TY - CONF A1 - Zinas, Orestis T1 - 3D Probabilistic Site Characterization N2 - The aim of the study is to infer the soil stratification from the provided CPT and borehole data. We infer the soil type at any location within the domain of interest from the SBT index Ic (Robertson, 2009). This index can be directly related to the CPT data through an empirical correlation model. In addition, the soil classes contained in the borehole logs can be expressed as bounds on Ic. A log-transformation was applied to Ic, Y = ln(Ic), and Y was modelled by a 3D Random Field, with a fully Bayesian hierarchical Gaussian Process model to explicitly capture uncertainties. T2 - 19th eawe PhD Seminar CY - Hannover, Germany DA - 06.09.2023 KW - Wind Energy KW - Site-characterization KW - Probabilistic PY - 2023 AN - OPUS4-58940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Schepers, Winfried A1 - Baeßler, Matthias A1 - Papaioannou, I. T1 - Potentials of probabilistic approaches in offshore foundation installation N2 - This presentation discusses the potentials of probabilistic methods in offshore foundation installation, from the perspective of probabilistic ground models and data-driven site characterization. We discuss about methodologies for utilizing site-specific geotechnical (CPT) and geological data, aiming to construct an integrated ground model that can predict stratigraphic profiles and useful for geotechnical design parameters at any location within a 3D domain. The predicted parameters and stratigraphy are then used to predict the probability of potential pile tip damage, upon collision with a boulder. T2 - Colloquium Buckling of Offshore Wind Energy Structures CY - Berlin, Germany DA - 14.02.2024 KW - Wind KW - Offshore KW - Buckling KW - Probabilistic KW - Ground PY - 2024 AN - OPUS4-59538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Mevel, L. T1 - Stochastic subspace-based damage detection of a temperature affected beam structure N2 - Structural health monitoring (SHM) of civil structures often is limited due to changing environmental conditions, as those changes affect the structural dynamical properties in a similar way like damages can do. In this article, an approach for damage detection under changing temperatures is presentedand applied to a beam structure. The used stochastic subspace-based algorithm relies on a reference null space estimate, which is confronted to data from the testing state in a residual function. For damage detection the residual is evaluated by means of statistical hypothesis tests. Changes of the system due to temperature effects are handled with a model interpolation approach from linear parameter varying system theory. From vibration data measured in the undamaged state at some few reference temperatures, a model of the dynamic system valid for the current testing temperature is interpolated. The reference null space and the covariance matrix for the hypothesis test is computed from this interpolated model. This approach has been developed recently and was validated in an academic test case on simulations of a mass-spring-damper. In this paper, the approach is validated experimentally on a beam structure under varying temperature conditions in a climate chamber. Compared to other approaches, the interpolation approach leads to significantly less false positive alarms in the reference state when the structure is exposed to different temperatures, while faults can still be detected reliably T2 - 10th International Conference on Structural Health Monitoring of Intelligent Infrastructure, SHMII 10 CY - Online meeting DA - 30.06.2021 KW - Damage detection KW - Subspace methods KW - Temperature effects KW - Model interpolation KW - Climate chamber KW - Laboratory beam structure PY - 2021 AN - OPUS4-53000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Hille, Falk A1 - Mevel, L. T1 - Fault detection for linear parameter varying systems under changes in the process noise covariance N2 - Detecting changes in the eigenstructure of linear systems is a comprehensively investigated subject. In particular, change detection methods based on hypothesis testing using Gaussian residuals have been developed previously. In such residuals, a reference model is confronted to data from the current system. In this paper, linear output-only Systems depending on a varying external physical parameter are considered. These systems are driven by process noise, whose covariance may also vary between measurements. To deal with the varying parameter, an interpolation approach is pursued, where a limited number of reference models { each estimated from data measured in a reference state { are interpolated to approximate an adequate reference model for the current parameter. The problem becomes more complex when the different points of interpolation correspond to different noise conditions. Then con icts May arise between the detection of changes in the eigenstructure due to a fault and the detection of changes due to different noise conditions. For this case, a new change detection approach is developed based on the interpolation of the eigenstructure at the reference points. The resulting approach is capable of change detection when both the external physical parameter and the process noise conditions are varying. This approach is validated on a numerical simulation of a mechanical system. T2 - 21st IFAC World Congress CY - Berlin, Germany DA - 13.07.2020 KW - Linear parameter varying systems KW - Fault detection KW - Changing process noise KW - Subspace-based residual KW - Model interpolation PY - 2020 AN - OPUS4-52366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva T1 - Subspace-based damage detection handling temperature effects and uncertainty in the reference N2 - Temperature variation can be a nuisance that perturbs vibration based structural health monitoring (SHM)approaches for civil engineering structures. In this paper, temperature affected vibration data is evaluated within a stochastic damage detection framework, which relies on a null space based residual. Besides two existing temperature rejection approaches – building a reference state from an averaging method or a piecewise method – a new approach is proposed, using model interpolation. In this approach, a general reference model is obtained from data in the reference state at several known reference temperatures. Then, for a particular tested temperature, a local reference model is derived from the general reference model. Thus, a well fitting reference null space for the formulation of a residual is available when new data is tested for damage detection at an arbitrary temperature. Particular attention is paid to the computation of the residual covariance, taking into account the uncertainty related to the null space matrix estimate. This improves the test performance, contrary to prior methods, for local and global damages, resulting in a higher probability of detection (PoD) for the new interpolation approach compared to previous approaches. T2 - Abteilungs-Vortragsseminar Abteilung 7 Bauwerksicherheit CY - Berlin, Germany DA - 28.11.2019 KW - Statistical method KW - Subspace-based method KW - Temperature rejection KW - Model interpolation KW - Uncertainty PY - 2019 AN - OPUS4-50195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Viefhues, Eva A1 - Döhler, M. A1 - Zhang, Q. A1 - Hille, Falk A1 - Mevel, L. T1 - Subspace-based Damage Detection with Rejection of the Temperature Effect and Uncertainty in the Reference N2 - Temperature variation can be a nuisance that perturbs vibration based structural health monitoring (SHM) approaches for civil engineering structures. In this paper, temperature affected vibration data is evaluated within a stochastic damage detection framework, which relies on a null space based residual. Besides two existing temperature rejection approaches – building a reference state from an averaging method or a piecewise method – a new approach is proposed, using model interpolation. In this approach, a General reference model is obtained from data in the reference state at several known reference temperatures. Then, for a particular tested temperature, a local reference model is derived from the general reference model. Thus, a well fitting reference null space for the formulation of a residual is available when new data is tested for damage detection at an arbitrary temperature. Particular attention is paid to the computation of the residual covariance, taking into account the uncertainty related to the null space Matrix estimate. This improves the test performance, contrary to prior methods, for local and global damages, resulting in a higher probability of detection (PoD) for the new interpolation approach compared to previous approaches. T2 - International Operational Modal Analysis Conference CY - Copenhagen, Danmark DA - 13.05.2019 KW - Un- certainty KW - Statistical method KW - Subspace-based method KW - Temperature rejection KW - Model interpolation PY - 2019 AN - OPUS4-48244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Baeßler, Matthias T1 - Fatigue crack detection methods for high-cyclic loaded steel structures and challenges in mechanical testing N2 - For the generation of renewable energy offshore wind farms play an important role. The majority of these wind generators are connected to steel foundation structures. Steady increasing power output of these wind turbines leads to new challenges as well for engineers of the related support structures. Caused by the high-cyclic loading of these structures by wind and waves fatigue plays a very important role. Besides the consideration of fatigue within the design process it is additionally an important topic and challenge to monitor the existing steel structures relating to potential fatigue cracks occurring during their lifetime. This plays a role for a fundamental understanding of mechanisms as investigated in testing but also for inspection in real structures. Since the structures of the offshore wind generators are very large and in addition partially under water effective and reliable methods for fatigue crack detection are required. This contribution will present results of recent investigations on different crack detection methods applied on high-cycle fatigue tests on small welded steel samples as well as on welded steel components. The comparison of these measurements will show what are the advantages and disadvantages of the different methods and which method is potentially more suitable for the application on real offshore wind structures. It is outlined where challenges for detection methods exist. Furthermore, in this context the resulting challenges for the execution of material testing especially caused by the increasing dimensions of wind energy converters will by exemplarily presented. T2 - EERA JP Wind & SETWind Online Annual Event 2020 CY - Online meeting DA - 14.09.2020 KW - Fatigue KW - Crack detection KW - Steel structures PY - 2020 AN - OPUS4-51356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Hille, Falk A1 - Makris, Ruben T1 - Comparison of fatigue crack detection methods for high-cyclic loaded steel structures N2 - At present, to produce renewable energy offshore wind farms play an important role. The available space combined with the more valuable wind conditions make offshore locations very attractive for wind powered energy production. In Europe a significant number of offshore wind farms already exist, especially in the North and Baltic Sea. In future this trend will continue, and further offshore wind farms will be built. The majority of offshore wind turbines are mounted on steel foundation structures. Due to the high-cyclic loading by wind and waves fatigue stress plays a substantial role regarding structural safety. Besides the consideration of fatigue within the design process, to monitor existing steel structures for potential fatigue cracks during their life time is a major topic and a challenge. For the structures of the offshore wind turbines are large and partially under water effective reliable methods for the detection of fatigue cracks are required. This contribution presents investigations on different crack detection methods applied at high-cycle fatigue tests on small-scale welded steel samples as well as on large-scale welded steel components. The tests were conducted at the BAM laboratories. For crack detection mainly three different methods were used and compared. The first method regards to the measurement of strain by conventionally strain gauges. Secondly, the crack luminescence was used as a new and effective optical method for surface monitoring. And finally, crack detection by pressure differentials of the inner and outer section of tubular steel elements was investigated. A comparison study will emphasize the advantages and disadvantages of the different methods and show which of the described methods is potentially more suitable for an application on real offshore wind structures. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Fatigue KW - Steel structures KW - Crack detection PY - 2019 AN - OPUS4-48944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc T1 - Fatigue in Concrete N2 - The current knowledge about fatigue behavior of concrete is still incomplete. This concerns especially the progress of fatigue which precedes the fatigue failure. An overview on the fatigue behaviour in concrete is given. Therefore, the process of fatigue itself under cyclic compressive loading was investigated in a systematic and comprehensive way. The aim of this investigation was to obtain a deeper insight and to provide a better understanding of the damage process occurring within the material during fatigue loading. T2 - 1st Infrastar Training School CY - IFSTTAR, Nantes, France DA - 08.04.2019 KW - Fatigue KW - Concrete PY - 2019 AN - OPUS4-48945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Stolpe, Heiko A1 - Wiehle, Philipp T1 - Moisture diffusion affected by the Knudsen effect in temporal changing pore networks N2 - Almost all building materials in civil engineering have an open porosity and interact with or are affected by the environmental conditions. Structures might suffer from effects such as moisture adsorption, carbonation, corrosion, penetration of salt ions and chemical substances, etc. In the hygroscopic range, these processes are mostly driven by diffusion. Due to the confinement of small pores ( 1 m), the Knudsen effect reduces the molecular diffusion. This reduction can become more significant in case of temporal changing pore systems because of physisorption of water vapor, carbonation, or chemisorption. In this study, unstabilised earth blocks and earth masonry are investigated. In a first step, the pore size distribution of the blocks is measured and sorption isotherms are recorded in experiments. Besides the ordinary physisorption, the involved clay minerals undergo swelling or shrinking due to chemisorption. The following two effects must be considered: first, the reduction of the available pore space by the adsorbed water layer. For this, the Hillerborg sorption theory is used, which is a combination of the well-known Brunauer-Emmett-Teller sorption theory and the Kelvin equation. This allows the computation of adsorbed water layers even in curved pore geometries. Second, the variation of the initial pore size distribution due to chemisorption needs to be modelled. Based on these two models, the effective diffusion coefficient can be predicted. For validation, arrays of relative humidity sensors were embedded into a free-standing earth masonry wall. This monitoring was carried out over more than a year to have a broad variety of environmental conditions and was located in Berlin, Germany. The prediction of the effective diffusion coefficient can also be transferred to other processes and allows the investigation of materials having temporarily changing pore systems. Examples are the carbonation of cementitious materials, alkali silica reaction, calcium leaching of long-lasting structures, etc. This effect becomes most prominent in the meso-pore range and might alter the effective diffusion coefficient by more than 100 %. T2 - 4th International Congress on Materials & Structural Stability CY - Rabat, Morocco DA - 08.03.2023 KW - Earth masonry KW - Material moisture KW - Molecular diffusion KW - Chemisoprtion KW - Knudsen effect KW - Physisorption PY - 2023 AN - OPUS4-57140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Song, Jiaojiao A1 - Auersch, Lutz T1 - Track-soil calculation and measurement of damaged and repaired slab tracks N2 - Calculation of the behaviour of damaged slab tracks have been performed with ANSYS and with a combined finite-element boundary-element Programme. Different damage lengths have been analysed and the best fit to the measurements has been chosen. T2 - Seminar on Railway Engineering CY - Tongji University Shanghai, People's Republic of China DA - 21.09.2018 KW - Slab track KW - Track damage KW - Boundary element method KW - Train passage PY - 2018 AN - OPUS4-46405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Untersuchungsmethoden klimatisch belasteter Bauteile - Projektupdate BAM N2 - Kontinuierliche Sensorbasierte Bauwerksmessungen leisten einen wichtigen Beitrag zur Sicherheit von Verkehrsbauwerken. Hierzu werden im Vorhaben AISTEC Referenzbauwerke und Referenzverfahren untersucht mit Schwerpunkt auf den Einfluss klimatischer Bedingungen. Der Vortrag stellt den aktuellen Projektstand des FB 7.2 vor. T2 - Erstes Verbundtreffen AISTEC CY - Weimar, Germany DA - 21.03.2019 KW - Structural Health Monitoring KW - Environmental Effects KW - Climate Chamber KW - Brücken KW - SHM KW - Klimakammer PY - 2019 AN - OPUS4-47702 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Viefhues, Eva A1 - Said, Samir A1 - Herrmann, Ralf A1 - Baeßler, Matthias T1 - Vibration-based Structural Health Monitoring of a Reinforced Concrete Beam Subjected to Varying Ambient Conditions Using Bayesian Methods N2 - Inspection and maintenance contribute significantly to the lifetime cost of bridges. There is significant potential in using information obtained through structural health monitoring to update predictive models of the condition and performance of such structures, and thus ena-ble an improved decision-making regarding inspection and maintenance activities. Within the AISTEC project funded by the German Federal Ministry of Education and Research, we develop vibration-based structural health monitoring systems aimed at continuously provid-ing information on the structural condition of bridges. Environmental variations such as changing ambient temperatures can significantly influence the dynamic characteristics of bridges and thus mask the effect of structural changes and damages. It remains a challenge to account for such influences in structural health monitoring. To study the effect of ambient temperatures on the dynamic characteristics of beam structures, we monitor the vibration response of a reinforced concrete beam in the uncracked and cracked state at varying tem-peratures in a climate chamber. We postulate a set of competing parameterized probabilistic structural models, which explicitly account for the effect of varying ambient temperatures on the mechanical properties of the system. We then combine the information provided by the structural models with the information contained in the recorded vibration data to learn the parameters of the temperature-dependent structural models and infer the plausible state of the beam using Bayesian system identification and model class selection. T2 - EURODYN 2020, XI International Conference on Structural Dynamics CY - Online meeting DA - 23.11.2020 KW - Bayesian methods KW - Environmental effects KW - Structural health monitoring PY - 2020 AN - OPUS4-51732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick T1 - Zustandsbewertung von Bauwerken unter veränderlichen Umgebungsbedingungen mittels Structural Health Monitoring N2 - Brücken sind Teil der alternden Verkehrsinfrastruktur. Um die Nutzungsdauer zu verlängern und plötzliche Schäden zu detektieren kann Bauwerksmonitoring ("Structural Health Monitoring") eingesetzt werden. Der Einfluss von Umgebungsbedingungen, beispielsweise der Temperatur, auf das Bauwerksverhalten ist meist größer als der Einfluss von Schäden. Diese Einflüsse bestmöglich voneinander zu trennen und Veränderungen im Tragverhalten korrekt Schäden oder Umgebungsbedingungen zuzuordnen ist eine offene Forschungsfrage. Diese Arbeit zeigt eine mögliche Lösung, bei der gekoppelte Modelle von Umwelteinflüssen, Schäden und Tragverhalten des Bauwerks auf Grundlage von Monitoringdaten aktualisiert werden. Das Framework dazu wird vorgestellt und an einem Laborexperiment eines Stahlbetonbalkens in der Klimakammer angewandt. Die Ergebnisse bestätigen die Vorgehensweise. In nächsten Schritten müssen komplexere Tragwerke und die Sensitivität des Ansatzes untersucht werden. T2 - Forschungskolloquium, Institut für Konstruktiven Ingenieurbau, Bauhaus-Universität Weimar CY - Weimar, Germany DA - 28.06.2023 KW - Structural health monitoring KW - Bauwerksmonitoring KW - Umwelteinflüsse KW - Brücken PY - 2023 AN - OPUS4-58005 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Herrmann, Ralf A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias A1 - El-Athman, Rukeia T1 - Research Data Management of Structural Health Monitoring Projects and Subsequent Applications of Artificial Intelligence Methods N2 - Structural health monitoring (SHM) intends to improve the management of engineering structures. The number of successful SHM projects – especially SHM research projects – is ever growing, yielding added value and more scientific insight into the management of infrastructure asset. With the advent of the data age, the value of accessible data becomes increasingly evident. In SHM, many new data-centric methods are currently being developed at a high pace. A consequent application of research data management (RDM) concepts in SHM projects enables a systematic management of raw and processed data, and thus facilitates the development and application of artificial intelligence (AI) and machine learning (ML) methods to the SHM data. In this contribution, a case study based on an institutional RDM framework is presented. Data and metadata from monitoring the structural health of the Maintalbrücke Gemünden for a period of 16 months are managed with the RDM system BAM Data Store, which makes use of the openBIS data management software. An ML procedure is used to classify the data. Feature engineering, feature training and resulting data are performed and modelled in the RDM system. T2 - 11th International Conference on Bridge Maintenance, Safety and Management (IABMAS2022) CY - Barcelona, Spain DA - 11.07.2022 KW - Research data management KW - Structural health monitoring KW - Artificial intelligence PY - 2022 AN - OPUS4-55494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Baeßler, Matthias T1 - Sensorbasierte Systemidentifikation N2 - Die aktuelle Instandhaltungsstrategien von Ingenieurbauwerken arbeiten zustandsbasiert und stützen sich auf visuelle Inspektionen in kurzen, starren Intervallen. Beim Übergang zu Predicitive-Maintenance-Strategien können Sensordaten eigesetzt werden um Prognosemodelle der Bauwerke zu aktualisieren. Ein erster Schritt hierzu ist die sensorbasierte Systemidentifikation. T2 - Abschlussveranstaltung AISTEC CY - Berlin, Germany DA - 02.05.2022 KW - Systemidentifikation KW - Strukturmonitoring PY - 2022 AN - OPUS4-55495 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias T1 - Bayesian system identification of a reinforced concrete beam subject to temperature variations based on static response data N2 - Changes in the measured response of structural systems can be an indication of structural damages. However, such changes can also be caused by the effect of varying environmental conditions. To detect, localize and quantify changes or damages in structural systems subject to varying environmental conditions, physics-based models of the structural systems have to be applied which explicitly account for the influence of ambient conditions on the structural behavior. Data obtained from the structural systems should be used to calibrate the models and update predictions. Bayesian system identification is an effective framework for this task. In this paper, we apply this framework to learn the parameters of two competing structural models of a reinforced concrete beam subject to varying temperatures based on static response data. The models describe the behavior of the beam in the uncracked and cracked condition. The data is collected in a series of load tests in a climate chamber. Bayesian model class selection is then applied to infer the most plausible condition of the beam conditional on the available data. T2 - Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020) CY - Online meeting DA - 11.04.2021 KW - Bayesian system identification KW - Reinforced concrete KW - Damage identification KW - Environmental effects KW - Structural health monitoring KW - Structural systems PY - 2021 AN - OPUS4-52812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Herrmann, Ralf A1 - Viefhues, Eva A1 - Baeßler, Matthias T1 - Experimente in der Klimakammer N2 - Im Rahmen des Verbundtreffens des Vorhabens AISTEC werden akutelle Versuche aus der Großklimakammer des FB 7.2 präsentiert. T2 - 5. Verbundtreffen AISTEC CY - Online meeting DA - 24.06.2021 KW - Klimakammer KW - Stochastic Subspace Damage Detection KW - Model Update KW - Asphalt PY - 2021 AN - OPUS4-52869 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick A1 - Schneider, Ronald A1 - Baeßler, Matthias A1 - Recknagel, Christoph T1 - Enhancing structural models with material tests and static response data - a case study considering a steel beam with asphalt layer subject to temperature variations N2 - Gradual or sudden changes in the state of structural systems caused, for example, by deterioration or accidental load events can influence their load-bearing capacity. Structural changes can be inferred from static and/or dynamic response data measured by structural health monitoring systems. However, they may be masked by variations in the structural response due to varying environmental conditions. Particularly, the interaction of nominally load-bearing components with nominally non-load bearing components exhibiting characteristics that vary as a function of the environmental conditions can significantly affect the monitored structural response. Ignoring these effects may hamper an inference of structural changes from the monitoring data. To address this issue, we adopt a probabilistic model-based framework as a basis for developing digital twins of structural systems that enable a prediction of the structural behavior under varying ambient condition. Within this framework, different types of data obtained from real the structural system can be applied to update the digital twin of the structural system using Bayesian methods and thus enhance predictions of the structural behavior. In this contribution, we implement the framework to develop a digital twin of a simply supported steel beam with an asphalt layer. It is formulated such that it can predict the static response of the beam in function of its temperature. In a climate chamber, the beam was subject to varying temperatures and its static response wass monitored. In addition, tests are performed to determine the temperature-dependent properties of the asphalt material. Bayesian system identification is applied to enhance the predictive capabilities of the digital twin based on the observed data. T2 - International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-10) CY - Online meeting DA - 30.06.2021 KW - Digital twin KW - Structural health monitoring KW - Material tests KW - Bayesian updating PY - 2021 AN - OPUS4-54130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Patrick T1 - Structural Health Monitoring (SHM) unter Temperatureinflüssen N2 - Beim Structural Health Monitoring (SMH) besteht eine der Hauptsächlichen Störgrößen im Einfluss der Umgebungsbedingungen, insbesondere der Temperatur. Es wird ein Einblick in die Problemstellung gegeben sowie Lösungsansätze diskutiert und aktuelle Forschung an der BAM vorgestellt. T2 - Internes Arbeitskolloquium TU Berlin CY - Berlin, Germany DA - 11.10.2019 KW - Structural Health Monitoring KW - Structural Health Monitoring KW - Temperatureinflüsse KW - Temperature effects KW - SHM KW - SHM PY - 2019 AN - OPUS4-49265 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -