details. Examples of our measurement experience will illustrate the capabilities of the software. 1) Surveying construction work in nearby sensitive buildings (for example an old wind tunnel), including a stable alarm system and meaningful vibration limits. 2) Prediction of train-induced vibration for a planned building to prevent annoyance and to improve the building design. 3) Modal analysis and long term measurements of several single- or multi-span, concrete or steel bridges 4) Modal and wave analysis of coupled floors in a historical building (“Neues Palais” at Potsdam). 5) Soil properties of various measurement sites (different routines to evaluate the dispersion). Moreover, from many projects, amplitudes, frequencies, and attenuation laws have been collected and analysed for the different sources such as vibratory or impact pile driving and ground compaction, demolition work with different machines, blasting in quarries and in tunnel works, bomb and mine clearing. T2 - 28th International Congress on Sound and Vibration (ICSV28) CY - Online meeting DA - 25.07.2022 KW - Ground vibration KW - Building vibration KW - Measurement KW - Evaluation KW - Modes and waves PY - 2022 AN - OPUS4-56035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Effects of a varying track and soil stiffness on ground vibrations near railway lines N2 - Usually, geometric irregularities are considered as the main cause of ground vibrations from trains. A varying stiffness of the track, the track support and the soil can also generate ground vibrations. The regular stiffness variation of the track on and between the sleepers results in a deterministic dynamic axle load. The random stiffness variation of the track support yields also dynamic axle loads. The dynamic axle loads are generated by the varying wheel displacements under the static axle load by the acceleration of the unsprung mass of the rail vehicle. The random stiffness variation has a second effect. The pulses from the passage of the static axle loads are superposed regularly to the quasi-static response, but also irregularly to yield a “scattered” part of the axle pulses. The same holds for a random variation of the soil stiffness. All these effects of stiffness variations have been calculated by wavenumber-domain multi-beam track models, a random finite-element soil model and the superposition of axle impulses in a stochastic simulation. The results are confronted with many measurements at different sites. It is concluded that the stiffness variation of the track and the soil generate an important ground vibration component near railway lines. T2 - Railways 2022 CY - Montpellier, France DA - 22.08.2022 KW - Ground vibration KW - Railways KW - Varying track stiffness KW - Varying soil stiffness PY - 2022 AN - OPUS4-56036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Building vibration KW - Railways KW - Simple and fast prediction PY - 2022 AN - OPUS4-56038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Challenges of vibration prediction – realistic irregularities, the scattering of axle pulses, and the tunnel-surface reduction N2 - A prediction software has been developed by BAM. The following topics have still be solved. A realistic irregularity spectrum can be derived from axle-box measurements. It agrees wel with the spectrum used for the high-speed 2 project in the United Kingdom. In addition, the scattering of axle pulses should be included. This mid-frequency component can also be found in the HS2 procedure. Finally, the reduction in case of a tunnel line compared to a surface line should be included. Some measurement results of BAM, HS2 and other institutes show a certain mid-frequency reduction. This is due to the load distribution of the tunnel which yields softer axle pulses and the scattered axle impulses are reduced. T2 - ISO/TC 108/SC 2/WG 8 Working group Ground-borne noise and vibration from rail systems CY - London, UK DA - 21.11.2022 KW - Ground vibration KW - Railway trafiic KW - Prediction KW - Irregularities KW - Axle pulses KW - Tunnel line KW - Surface line PY - 2022 AN - OPUS4-56738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Characteristic Frequencies of Train-Induced Bridge, Track, Ground and Building Vibrations – Excitation and Mitigation N2 - The characteristic frequencies of train-induced vibrations are discussed in theory and experiment following the propagation of vibrations from the source to the receiver: 1. Out-of-roundness frequencies of the wheels, 2. sleeper-passage frequency, 3. the vehicle-track eigenfrequency, 4. band frequency of the impulses of the passing static axle loads, 5. car-length frequency and multiples, 6. axle-distance frequencies with two characteristic zeros, 7. bridge eigenfrequencies, 8. the cut-on frequency due to the layering, and 9. the cut-off frequency due to the material damping of the soil, 10. the building-soil eigenfrequency, 11. as a rigid building or flexible wall/column mode, 12. floor eigenfrequencies, 13. acoustic room resonances, 14. the „resonance“ frequency or cut-off frequency of a base isolation. Coincidences of some of these characteristic frequencies or frequency ranges can be typically problematic and mitigation measures at the track or at the building can be necessary. The bridge response to the passing static loads is deter¬mined by the axle-sequence spectrum, the eigenfrequency (transfer function) of the bridge, and the modal force or mode shape spectrum. The ground vibration has typically high frequencies for a stiff soil and low frequencies for a soft soil. The high amplitudes between the zeros of the axle-sequence spectrum are often measured in the ground vibrations, and they can be mitigated by soft support elements or a higher bending stiffness of the track. T2 - EVACES 2025 CY - Porto, Portugal DA - 02.07.2025 KW - Train-induced vibration KW - Axle-sequence spectrum KW - Vehicle-track eigenfrequency KW - Axle impulses PY - 2025 AN - OPUS4-63654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Mitigation of railway-induced ground vibration by soft support elements and a higher bending stiffness of the track N2 - The mitigation of train-induced ground vibrations by track solutions is investigated by calculations and measurements. The calculation by a wavenumber domain method includes the correct vehicle–track interaction and the correct track–soil interaction. Some theoretical results for elastic elements and an increased bending stiffness of the track are presented where the force transfer of the track and the vehicle–track interaction are calculated for the high-frequency dynamic mitigation, and the force distribution along the track is calculated for the low-frequency mitigation which is due to the smoother impulses from the passing static loads. Measurement results for the ground vibration near isolated and un-isolated tracks are given for several under-sleeper pads, for under-ballast mats, and for several under-ballast plates and ballast troughs. The elastic elements yield a resonance frequency of the vehicle–track–soil system and a high-frequency reduction of the dynamic axle loads which depends mainly on the softness of the pads or mats and which can be improved by a higher sleeper mass. In addition, all troughs and most of the soft elements show a low-frequency reduction which is attributed to the scattered impulses of the static axle loads. Besides this main contribution of the article, the problem of a soft reference section on a different soil is discussed and recommendations for better ground vibration measurements of mitigation effects are given. KW - Railway track KW - Elastic elements KW - Bending stiffness KW - Ground vibration KW - Mitigation KW - Lowfrequency reduction KW - Axle impulses PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612568 DO - https://doi.org/10.3390/app14031244 VL - 14 IS - 3 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-61256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Some resonance effects of non-typical trains and railway bridges investigated by a frequency-domain method N2 - The resonances of railway bridges have often been analysed for short bridges under periodical high-speed trains, for simply supported one-span bridges, for the fundamental bridge mode, and by time-domain analyses. Many time-consuming calculations have been performed to establish simplified rules for standards. In this contribution, the passage of different (existing, new and hypothetic) trains over different (simply supported, integral, multi-span, continuous) bridges will be analysed in frequency domain by using three separated spectra with the purpose to get a better physical insight in the phenomena. At first, the excitation spectrum of the modal forces is built by the mode shape and the passage time of the train over the bridge. The second spectrum is the frequency response function of the bridge which include the modal frequency, damping and mass. The third part is the spectrum of the axle sequence of an arbitrary train which is not limited to periodical or specific (conventional, articulated, regular or standard) trains and which does not include any bridge parameters. The final solution in frequency domain is obtained as the product of these three complex, strongly varying spectra for the dominating bridge mode or in general as the sum of these products over all relevant bridge modes. The time domain solution is obtained via the inverse Fourier transform, and the resulting time histories have been successfully compared with some measurement results. The method is applied to the vertical and torsional modes of a mid-long single-span bridge on elastomeric bearings under standard train speeds, to a short two-span bridge under high-speed traffic, and to a long three-span integral bridge under long periodical freight trains. Different resonance and cancellation effects have been found for systematically varied train speeds according to the axle sequence of the whole train which is dominated by the two locomotives in that case. To be more specific, the first torsional mode of the mid-span bridge is excited for a train speed of 100 km/h whereas the second bending mode is excited for a train speed of 160 km/h. In both cases, the other mode is suppressed by the minima of the axle-distance spectra. In addition, the case of the German high-speed train ICE4, a Maglev train on a viaduct, and the very high-speed hyperloop case will be discussed briefly. In general, it is shown that resonance effects are also worth to be studied for freight and passenger trains with lower speeds. KW - Rail bridge KW - Resonance KW - ICE4 KW - MAGLEV KW - Hyperloop KW - Continuous bridge KW - Multi-span bridge PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612595 DO - https://doi.org/10.1088/1742-6596/2647/25/252014 VL - 2647 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-61259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway vibration – fast physics-based models for the prediction of ground vibration and the identification of track damage N2 - The following applications of machine learning will be discussed: 1. The prediction of the wave propagation from a railway line (completely physics based for surface lines, physics-based machine learning for tunnel lines) 2. The track behaviour for the emission of train-induced ground vibration (physics based for homogeneous soil, machine learning for layered soil) 3. Track damage detection and quantification from frequency response functions and moving load responses 4. Bridge damage detection and localisation from modal analysis and moving load 5. The use of axle-box acceleration for the identification of track/sub-soil condition and bridge resonances. The prediction of railway vibration usually needs time-consuming finite element, boundary element and wavenumber domain calculations. For a user-friendly prediction software however, fast calculations are needed. Several time-consuming detailed calculations have been used to develop simpler and fast models for the surface railway lines. The more challenging prediction from tunnel lines will be attacked by purely mathematical and by physics-informed machine learning. The dynamic stiffnesses of isolated or un-isolated railway tracks from detailed calculations with a continuous soil have been approximated with the simpler Winkler soil. The vehicle-track resonance (P2 resonance) rules the effect of the mitigation measures, and it can also be used for the on-board monitoring of the track and sub-soil condition. For the identification of track damage such as gaps between sleepers, track slabs and layers, detailed models with a continuous soil have been updated to get the best fit to the measured frequency response functions from hammer tests and the deformation pattern from the moving load response. Whereas the track damage can be locally identified, this is more difficult for bridges where the modal analysis gives mainly global information. The influence lines of the inclination for statically passing vehicles (locomotive, truck, compaction roller) have been used to localise bridge damage (stiffness variations). The on-board monitoring of rail bridges needs special conditions (regular trains with special speeds) to excite and measure the bridge resonance. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Vibration prediction KW - Track damage detection KW - Human and machine learning KW - Wave propagation KW - Surface line KW - Tunnel KW - Bridge resonance PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-612462 DO - https://doi.org/10.58286/29865 SN - 1435-4934 SP - 1 EP - 9 PB - NDT.net CY - Kirchwald AN - OPUS4-61246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Jürgen A1 - Eidenmüller, Moritz A1 - Auersch, Lutz T1 - Prognose von Erschütterungs- und Sekundärschall- Immissionen an Bahnlinien unter Verwendung von FEM Gebäudemodellen N2 - Die Errichtung von Wohngebäuden an Bahnstrecken erfordert Betrachtungen zur Begrenzung der Erschütterungs- und Sekundärschallimmissionen. Hierzu werden spektrale Prognoseverfahren ausgehend von Freifeldmessungen eingesetzt. Im rechnerischen Modell werden die Teilaspekte der Körperschallübertragung mit Hilfe von spektralen Übertragungsfunktionen beschrieben. Kenntnis über die Zusammenhänge dieser spektralen Übertragungsfunktionen erhält man im Wechselspiel von: - Messergebnissen von Körperschall- und Luftschallmessungen für einzelne Übertragungssysteme - Modellberechnungen mit der Finite-Elemente-Methode, Parameterstudien, Abgleich mit Messergebnissen - Modellberechnung mit der Finite-Elemente-Methode zur Wechselwirkung des schwimmenden Estrichs mit dem Gebäude T2 - VDI-Tagung Baudynamik CY - Würzburg, Germany DA - 02.04.2025 KW - Bahnerschütterungen KW - Gebäudemodelle KW - Schwimmender Estrich KW - Sekundärschall PY - 2025 SN - 978-3-18-092447-2 SN - 0083-5560 VL - 2447 SP - 301 EP - 314 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-62887 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Erschütterungsprognose mit KI? Schnelle Ersatzmodelle und physikbasiertes maschinelles Lernen in der Bauwerk-Boden-Dynamik N2 - Erschütterungsprognosen können mit sehr detaillierten Modellen durchgeführt werden. Dies ist sowohl bei der Erstellung des Modells (zum Beispiel für ein Finite-Element-Modell für Boden und Bauwerk), als auch bei der Berechnung zeitaufwändig, von einigen Minuten für die Wellenausbreitung in geschichteten Böden mit Wellenzahlintegralen bis zu mehreren Stunden für Randelementlösungen für die korrekte Bauwerk-Boden-Wechselwirkung. Hier sind einfache und schnelle Ersatzmodelle von Vorteil, die die Ergebnisse der detaillierten Berechnungen gut wiedergeben. Diese Ersatzmodelle können vollständig auf physikalischen Überlegungen beruhen (white-box Modelle) oder mit Hilfe von maschinellem Lernen aus einer Vielzahl von detaillierten Rechenergebnissen erzeugt werden (black-box Modelle). Erfahrungen mit black-box Modellen zeigen, dass es sinnvoll ist das maschinelle Lernen mit physikalischen Informationen anzureichern (grey-box Modelle). Es werden Anwendungsmöglichkeiten für physikbasiertes maschinelles Lernen im Bereich von Bahnerschütterungen aufgezeigt, die Erschütterungsemission durch die Fahrzeug-Fahrweg-Wechselwirkung, die Wellenausbreitung im Boden, die Erschütterungsimmission in Gebäude, Gleisschäden und das Monitoring von Eisenbahnbrücken. T2 - VDI-Tagung Baudynamik CY - Würzburg, Germany DA - 02.04.2025 KW - Bahnerschütterungen KW - Emissionsmodell KW - Immissionsmodell KW - Transmissionsmodell KW - Tunnelausbreitung KW - Gleisüberwachung PY - 2025 SN - 978-3-18-092447-2 SN - 0083-5560 VL - 2447 SP - 53 EP - 64 PB - VDI-Verlag CY - Düsseldorf AN - OPUS4-62886 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Erschütterungsprognose mit KI? Schnelle Ersatzmodelle und physikbasiertes maschinelles Lernen in der Bauwerk-Boden-Dynamik N2 - Erschütterungsprognosen können mit sehr detaillierten Modellen durchgeführt werden. Dies ist sowohl bei der Erstellung des Modells (zum Beispiel für ein Finite-Element-Modell für Boden und Bauwerk), als auch bei der Berechnung zeitaufwändig, von einigen Minuten für die Wellenausbreitung in geschichteten Böden mit Wellenzahlintegralen bis zu mehreren Stunden für Randelementlösungen für die korrekte Bauwerk-Boden-Wechselwirkung. Hier sind einfache und schnelle Ersatzmodelle von Vorteil, die die Ergebnisse der detaillierten Berechnungen gut wiedergeben. Diese Ersatzmodelle können vollständig auf physikalischen Überlegungen beruhen (white-box Modelle) oder mit Hilfe von maschinellem Lernen aus einer Vielzahl von detaillierten Rechenergebnissen erzeugt werden (black-box Modelle). Erfahrungen mit black-box Modellen zeigen, dass es sinnvoll ist das maschinelle Lernen mit physikalischen Informationen anzureichern (grey-box Modelle). Es werden Anwendungsmöglichkeiten für physikbasiertes maschinelles Lernen im Bereich von Bahnerschütterungen aufgezeigt, die Erschütterungsemission durch die Fahrzeug-Fahrweg-Wechselwirkung, die Wellenausbreitung im Boden, die Erschütterungsimmission in Gebäude, Gleisschäden und das Monitoring von Eisenbahnbrücken. T2 - VDI-Tagung Baudynamik CY - Würzburg, Germany DA - 02.04.2025 KW - Bahnerschütterungen KW - Emissionsmodell KW - Immissionsmodell KW - Transmissionsmodell KW - Tunnelausbreitung KW - Gleisüberwachung PY - 2025 AN - OPUS4-62889 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz ED - Papadrakakis, Manolis T1 - Frequency-wavenumber method for the wave propagation through the soil and the soil-structure interaction of railway tracks and building foundations near railway lines N2 - In soil-structure interaction, the soil and the (flexible) structures are modelled as elastic continua. The partial differential equations of elasticity can be transformed to algebraic equations in frequency-wavenumber domain where they can be solved by matrix methods. The results for the soil and a structure can be coupled in frequency-wavenumber domain, and the solution in space domain is obtained by an infinite wavenumber integral (the back-transformation). This method has several applications for the prediction of the emission, transmission and immission of railway-induced vibrations. The wave propagation in homogeneous or layered soils is calculated for surface and tunnel lines by a single wavenumber integration (transmission). The response of ballast or slab tracks (for the emission problem) and the foundation stiffness (for the immission problem) need an additional integration across the track or foundation width. In wavenumber domain, tracks and foundations of infinite length are analysed. Finite structures can be calculated by finite element models where the soil is calculated by the boundary element method. The Green’s functions for the boundary element method are calculated by a wavenumber integration as for the transmission problem. Some example results for all these tasks will be shown. The immission into buildings will be analysed in detail, and the effect of stiff slab foundations and (basement) walls on the incoming wavefield is quantified in a parameter study. The transfer function (the amplitude ratio) structure to free field usually starts with 1 at 0 Hz and decreases continuously with frequency. The reduction is due to the structural stiffness against wave deformation which turns to be higher than the stiffness of the soil, for example above the structure-soil coincidence frequency of the slab foundation. The reduction is better for a high structural stiffness and for a low soil stiffness. Walls are stiffer than plates for the relevant frequency range, but even walls and especially low basement walls are not infinitely rigid and can follow the wave deformation to a certain extent. These basic rules from frequency-wavenumber analysis can well be used for real building projects near railway lines where stiff foundations can be an alternative reduction method to the commonly used base isolation by elastic elements. T2 - COMPDYN 2025 CY - Rhodos, Greece DA - 15.06.2025 KW - Frequency-wavenumber method KW - Wave propagation KW - Soil-structure interaction KW - Building foundations KW - Mitigation measures PY - 2025 SP - 1 EP - 15 PB - NTUA CY - Athen AN - OPUS4-63470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Frequency-wavenumber method for the wave propagation through the soil and the soil-structure interaction of railway tracks and building foundations near railway lines N2 - In soil-structure interaction, the soil and the (flexible) structures are modelled as elastic continua. The partial differential equations of elasticity can be transformed to algebraic equations in frequency-wavenumber domain where they can be solved by matrix methods. The results for the soil and a structure can be coupled in frequency-wavenumber domain, and the solution in space domain is obtained by an infinite wavenumber integral (the back-transformation). This method has several applications for the prediction of the emission, transmission and immission of railway-induced vibrations. The wave propagation in homogeneous or layered soils is calculated for surface and tunnel lines by a single wavenumber integration (transmission). The response of ballast or slab tracks (for the emission problem) and the foundation stiffness (for the immission problem) need an additional integration across the track or foundation width. In wavenumber domain, tracks and foundations of infinite length are analysed. Finite structures can be calculated by finite element models where the soil is calculated by the boundary element method. The Green’s functions for the boundary element method are calculated by a wavenumber integration as for the transmission problem. Some example results for all these tasks will be shown. The immission into buildings will be analysed in detail, and the effect of stiff slab foundations and (basement) walls on the incoming wavefield is quantified in a parameter study. The transfer function (the amplitude ratio) structure to free field usually starts with 1 at 0 Hz and decreases continuously with frequency. The reduction is due to the structural stiffness against wave deformation which turns to be higher than the stiffness of the soil, for example above the structure-soil coincidence frequency of the slab foundation. The reduction is better for a high structural stiffness and for a low soil stiffness. Walls are stiffer than plates for the relevant frequency range, but even walls and especially low basement walls are not infinitely rigid and can follow the wave deformation to a certain extent. These basic rules from frequency-wavenumber analysis can well be used for real building projects near railway lines where stiff foundations can be an alternative reduction method to the commonly used base isolation by elastic elements. T2 - COMPDYN 2025 CY - Rhodos, Greece DA - 15.06.2025 KW - Frequency-wavenumber method KW - Wave propagation KW - Soil-structure interaction KW - Building foundations KW - Mitigation measures PY - 2025 AN - OPUS4-63468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Prediction of ground vibrations from rail tunnels finite element, boundary element and wavenumber calculations N2 - The prediction of ground and building vibrations has been established for surface lines and has now been extended to tunnel lines. The wave propagation in homogeneous or layered soils (the transmission) is calculated by an integration in wavenumber domain. The wave amplitudes at different distances and for different frequencies will be analysed for the following situations. 1. The horizontal propagation from a surface point to a surface point constitutes the basic rules. 2. The horizontal propagation from a source point at depth to a receiver point at depth which is related to a building with a deep basement or on a pile foundation. 3. The propagation from depth to the surface, which is the normal case for free-field measurements, has some different characteristics, for example a weaker attenuation with the horizontal distance from the source, which can be approximated by the full-space solution and the reflection rules for incident waves. The emission from a tunnel structure has been calculated by a finite-element model of the tunnel combined with a boundary-element model of the soil giving the reduction compared to a point-load excitation. The immission has been analysed by finite-element models of tunnel-soil-building systems for examples of research and consultancy work. Measurement results from a high-speed and a metro line confirm some of the established rules. T2 - Recent Advance in Structural Dynamics (RASD) CY - Southampton, UK DA - 01.07.2024 KW - Ground vibration KW - Building vibration KW - Railway tunnel KW - Wavenumber method KW - Finite element method KW - Boundary element method PY - 2024 AN - OPUS4-61230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz T1 - Railway-induced ground and building vibrations – Analysis in frequency-wavenumber domain and fast prediction with approximate models N2 - A simple and fast prediction scheme is presented for train-induced ground and building vibrations. For the emission, finite-element boundary-element or multiple-beam-on-continuous-soil models of the track have been analysed and approximated by faster track-on-Winkler-soil models. The vehicle-track interaction due to irregularities yields the excitation forces. For the transmission of waves in the soil, the wavenumber integral of the compliance of layered soils has been evaluated. The calculation time is reduced for the prediction by using the solution of a homogeneous half-space with a frequency-dependent wave velocity (the dispersion) of the soil. For the immision, many 2 and 3-dimenisonal finite-element building models have been investigated, and a good approximation has been established by a 1-dimensional soil-wall-floor model. In addition, the axle sequence of the train, the quasi-static and the “scattered” response of the soil, and the wave propagation from a tunnel to a pile foundation of a building have been included. T2 - ISMA-Conference 2022 CY - Leuven, Belgium DA - 12.09.2022 KW - Ground vibration KW - Simple prediction KW - Vehicle-track interaction KW - Layered soil KW - Soil-building interaction KW - Soil-wall-floor model KW - Propagation from a tunnel KW - Tunnel-pile transfer PY - 2022 SP - 1 EP - 13 PB - KU Leuven CY - Leuven AN - OPUS4-56603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auersch, Lutz A1 - Said, Samir A1 - Rohrmann, R. T1 - Measurement and evaluation tools for ground and building vibrations from industrial pro-cesses, construction work, traffic and other sources N2 - Vibration measurements have many causes and many technical and natural sources. Problems can sometimes be solved by short-term measurements, but in many cases, a long-term measurement is necessary. In long-term measurements of days, weeks, months and even years, it is easy to collect a huge quantity of raw data, but at the end, the post-processing of these data can be exhausting (for example one-year vibration data of a wind energy tower). A software has been developed which con-sists of measuring and evaluation routines where the measuring routines can operate different meas-uring systems and different measuring cards. The main advantage of this software is the fact that the interesting evaluations can be integrated in the measuring process so that the characteristics of the vibration can be extracted without storing all the raw data. Only important time segments are stored, for example train passages. The overall concept of the software and the main evaluation routines will be described in some details. Examples of our measurement experience will illustrate the capabilities of the software. 1) Surveying construction work in nearby sensitive buildings (for example an old wind tunnel), including a stable alarm system and meaningful vibration limits. 2) Prediction of train-induced vibration for a planned building to prevent annoyance and to improve the building design. 3) Modal analysis and long term measurements of several single- or multi-span, concrete or steel bridges 4) Modal and wave analysis of coupled floors in a historical building (“Neues Palais” at Potsdam). 5) Soil properties of various measurement sites (different routines to evaluate the dispersion). Moreover, from many projects, amplitudes, frequencies, and attenuation laws have been collected and analysed for the different sources such as vibratory or impact pile driving and ground compaction, demolition work with different machines, blasting in quarries and in tunnel works, bomb and mine clearing. T2 - 28th International Congress on Sound and Vibration CY - Online meeting DA - 24.07.2022 KW - Ground vibration KW - Building vibration KW - Measurement KW - Evaluation KW - Modes KW - Waves PY - 2022 SP - 1 EP - 8 AN - OPUS4-56602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -